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1 INTRODUCTION

ABSTRACT

Many astrophysical processes involving magnetic fields and quasi-stationary processes are
well described when assuming the fluid as a perfect conductor. For these systems, the ideal-
magnetohydrodynamics (MHD) description captures the dynamics effectively and a number
of well-tested techniques exist for its numerical solution. Yet, there are several astrophysical
processes involving magnetic fields which are highly dynamical and for which resistive effects
can play an important role. The numerical modelling of such non-ideal MHD flows is signifi-
cantly more challenging as the resistivity is expected to change of several orders of magnitude
across the flow and the equations are then either of hyperbolic—parabolic nature or hyperbolic
with stiff terms. We here present a novel approach for the solution of these relativistic resistive
MHD equations exploiting the properties of implicit—explicit IMEX) Runge—Kutta methods.
By examining a number of tests, we illustrate the accuracy of our approach under a variety of
conditions and highlight its robustness when compared with alternative methods, such as the
Strang splitting. Most importantly, we show that our approach allows one to treat, within a
unified framework, those regions of the flow which are both fluid-pressure dominated (such as
in the interior of compact objects) and instead magnetic-pressure dominated (such as in their
magnetospheres). In view of this, the approach presented here could find a number of appli-
cations and serve as a first step towards a more realistic modelling of relativistic astrophysical
plasmas.
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magnetic Reynolds numbers Ry = LV /A = 4no LV /c?, where
L and V are the typical sizes and velocities, respectively, while A

A vast number of astronomical observations suggest that magnetic
fields play a crucial role in the dynamics of many phenonema of
relativistic astrophyics, either on stellar scales, such as for pul-
sars, magnetars, compact X-ray binaries, short and long/gamma-
ray bursts (GRBs) and possibly for the collapse of massive stellar
cores, or on much larger scales, as it is the case for radio galaxies,
quasars and active galactic nuclei (AGN). A shared aspect in all
these phenomena is that the plasma is essentially electrically neu-
tral and the frequency of collisions is much larger than the inverse
of the typical time-scale of the system. The magnetohydrodynamics
(MHD) approximation is then an excellent description of the global
properties of these plasmas and has been employed with success
over the several decades to describe the dynamics of such systems
well in their non-linear regimes. Another important common as-
pect in these systems is that their flows are characterized by large
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is the magnetic diffusivity and o is the electrical conductivity. For
a typical relativistic compact object, Ry > 1 and, under these
conditions, the magnetic field is essentially advected with the flow,
being continuously distorted and possibly amplified, but also essen-
tially not decaying. We note that these conditions are very different
from those traditionally produced in the Earth’s laboratories, where
Rwm < 1, and the resistive diffusion represents an important feature
of the magnetic field evolution.

A particularly simple and yet useful limit of the MHD approxima-
tion is that of the ‘ideal-MHD’ limit. This is mathematically defined
as the limit in which the electrical resistivity n = 1/o vanishes or,
equivalently, by an infinite electrical conductivity. It is within this
framework that many multidimensional numerical codes have been
developed over the last decade to study a number of phenomena in
relativistic astrophysics and fully non-linear regimes (Komissarov
1999b; Koide, Shibata & Kudoh 1999; Komissarov 2001; Koldoba
et al. 2002; Del Zanna, Bucciantini & Londrillo 2003; Gammie,
McKinney & Toth 2003; Anninos, Fragile & Salmonson 2005; Duez
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etal. 2005; Shibata & Sekiguchi 2005; Anton et al. 2006; McKinney
2006a; Mignone & Bodo 2006; Neilsen, Hirschmann & Millward
2006; Del Zanna et al. 2007; Giacomazzo & Rezzolla 2007; Noble
et al. 2007; Farris et al. 2008). The ideal-MHD approximation is
not only a convenient way of writing and solving the equations of
relativistic MHD, but it is also an excellent approximation for any
process that takes place over a dynamical time-scale. In the case
of an old and ‘cold’ neutron star, for example, the electrical and
thermal transport properties of the matter are mainly determined
by the transport properties of the electrons, which are the most
important carriers of charge and heat. At temperatures above the
crystallization temperature of the ions, the electrical (and thermal)
conductivities are governed by electron scattering of ions and an
approximate expression for the electrical conductivity is given by
(Lamb 1991) o &~ 10** (10° K/T)? (p/10™ g cm™3)¥* 57!, where
T and p are the stellar temperature and mass density.! Even for a
magnetic field that varies on a length-scale as small as L ~ 0.1R
(where R is the stellar radius), the magnetic diffusion time-scale is
Tair = 4mL%0 /c? ~ 3 x 100 yr.

