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Abstract

Three-dimensional conformal theories with six supersymmetries and SU(4)R-
symmetry describing stacks of M2-branes are here proposed to be related to
generalized Jordan triple systems. Writing the four-index structure constants in
an appropriate form, the Chern–Simons part of the action immediately suggests
a connection to such triple systems. In contrast to the previously considered
3-algebras, the additional structure of a generalized Jordan triple system is
associated with a graded Lie algebra, which corresponds to an extension
of the gauge group. In this paper we show that the whole theory with six
manifest supersymmetries can be naturally expressed in terms of such a graded
Lie algebra. Also the Bagger, Lambert and Gustavsson theory with eight
supersymmetries is included as a special case.

PACS numbers: 11.25.Hf, 11.25.Yb

1. Introduction

A three-dimensional maximally (N = 8) superconformal theory was recently constructed by
Bagger, Lambert and Gustavsson (BLG) in [1–4]. The BLG theory was originally proposed
to describe multiple M2-branes. An interesting aspect of this theory is that it contains a
Chern–Simons term [5] making the BLG theory potentially interesting also for condensed
matter applications. The multiple M2-brane interpretation has, however, met with a number
of problems having to do with the algebraic structure on which the theory is based. The theory
contains a kind of four-index structure constant for a 3-algebra with a Euclidean metric. This
3-algebra has, however, been proven [6, 7] to have basically only one realization, A4, related
to the ordinary Lie algebra so(4) through its totally antisymmetric epsilon tensor. This limits
the role of the BLG theory to stacks of two M2-branes [8, 9].
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By relaxing the assumption that the metric on the algebra should be positive definite [10]
any Lie algebra can be accommodated. The drawback of using a degenerate metric as done in
[10] is that it produces a set of field equations which cannot be integrated to a Lagrangian if
the zero norm mode is not assumed constant. This subsequently led to a number of attempts to
use a non-degenerate but Lorentzian metric [11–13]. Again there are problems; these theories
make sense only provided the negative norm modes can be rendered harmless. Even when
this is the case they are of real interest only if they contain genuine M2-physics instead of
just providing a reformulation of the D2-brane. For some recent results in this direction, see
[14–17].

From the work of [10] it was also clear that the structure constants need not be totally
antisymmetric. This might be interesting since this property seems to be part of the reason
why only one realization, related to SO(4), of the fundamental identity can be constructed
in the Euclidean case. In fact, as realized by Aharonyet al (ABJM) [18], by reducing the
number of linearly realized supersymmetries from the maximal N = 8 to N = 6 this no-
go theorem can be avoided. Following [19], the authors of [18] (see also [20, 21]) used a
construction with the fields in the bi-fundamental representation of U(N)×U(N) and without
any reference to the four-index structure constants. However, in a work following this Bagger
and Lambert [22] pointed out that if reinstating the four-index structure constants there are
interesting implications for their antisymmetry properties. In particular, six supersymmetries
are compatible with structure constants which are not totally antisymmetric.

The purpose of this paper is to write the structure constants in yet another form which
suggests the possibility of relating them to certain algebraic structures, known as generalized
Jordan triple systems. Since this result will rely on embeddings into infinite-dimensional
graded Lie algebras g we should here mention that embeddings into finite-dimensional ones
are also possible [23–26] but then g is a (three graded) Lie superalgebra.

The paper is organized as follows. In section 2, we review the ABJM theory and present
the Lagrangian in terms of four-index structure constants as described in [22]. In section 3,
we then provide a reformulation of this theory in terms of structure constants adapted to triple
systems. Some relevant aspects of generalized Jordan triple systems and the associated graded
Lie algebra are summarized in section 4. The last section contains conclusions and some
further comments.

2. The ABJM M2-theory

The BLG theory contains three different fields; the two propagating ones XI
a and �a , which

are three-dimensional scalars and spinors, respectively, and the auxiliary gauge field Ãμ
a
b.