Clearly, at these temperatures and densities, Ohmic diffusion will
be negligible for any process taking place on a dynamical time-scale
for the star, i.e. < few s, and thus the conductivity can be consid-
ered as essentially infinite. However, catastrophic events, such as
the merger of two neutron stars or of a neutron star with a black
hole, can produce plasmas with regions at much larger tempera-
tures (e.g. T ~ 10''"!3 K) and much lower densities (e.g. p ~
108719 ¢ cm™). In such regimes, all the transport properties of the
matter will be considerably modified, and non-ideal effects absent
in perfect-fluid hydrodynamics (such as bulk viscosity) and ideal
MHD (such as Ohmic diffusion on a much shorter time-scale t g
~ 10% s) will need to be taken into account. Similar conditions are
likely not limited to binary mergers but, for instance, be present
also behind processes leading to long GRBs, thus extending the
range of phenomena for which resistive effects could be important.
Also note that these non-ideal effects in hydrodynamics (MHD) are
proportional not only to the viscosity (resistivity) of the plasma,
but also to the second derivatives of the velocity (magnetic) fields.
Hence, even in the presence of a small viscosity (resistivity), their
contribution to the overall conservation of energy and momentum
can be considerable if the velocity (magnetic) fields undergo very
rapid spatial variations in the flow. A classical example of the im-
portance of resistive MHD effects in plasmas with high but finite
conductivities is offered by current sheets. These phenomena are
often observed in the solar activity and are responsible for the re-
connection of magnetic field lines and changes in the magnetic field
topology. While these phenomena are behind the emission of large
amounts of energy, they are strictly forbidden within the ideal-MHD
limit due to magnetic flux conservation and so cannot be studied
employing this limit.

Besides having considerably smaller conductivities, low-density
highly magnetized plasmas are present rather generically around
magnetized objects, constituting what is referred to as the ‘magne-
tosphere’. In such regions, magnetic stresses are much larger than
gas-pressure gradients and cannot be properly balanced; as a result,
the magnetic fields have to adjust themselves so that the magnetic
stresses vanish identically. This scenario is known as the force-

! Note that this expression for the electrical conductivity is roughly correct
for densities in the range 10'°-10'* g cm~3 and temperatures in the range
10°-108 K, but also provides a reasonable estimate at larger temperatures
of ~10°-10'° K [cf. Potekhin et al. (1999)].

free regime (because the Lorentz force vanishes in this case) and

while the equations governing it can be seen as the low-inertia limit
of the ideal-MHD equations (Komissarov 2002; McKinney 2006b),
the force-free limit is really distinct from the ideal-MHD one. This
represents a considerable complication since it implies that it is
usually not possible to describe, within the same set of equations,
both the interior of compact objects and their magnetospheres.

Theoretical work to derive a fully relativistic theory of non-ideal
hydrodynamics and non-ideal MHD has been carried out by several
authors in the past (Lichnerowicz 1967; Israel 1976; Stewart 1977,
Anile 1989; Carter 1991) and is particularly simple in the case of the
resistive MHD description. The purpose of this work is indeed that
of proposing the solution of the relativistic resistive MHD equa-
tions as an important step towards a more realistic modelling of
astrophysical plasmas. There are a number of advantages behind
such a choice. First, it allows one to use a single mathematical
framework to describe both regions where the conductivity is large
(as in the interior of compact objects) and small (as in magneto-
spheres), and even the vacuum regions outside the compact objects
where the MHD equations trivially reduce to the Maxwell equa-
tions. Secondly, it makes it possible to account self-consistently for
those resistive effects, such as current sheets, which are energeti-
cally important and could provide a substantial modification of the
whole dynamics. Last but not the least, the numerical solution of
the resistive MHD equations provides the only way to control and
distinguish the physical resistivity from the numerical one. The lat-
ter, which is inevitably present and proportional to the truncation
error, is also completely dependent on the specific details of the
numerical algorithm employed and on the resolution used for the
solution.