Here the indices a, b, . . . are connected to the 3-algebra and some n-dimensional basis T a ,
while the I, J,K, . . . indices are SO(8) vector indices. The spinors transform under a spinor
representation of SO(8) but the corresponding index is not written out explicitly. Indices
μ, ν, . . . are vector indices on the flat M2-brane world volume.

Using these fields one can write down N = 8 supersymmetry transformation rules and
covariant field equations. This is possible without introducing a metric on the 3-algebra.
In such a situation the position of the indices on the structure constants is fixed as f abc

d .
The corresponding fundamental identity needed for supersymmetry and gauge invariance then
reads [1–4],

f abc
gf

efg
d = 3f ef [a

gf
bc]g

d, (2.1)

which can be written in the following alternative but equivalent form [10]:

f [abc
gf

e]fg
d = 0. (2.2)
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The construction of a Lagrangian requires the introduction of a metric on the 3-algebra.
As discussed above, if one wants to describe more general Lie algebras than so(4), this metric
must be degenerate [10] or non-degenerate but indefinite [11–13]. Finally, to construct an
action one also needs to introduce the basic gauge field Aμab

3 which is related to the previously
defined gauge field and structure constants as follows:

Ãμ
a
b = Aμcdf

cda
b. (2.3)

The BLG Lagrangian is [3]

L = −1

2
(DμXIa)

(
DμXI

a

)
+

i

2
�̄aγ μDμ�a +

i

4
�̄b�IJ XI

cX
J

d�af
abcd

−V +
1

2
εμνλ

(
f abcdAμab∂νAλcd +

2

3
f cda

gf
efgbAμabAνcdAλef

)
, (2.4)

where the potential is given by

V = 1
12f abcdf efg

dX
I
aX

J
bX

K
cX

I
eX

J
f XK

g. (2.5)

Note that in terms of Ã the Chern–Simons term becomes

LCS = 1
2εμνλ

(
Aμab∂νÃλ

ab + 2
3Aμ

a
bÃν

b
cÃλ

c
a

)
(2.6)

and that the fundamental identity implies that, in the variation of the last term, the structure
constants can be associated with any two of the three vector fields.

Following ABJM [18] we now rewrite this in a form which has only six manifest
supersymmetries and manifest SU(4)R-symmetry. As emphasized by these authors, this is
naturally done using matter fields in the bi-fundamental representation [19] of U(N)×U(N),
and no reference to 3-algebras and their structure constants is needed. However, for the
purpose of this paper we need to reinstate the four-index structure constants. Fortunately, this
was discussed in detail in a recent work by Bagger and Lambert [22].

The ABJM action is expressed in terms of complex scalar fields ZA
a and spinors �Aa

with the capital indices transforming in fundamental and anti-fundamental representations of
the SU(4)R-symmetry, respectively. If rewritten in terms of four-index structure constants as
done in [22] (but rescaled by a factor of 2), the ABJM action reads

L = −(
DμZA

a

)(
DμZ̄A

a
) − i�̄A

a�
μDμ�A

a

− if abcd�̄A
d�AaZ

B
bZ̄Bc + 2 if abcd�̄A

d�BaZ
B

bZ̄Ac

− i

2
εABCDf abcd�̄A

c�
B

dZ
C

aZ
D

b − i

2
εABCDf cdab�̄Ac�BdZ̄CaZ̄Bd

−V +
1

2
εμνλ

(
f abcdAμab∂νAλcd +

2

3
f cda

gf
efgbAμabAνcdAλef

)
, (2.7)

where the potential can be written

V = 2
3ϒCD

Bdϒ̄CD
Bd, (2.8)

ϒCD
Bd = f abc

dZ
C

aZ
D

bZ̄Bc + f abc
dδ

[C
BZD]

aZ
E

bZ̄Ec. (2.9)

In order to write this action one needs a metric on the 3-algebra to raise and lower 3-algebra
indices. The structure constants appearing in this formulation of the N = 6 ABJM theory
[22] are antisymmetric in the first pair of indices as well as in the second pair while complex
conjugation is defined to interchange the two pairs of indices.