As already noted by several authors, the numerical solution of
the ideal-MHD equations is considerably less challenging than that
of the resistive MHD equations. In this latter case, in fact, the equa-
tions become mixed hyperbolic parabolic in Newtonian physics
or hyperbolic with stiff relaxation terms in special relativity. The
presence of stiff terms is the natural consequence of the fact that
the diffusive effects take place on time-scales that are either of
the same order or smaller than the dynamical one. Stated differ-
ently, in such equations the relaxation terms can dominate over the
purely hyperbolic ones, posing severe constraints on the time-step
for the evolution. While considerable work has already been made
to introduce numerical techniques to achieve efficient implemen-
tations in either regime (Komissarov 2004; Reynolds, Samtaney
& Woodward 2006; Komissarov, Barkov & Lyutikov 2007;
Komissarov 2007; Graves et al. 2008), the use of these techniques in
fully three-dimensional simulations is still difficult and expensive.

In order to benefit from the many advantages discussed above
in the use of the resistive MHD equations, we here present a novel
approach for the solution of the relativistic resistive MHD equations
exploiting the properties of implicit—explicit IMEX) Runge—Kutta
methods. This approach represents a simple but effective solution
to the problem of the vastly different time-scales without sacrificing
either simplicity in the implementation or the numerical efficiency.
By examining a number of tests, we illustrate the accuracy of our
approach under a variety of conditions and demonstrate its robust-
ness. In addition, we also compare it with the alternative method
proposed by Komissarov (2007) for the solution of the same set
of relativistic resistive MHD equations. This latter approach em-
ploys Strang-splitting techniques and the analytical integration of
a reduced form of Ampere’s law. While it works well in a number
of cases, it has revealed to be unstable when applied to discon-
tinuous flows with large conductivities; such difficulties were not
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encountered when solving the same problem within the IMEX im-
plementation.

Because our approach effectively treats within a unified frame-
work both those regions of the flow which are fluid-pressure domi-
nated and those which are instead magnetic-pressure dominated, it
could find a number of applications and serve as a first step towards
a more realistic modelling of relativistic astrophysical plasmas.

Our work is organized as follows. In Section 2, we present the
system of equations describing a resistive magnetized fluid, while in
Section 3 we discuss the problems related to the numerical evolution
of this system of equations and the numerical approaches developed
to solve them. In particular, we introduce the basic features of the
IMEX Runge—Kutta schemes and recall their stability properties.
In Section 4, we instead explain in detail the implementation of the
IMEX scheme to the resistive MHD equations. Finally, in Section 5
we present the numerical tests carried out in either one or two
dimensions and that span several prescriptions for the conductivity.
Section 5 is also dedicated to the comparison with the Strang-
splitting technique. The conclusions and the perspectives for future
improvements are presented in Section 6, while Appendix A reviews
our space discretization of the equations.

Hereafter, we will adopt Gaussian units such that ¢ = 1 and em-
ploy the summation convention on repeated indices. Roman indices
a, b, c, ... are used to denote space-time components (i.e. from 0
to 3), while i, j, k, ... are used to denote spatial ones; lastly, bold
italics letters represent vectors, while bold letters represent tensors.

2 THE RESISTIVE MHD DESCRIPTION

An effective description of a fluid in the presence of electromag-
netic fields can be made by considering three different sets of equa-
tions governing, respectively, the electromagnetic fields, the fluid
variables and the coupling between the two. In particular, the elec-
tromagnetic part can be described via the Maxwell equations, while
the conservation of energy and momentum can be used to express
the evolution of the fluid variables. Finally, Ohm’s law, whose exact
form depends on the microscopic properties of the fluid, expresses
the coupling between the electromagnetic fields and the fluid vari-
ables. In what follows we review these three sets of equations sepa-
rately, discuss how they then lead to the resistive MHD description
and how the latter reduces to the well-known limits of ideal-MHD
and the Maxwell equations in vacuum. Our presentation will be fo-
cused on the special relativistic regime, but the extension to general
relativity is rather straightforward and will be presented elsewhere.