As we will see below the need for an explicit metric in the Lagrangian can be eliminated
by writing the structure constants as f ab

cd or f a
b
c
d (which we will see later are in fact related

to each other). This will also require the introduction of a graded Lie algebra in a way that
will be explained in the following section.
3 However, already gauge invariance of the field equations requires this gauge field [10].
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3. Structure constants adapted to triple systems

Our next goal is to try to relate the M2-brane to generalized Jordan triple systems. The first
step is to rewrite the N= 6 M2-theory as formulated at the end of the previous section in terms
of structure constants with two upper and two lower indices, which are antisymmetric in each
pair separately,

f ab
cd = f [ab]

cd = f ab
[cd]. (3.1)

The crucial difference between our approach and that used in [22] is that we do not
consider the fields ZA,�A as elements in the same 3-algebra as their complex conjugates
Z̄A,�A. (We save the bar on the spinor for the Dirac conjugate.) Rather, we deal with two
vector spaces g1 and g−1, with bases T a and Ta , respectively. These two vector spaces generate
a graded Lie algebra g. We do not use any metric on g1 and g−1 to raise and lower indices,
but we use an antilinear involution τ on g to go between the subspaces, τ(T a) = Ta . We also
use a bilinear form on g to contract upper and lower indices. We will describe this graded Lie
algebra in more detail in the following section. Here we just define the components of the
fields ZA,�A in g1 to have the index structure ZA

a,�Aa . The components of τ(ZA), τ (�A)

in g−1 are then the complex conjugates Z̄A
a,�Aa . That it is natural to place the indices like

this can be seen from rewriting the Bagger–Lambert version of the ABJM action as follows:

L = −(
DμZA

a

)(
DμZ̄A

a
) − i�̄Aaγ μDμ�Aa

− if ab
cd�̄

Ad�AaZ
B

bZ̄B
c + 2 if ab

cd�̄
Ad�BaZ

B
bZ̄A

c

− i

2
εABCDf ab

cd�̄
Ac�BdZC

aZ
D

b − i

2
εABCDf cd

ab�̄Ac�BdZ̄C
aZ̄D

b

−V +
1

2
εμνλ

(
f ab

cdAμ
d
b∂νAλ

c
a +

2

3
f bd

gcf
gf

aeAμ
a
bAν

c
dAλ

e
f

)
, (3.2)

where the potential now takes the form

V = 2
3ϒCD

Bdϒ̄CD
Bd, (3.3)

ϒCD
Bd = f ab

cdZ
C

aZ
D

bZ̄B
c + f ab

cdδ
[C

BZD]
aZ

E
bZ̄E

c. (3.4)

This action can be shown to be N = 6 supersymmetric provided that the structure constants
obey

f a[b
dcf

e]d
gh = f be

d[gf
ad

h]c (3.5)

and, under complex conjugation,(
f ab

cd

)∗ = f cd
ab ≡ fab

cd (3.6)

One immediate way to see that this identity is relevant is to consider the Chern–Simons term

LCS = 1
2εμνλ

(
Aμ

b
a∂νÃλ

a
b + 2

3Aμ
a
bÃν

b
cÃλ

c
a

)
, (3.7)

where we use vector fields Aμ
a
b and

Ãμ
a
b = f ac

bdAμ
d
c. (3.8)

Identity (3.5) then follows from the observation that when deriving the field equation the
variation of each vector field must provide an identical contribution to the answer. Note that
also the Chern–Simons field without tilde has an upper and a lower index which is not the case
in previous treatments of the M2-brane system.

As we will see in the following section, the structure constants can also be written as
fa

b
c
d . It is then interesting to note that they, as well as their corresponding fundamental
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identity, appear naturally also in the embedding tensor formalism of [27] but for seemingly
completely different reasons.

In terms of structure constants of generalized Jordan triple systems the transformation
rules for the six supersymmetries, parametrized by the complex self-dual three-dimensional
spinor εAB , read

δZA
a = iε̄AB�Ba, (3.9)

δ�Bd = γ μDμZA
dεAB + f ab

cdZ
C

aZ
D

bZ̄B
cεCD − f ab

cdZ
A

aZ
C

bZ̄C
cεAB, (3.10)

while the Chern–Simons 1-form transforms as follows:

δAμ
a
b = − iε̄ABγμ�AaZB

b + iε̄ABγμ�AbZ̄B
a. (3.11)

To prove that the Lagrangian has six supersymmetries only requires the use of identities (3.5)
and (3.6). The latter is needed since τ is antilinear. We have for example

τ
(
f ab

cdZ
A

e

) = (
f ab

cd

)∗
τ
(
ZA

e

) = f cd
abZ̄A

e. (3.12)

This also ensures that the kinetic term in the Lagrangian is positive definite. In order to see
how identity (3.5) arises in generalized Jordan triple systems, we need to discuss some further
aspects of the underlying graded Lie algebra.

4. Triple systems and graded Lie algebras

In this section we will describe how the two vector spaces g1 and g−1, with bases T a and Ta ,
respectively, generate a graded Lie algebra g. The fact that g is graded means that g can be
written as a direct sum of subspaces gk for all integers k, such that

[gi, gj ] ⊆ gi+j (4.1)

for all integers i, j (with the possibility that gk = 0 for all sufficiently large |k|). We call k the
level of the elements in gk .

It follows in particular that any subspace gk form a representation of the subalgebra g0.
First we consider as g0 the Lie algebra sl(n), with generators Ka

b and commutation relations[
Ka

b,K
c
d

] = δc
bK

a
d − δa

dK
c
b. (4.2)

We let sl(n) act on g1 and g−1 in the fundamental and antifundamental representations,
respectively: [

Ka
b, T

c
] = δb

cT a,
[
Ka

b, Tc

] = −δa
cTb. (4.3)

In the graded Lie algebra we must also have [g−1, g1] ⊆ g0. For this we introduce the
structure constants f a

b
c
d by

[T a, Tb] = f a
b
c
dK

d
c ≡ Sa

b, (4.4)

and from (4.3) we get[
Sa

b, T
c
] = f a

b
c
dT

d,
[
Sa

b, Tc

] = −f a
b
d
cTd . (4.5)

We thus have [[T a, Tb], T c] = f a
b
c
dT

d , and analogously we define the structure constants
fa

b
c
d by [[Ta, T

b], Tc] = fa
b
c
dTd . It follows from (4.5) that

fa
b
c
d = f b

a
d
c. (4.6)

For the Jacobi identity

[[T a, Tb], T c] − [[T c, Tb], T a] = [[T a, T c], Tb] (4.7)

5
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to hold, the structure constants must satisfy the identity

f a
b
f

gf
c
d
e
f = f c

d
f

gf
a
b
e
f + f a

b
c
f f f

d
e
g − fb

a
d
f f c

f
e
g. (4.8)

We can now redefine g0 to be the subalgebra of sl(n) spanned by all elements Sa
b (so that

[g1, g−1] = g0) with the commutation relations[
Sa

b, S
c
d

] = f a
b
c
eS

e
d − fb

a
d
eSc

e. (4.9)

Let τ be the restriction of the Chevalley involution on sl(n) to g0. Then τ can be extended
by τ(T a) = Ta to a graded involution on the whole of g, such that τ(gk) = g−k for all integers
k. It follows from this property, together with (4.1), that g1 closes under the triple product

(abc) = [[a, τ (b)], c], (4.10)

(and likewise for g−1). Thus identity (4.8) can be expressed as

(ab(xyz)) − (xy(abz)) = ((abx)yz) − (x(bay)z). (4.11)