2.1 The Maxwell equations

The special relativistic Maxwell equations can be written as (Landau
& Lifshitz 1962)

9 F? =17, e))

ARF?P =0, 2

where F® and *F® are the Maxwell and the Faraday tensor, respec-
tively, and /¢ is the electric current four-vector. A highly ionized
plasma has essentially zero electric and magnetic susceptibilities
and the Faraday tensor is then simply the dual of the Maxwell ten-
sor. This tensor provides information about the electric and magnetic
fields measured by an observer moving along any time-like vector
n¢, namely

Fab = n Eh _ nhEa + Eachc . (3)
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We are considering n* to be the time-like translational killing vector
field in a flat (Minkowski) space—time, so n, = (—1, 0, 0, 0) and the
Levi—Civita symbol €“*¢ is non-zero only for spatial indices. Note
that the electromagnetic fields have no components parallel to n*
(i.e. En, = 0= B"n,).

By using the decomposition of the Maxwell tensor (3), the equa-
tions (1) and (2) can be split into directions which are parallel and
orthogonal to n“ to yield the familiar Maxwell equations:

V-E=gq, “
V-B=0, ®)
WE—-VxB=-], (6)
B+VXxE=0, 0

where we have also decomposed the current vector [¢ = gn® + J¢,
with g being the charge density, gn“ the convective current and J¢
the conduction current satisfying J“n, = 0.

The current conservation equation 9, I = 0 follows from the
antisymmetry of the Maxwell tensor and provides the evolution of
the charge density ¢:

0,q+V-J=0, ®)

which can also be obtained directly by taking the divergence of (6)
when the constraints (4) and (5) are satisfied.

2.2 The hydrodynamic equations

The evolution of the matter follows from the conservation of the
stress-energy tensor:

T =0, ©)
and the conservation of baryon number:
0,(pu*)y =0, (10)

where p is the rest-mass density (as measured in the rest frame of the
fluid) and ¢ is the fluid four-velocity. The stress-energy tensor T
describing a perfect fluid minimally coupled to an electromagnetic
field is given by the superposition

Ty = T4 4 7om an
where

: 1, .
T = F“F) — 2 (F“F.q) 8", (12)
T8 = huu® + pg™ . (13)

Here, h = p (1 + €) + p is the enthalpy, with p the pressure and €
the specific internal energy.

The conservation law (9) can be split into directions parallel
and orthogonal to n“ to yield the familiar energy and momentum
conservation laws:

3,1+V.F,. =0, (14)

0,S+V-Fg=0, (15)
where we have introduced the conserved quantities {t, S}, which
are essentially the energy density T = T,,n“n” and the energy flux
density S; = T,;n", and whose expressions are given by

1
1= —(E*+B)+hW?—p, (16)

2
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S=E x B+hW. (17)

Here, v is the velocity measured by the inertial observer and W =
—n,u® = 1/+/1 —v? is the Lorentz factor. The fluxes can then be
written as

F.=ExB+hW?v, (18)

1
F¢=—EE — BB +hW?vv + {E(Ez—l—Bz)—l—p] g. (19)

Finally, the conservation of the baryon number (10) reduces to the
continuity equation written as

3,D+V-Fp=0, (20)

where we have introduced another conserved quantity D = p W and
its flux Fp = p W .

2.3 Ohm’s law

As mentioned above, Maxwell equations are coupled to the fluid
ones by means of the current four-vector /¢, whose explicit form
will depend, in general, on the electromagnetic fields and the local
fluid properties. A standard prescription is to consider the current
to be proportional to the Lorentz force acting on a charged particle
and the electrical resistivity 1 to be a scalar function. Ohm’s law,
written in a Lorentz invariant way, then reads

L+ (Pup)u, = o Fypu®, 21

with ¢ = 1/n being the electrical conductivity of the medium.
Expressing (21) in terms of the electric and magnetic fields, one
obtains the familiar form of Ohm’s law in a general inertial frame:

J=0cW[E+vxB—(E-vwv]+gqv. (22)

Note that the conservation of the electric charge (8) provides the
evolution equation for the charge density ¢ (i.e. the projection of
the four-current I along the direction n), while Ohm’s law pro-
vides a prescription for the (spatial) conduction current J (i.e. the
components of I orthogonal to n).