This is the definition of a generalized Jordan triple system, a vector space with a triple
product that satisfies (4.11). Thus any graded Lie algebra with a graded involution leads to a
generalized Jordan triple system. Conversely, for any generalized Jordan triple system T, there
is an associated graded Lie algebra g, which is an extension of the vector space g−1 + g0 + g1

that we described above [28–31].
We stress that the Lie algebra associated with a generalized Jordan triple system is the

whole graded Lie algebra g, and not only the subalgebra g0, which (in the case of 3-algebras)
was called the associated Lie algebra by Bagger and Lambert in [3]. The graded Lie algebra g

associated with a generalized Jordan triple system T was constructed by Kantor in a way such
that if g is finite dimensional, then simplicity of g is equivalent to K-simplicity of T [28, 29].
A generalized Jordan triple system T is K-simple if there is no proper non-trivial subspace U
such that (T T U) ⊆ U and (UT T ) ⊆ U .

In the construction of the graded Lie algebra associated with a generalized Jordan triple
system, one defines generators T ab = [T a, T b] at level two, T abc = [[T a, T b], T c] at level
three, and so on (and likewise Tab, Tabc, . . . at the negative levels). These elements will satisfy

0 = T (ab)cd··· = T [abc]d···, (4.12)

due to antisymmetry of the Lie bracket and the Jacobi identity, but also further conditions that
amount to factoring out ideals from the free Lie algebra generated by T a and Ta .

Assume that g0 is semisimple. We can extend the Killing form κ on g0 to the vector space
g−1 + g0 + g1 by κ(T a, Tb) = δa

b. Then we can recursively (using the invariance) extend it
to an invariant bilinear form on the whole of the free Lie algebra generated by T a and Ta ,
provided that the structure constants satisfy

f a
b
c
d = f c

d
a
b. (4.13)

But this invariant bilinear form will then be degenerated, and the corresponding ideals are
exactly those that we have to factor out to obtain the Lie algebra associated with the generalized
Jordan triple system. This can be done recursively. Suppose that the restriction of the bilinear
form to the vector space g−k+1 + · · ·+gk−1, for some k, is non-degenerate. Then κ(x, y), where
x ∈ gk and y ∈ g−k , is a linear combination of terms

f a1···ak
b1···bk

≡ (−1)k+1κ
(
T a1···ak , Tbk ···b1

) = (−1)kκ
(
[T a1···ak , Tb1 ], Tbk ···b2

)
. (4.14)

Using the structure constants for the triple product, this can be evaluated as

f a1···ak
b1···bk

= f a1
b1

a2
cf

ca3···ak
b2···bk

−
∑

f aj
b1

ai
cf

cij
b2b3···bk

, (4.15)
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where the sum goes over all i, j such that 1 � i < j � k and cij denotes the sequence of
indices obtained from a1 · · · an by omitting aj and replacing ai by c, that is,

cij = a1 · · · ai−1cai+1 · · · aj−1aj+1 · · · ak. (4.16)

From now on, we assume that the structure constants are antisymmetric in the first and
third indices. It then follows from (4.13) that they are antisymmetric also in the second and
fourth indices:

f a
b
c
d = −f c

b
a
d = −f a

d
c
b (4.17)

and we have

f ab
cd = 2f a

c
b
d (4.18)

from the Jacobi identity. Identity (4.8) then becomes

f e[a
dcf

b]d
gh = f ab

d[gf
ed

h]c, (4.19)

which is precisely the identity needed in the previous section to prove supersymmetry.
Furthermore, we have(

f a
b
c
d

)∗ = κ
(
τ
(
f a

b
c
eT

e
)
, T d

) = κ(τ([[T a, Tb], T c]), T d)

= κ([[Ta, T
b], Tc], T d) = fa

b
c
d = f b

a
d
c (4.20)

since τ is antilinear, and using (4.18) we get
(
f ab

cd

)∗ = f cd
ab. Thus the requirements for the

six supersymmetries of the action (3.2) are satisfied.
With the antisymmetry f a

b
c
d = −f c

b
a
d , the first term on the right-hand side of (4.15)

coincide with the first term in the summation. In the case k = 3 the equation simplifies to

f abc
def = 2f a

d
b
gf

gc
ef − f c

d
a
gf

gb
ef − f c

d
b
gf

ag
ef

= f ab
dgf

gc
ef − 1

2f ca
dgf

gb
ef − 1

2f cb
dgf

ag
ef

= f ab
dgf

gc
ef − f c[a

gdf
b]g

ef . (4.21)