It is important to recall that in deriving expression (22) for Ohm’s
law, we are implicitly assuming that the collision frequency of the
constituent particles of our fluid is much larger than the typical os-
cillation frequency of the plasma. Stated differently, the time-scale
for the electrons and ions to come into equilibrium is much shorter
than any other time-scale in the problem, so that no charge separa-
tion is possible and the fluid is globally neutral. This assumption is
a key aspect of the MHD approximation.

The well-known ideal-MHD limit of Ohm’s law can be obtained
by requiring the current to be finite even in the limit of infinite
conductivity (6 — 00). In this limit, Ohm’s law (22) then reduces
to

E+vxB—(E-vw=0. 23)

Projecting this equation along v, one finds that the electric field does
not have a component along that direction and then from the rest of
the equation one recovers the well-known ideal-MHD condition

E=-vxB, (24)

stating that in this limit the electric field is orthogonal to both B and
v. Such a condition also expresses the fact that, in ideal MHD, the
electric field is not an independent variable since it can be computed
via a simple algebraic relation from the velocity and magnetic vector
fields.

Summarizing: the system of equations of the relativistic resis-
tive MHD approximation is given by the constraint equations (4)
and (5), evolution equations (6)—(8), (14)—(15) and (20), where the
fluxes are given by equations (18) and (19) and the three current is
given by Ohm’s law (22). These equations, together with a equa-
tion of state (EOS) for the fluid and a reasonable model for the
conductivity, completely describe the system under consideration
provided consistent initial and boundary data are defined.

2.4 Different limits of the resistive MHD description

At this point, it is useful to point out some properties of the rel-
ativistic resistive MHD equations discussed so far, to underline
their purely hyperbolic character and to contrast them with those
of the other forms of the resistive MHD equations which contain a
parabolic part instead. To do this within a simple example, we adopt
the Newtonian limit of Ohm’s law (22):

J=0(E+vxB), (25)

where we have neglected terms of the order of O(v?/c?), obtaining
the following potentially stiff equation for the electric field:

0,E—V xB=—0(E+vxB). (26)

Assuming now a uniform conductivity and taking a time derivative
of equation (7), we obtain the following hyperbolic equation with re-
laxation terms (henceforth referred simply as hyperbolic-relaxation
equation) for the magnetic field:

—l(a,,B —V2B)=[3,B -V x (v x B)]. 27)
o

If the displacement current can be neglected, i.e. 0, E >~ 0, B =~
0, equation (27) reduces to the familiar parabolic equation for the
magnetic field:

1
B—Vx(@wxB)——V’B=0, (28)
o

where the last term is responsible for the diffusion of the magnetic
field. It is important to stress the significant difference in the char-
acteristic structure between equations (27) and (28). Both equations
reduce to the same advection equation in the ideal-MHD limit of
infinite conductivity (¢ — o00) indicating the flux-freezing con-
dition. However, in the opposite limit of infinite resistivity (o —
0), equation (28) tends to the (physically incorrect) elliptic Laplace
equation V2 B = 0 while equation (27) reduces to the (physically
correct) hyperbolic wave equation for the magnetic field.

2.5 The augmented MHD system

The set of Maxwell equations described above can also be cast in
an extended fashion which includes two additional fields, 1y and ¢,
introduced to control dynamically the constraints of the system, i.e.
equations (4) and (5). This ‘augmented’ system reads

p(F™ + g™y =1 — kyyn”, 29)

0p(F* + pg™) = —kpn". (30)

Clearly, the standard Maxwell equations (1) and (2) are recovered
when ¥ = ¢ = 0 and we are in this way extending the space of
solutions of the original Maxwell equations to include those with
non-vanishing {y, ¢}.

The evolution of these extra scalar fields can be obtained by taking
a partial derivative 0, of the augmented Maxwell equations (29) and
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(30) and using the antisymmetry of the Maxwell and Faraday tensors
together with the conservation of charge to obtain

0,0y = —k 0, (Yn"), €29}

0,09 = —kd,(¢pn®). (32)

It is evident that these represent wave equations with sources for
the scalar fields {y, ¢}, which propagate at the speed of light
while being damped if ¥ > 0. In particular, for any positive «,
they decay exponentially over a time-scale ~ 1/« to the trivial
solution ¥ = ¢ = 0 and the augmented system then reduces to the
standard Maxwell equations, including the constraints (4) and (5).
This approach, named hyperbolic divergence cleaning in the context
of ideal MHD (Dedner et al. 2002), was proposed as a simple way
of solving the Maxwell equations and enforcing the conservation of
the divergence-free condition for the magnetic field.