We see that f abc
def is antisymmetric in the first two indices and vanishes upon

antisymmetrization in the three upper indices (or the three lower ones). This is in accordance
with the Jacobi identity, since by definition

f abc
def = κ([[T a, T b], T c], [[Tf , Te], Td ]). (4.22)

Continuing in this way, one can determine which symmetries the tensors at each level must
have, and their commutation relations follow from the Jacobi identity. Thus the graded Lie
algebra g is completely determined by the generalized Jordan triple system T, or equivalently,
by the structure constants f a

b
c
d .

We will now discuss some further properties of the Lie algebra g. We will make use of the
following two theorems by Kantor, the first of which we mentioned already in the beginning
of this section.

Theorem 1 [29] (section 3, prop. 7′ and theorem 1′, see also [30] theorem 3.5). Assume that
g is finite dimensional. Then g is simple if and only if T is K-simple.

Theorem 2 [29] (section 4, prop. 12). Assume that g is finite dimensional and simple. Then
there are nonzero elements e, f, h, at level one, minus one and zero, respectively, that satisfy
the Chevalley relations

[h, e] = 2e, [h, f ] = −2f, [e, f ] = h. (4.23)

Thus e, f, h are the Chevalley basis elements corresponding to a simple root. Theorems 1 and
2 together give the following corollary.

7
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Corollary 3. If T is K-simple and antisymmetric in the first and third arguments, then g is
infinite dimensional.

Proof. Suppose the contrary, that g is finite dimensional. It follows by theorem 1 that g is
simple. But then according to theorem 2 there are nonzero elements e, f, h such that

[[e, f ], e] = [h, e] = 2e. (4.24)

On the other hand, we have

[[e, f ], e] = (eτ (f )e) = 0 (4.25)

since the triple product is antisymmetric in its first and third arguments. Thus we get a
contradiction and we conclude that g is infinite dimensional. �

In particular, for the totally antisymmetric triple system used in the BLG theory with
eight supersymmetries, the associated Lie algebra g is infinite dimensional. Indeed, this triple
system is K-simple since the structure constants are proportional to the so(4) epsilon tensor.
We stress that although g is infinite dimensional, each of the infinitely many subspaces gk is
finite dimensional. Again, g should not be confused with its subalgebra g0 (which is so(4) in
this case), nor with the triple system itself (which can be identified with g1).

There is still the possibility that g is an infinite-dimensional Kac–Moody algebra. From
theorem 2 we only know that in the finite-dimensional case, it is possible to find a Chevalley
basis and a simple root such that the corresponding elements e, f, h belong to level one, minus
one and zero, respectively. If g is an infinite-dimensional Kac–Moody algebra then the grading
cannot be given by a simple root in this way. It might be possible to find elements e, f, h at
level one, minus one and zero, respectively, such that e and f are eigenvectors to the adjoint
action of h = [e, f ]. But then the eigenvalues must be zero instead of ±2. This suggests that
g is Borcherds algebra [32], or some even more general algebra that (unlike a Kac–Moody
algebra) allow for such zero eigenvalues.

We are finally able to express the ABJM action completely in terms of the associated
graded Lie algebra g. We recall that ZA,�A are elements in g1, while ZA,�A are elements
in g1, which are mapped onto ZA,�A under the involution,

ZA = ZA
aT

a, ZA = ZA
aTa,

(4.26)
�A = �AaT

a, �A = �AaTa,

and Aμ belongs to the g0 subalgebra:

Aμ = Aμ
a
bS

b
a. (4.27)

The Lagrangian (3.2) can thus be rewritten as

L = −κ(DμZ̄A,DμZA) − iκ(�̄A, γ μDμ�A)

+ iκ([�̄A, Z̄B ], [�A,ZB ]) − 2iκ([�̄A, Z̄A], [�B,ZB ])

− i

2
εABCDκ([�̄A,�B ], [ZC,ZD]) − i

2
εABCDκ([Z̄A, Z̄B], [�̄C,�D])

−V + εμνλ

(
κ(∂μAν,Aλ) − 2

3
κ([Aμ,Aν], Aλ)

)
, (4.28)

where, after using (4.21), the potential takes the simple form

V = κ([[Z̄A, Z̄B ], ZC], [[ZA,ZB ], Z̄C]) − 1
3κ([[Z̄A, Z̄B ], Z̄C], [[ZA,ZB ], ZC]). (4.29)

8
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One natural generalization would be to let ZA and ψA take values in gk for all positive levels
k, instead of just g1. This does not, however, seem to be compatible with supersymmetry.

5. Conclusions and comments

This paper is based on the observation that the N = 6 ABJM theory can be written in terms
of four-index structure constants f ac

bd which are antisymmetric only in the upper pair and the
lower pair separately. The fundamental identity then takes the same form as the basic identity
in a generalized Jordan triple system suggesting a connection to graded Lie algebras associated
with such triple systems. To rewrite the theory, we use an involution and an invariant bilinear
form on the Lie algebra, which naturally induce a metric on the generalized Jordan triple
system. However, this means that we do not need to use the metric explicitly in constructing
the Lagrangian.

We have been very general in the description of the Lie algebra associated with a
generalized Jordan triple system. The example that it first of all should be applied to is
the 3-algebra given by Bagger and Lambert in [22]. The relation between their work and ours
should be studied in detail. Also, the position of the indices suggests an interesting connection
to the embedding tensor method used in [27].

Even if much of what we have presented in this paper are based on reformulations of
previous results, we think that our approach opens up new perspectives. We have interpreted
the fields ZA,�A as elements in g1, their conjugates as elements in g−1, and the gauge field
Aμ as an element in g0. Although we do not have any interpretation of the elements at higher
(positive and negative) levels, we cannot set them to zero, because we need the triple product
to be antisymmetric in the first and third arguments. Therefore we believe that also the full
algebra might play an important role in the theory of M2-branes. For example, it points out
a new direction in which one could possibly search for the behavior n3/2 that the degrees of
freedom of n M2-branes are conjectured to exhibit. In any case, it would be interesting to see
how fast the dimension of the Lie algebra grows as we go to higher levels. The algorithm that
we have described for finding the corresponding g0-representations would probably be easy
to implement in a computer program.

There are many implications following from a relation between M2-brane systems and
generalized Jordan triple systems. In particular, very little is known about the structure of such
triple systems when the grading is infinite. Finite-dimensional cases are better known and
many of their properties have been studied (for an overview of Jordan, Kantor and Freudenthal
triple systems, we refer to [33]). For instance, in analogy with Freudenthal triple systems (see
e.g. [34]), we may suspect that the generalized Jordan triple systems used here might also be
of interest in connection with minimal representations, spherical vectors and the associated
automorphic forms. For previous attempts to use the theory of automorphic forms in the
context of the M2-brane, see [35, 36].

Let us end by mentioning two other issues. The Freudenthal triple system construction
leads to minimal representations via nonlinear realizations of the full algebra [34]. In [18]
the authors argue that the M2-theory discussed here really has eight supersymmetries but
that the last two are somehow realized non-locally. The connection to triple systems may in
fact suggest how to derive nonlinear realizations also of the remaining two supersymmetries
needed to obtain the maximal number of N = 8 supersymmetries.

The second issue is that of unitarity. Standard triple system constructions naturally lead to
Lie algebras that appear in their split form although other forms are also possible. To achieve
unitarity one may try to quantize the theory whereby an infinite-dimensional unitary minimal
representation is realized on a Hilbert space. For an explicit example, see [37].
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