Adopting this approach and following the formulation proposed
by Komissarov (2007), the evolution equations of the augmented
Maxwell equations (29) and (30) can then be written as

oY +V-E=qg—«y, (33)
0,6 +V-B=—kd, (34)
VE-VXxB+Vy=—], (35)
0B+ V x E+ V¢ =0. (36)

Note that the divergence cleaning technique is applied to both the
magnetic and electric constraints and the same arguments apply to
violation in both constraints being damped through the evolution.
The system of equations (33)—(36), together with the current con-
servation (8), is the one we will use for the numerical evolution
of the electromagnetic fields within the set of relativistic resistive
MHD equations.

3 EVOLUTION OF
HYPERBOLIC-RELAXATION EQUATIONS

While the ideal-MHD equations are well suited to an efficient nu-
merical implementation, the general system of relativistic resistive
MHD equations brings about a delicate issue when the conductivity
in the plasma undergoes very large spatial variations. In the regions
with high conductivity, in fact, the system will evolve on time-scales
which are very different from those in the low-conductivity region.
Mathematically, therefore, the problem can be regarded as a hyper-
bolic one with stiff relaxation terms which requires special care to
capture the dynamics in a stable and accurate manner. In the next
section, we discuss a simple example of a hyperbolic equation with
relaxation which exhibits the problems discussed above and then
introduce IMEX Runge—Kutta methods to deal with these kind of
equations. In essence, these methods treat the advection charac-
ter of the system with strong stability preserving (SSP) explicit
schemes, while the relaxation character with an L-stable diago-
nally implicit Runge—Kutta (DIRK) scheme. After presenting the
scheme, its properties and some examples, we discuss in detail its
application to the resistive MHD equations.

3.1 Hyperbolic systems with relaxation terms

A prototypical hyperbolic equation with relaxation is given by

.U = F(U) + éR(U), 37)

© 2009 The Authors. Journal compilation © 2009 RAS, MNRAS

Beyond ideal MHD 5

where € > 0 is the relaxation time (not necessarily constant in either
space or time), F(U) gives rise to a quasi-linear system of equations
[i.e. F(U) depends linearly on first derivatives of U], and R does not
contain derivatives of U.

In the limit € — oo (corresponding for the resistive MHD equa-
tions to the case of vanishing conductivity), the system is hyperbolic
with propagation speeds bounded by cj,. This maximum bound, to-
gether with the length-scale L of the system, defines a characteristic
time-scale T, = L/cy, of the hyperbolic part. In the opposite limit
€ — 0 (corresponding to the case of infinite conductivity), the sys-
tem is instead said to be stiff, since the time-scale € of the relaxation
(or stiff) term R(U) is, in general, much shorter than the time-scale
71, of the hyperbolic part F(U). In such a limit, the stability of an
explicit scheme is only achieved? with a time-step size At < €. This
requirement is certainly more restrictive than the Courant-Lewy—
Friedrichs (CFL) stability condition At < Ax/cy, for the hyperbolic
part and makes an explicit integration impractical. The development
of efficient numerical schemes for such systems is challenging, since
in many applications the relaxation time can vary by several orders
of magnitude across the computational domain and, more impor-
tantly, to much beyond the one determined by the speed cy.

When faced with this issue several strategies can be adopted. The
most straightforward one is to consider only the stiff limit € — 0,
where the system is well approximated by a suitable reduced set of
conservation laws called ‘equilibrium system’ (Chen, Levermore &
Liu 1994) such that

RWO)=0, (38)

0,U = G(), (39)

where U is areduced set of variables. This approach can be followed
if the resulting system is also hyperbolic. This is precisely the
case in the resistive MHD equations for vanishing resistivity n —
0 (or 0 — o00). In this case, the equations reduce to those of
ideal MHD and describe indeed an ‘equilibrium system’ in which
the magnetic field is simply advected with the flow. As discussed
earlier, this limit is often adequate to describe the behaviour of
dense astrophysical plasmas, but it may also stray away in the
magnetospheres. A more general approach could consist of dividing
the computational domain in regions in each of which a simplified
set of equations can be adopted. As an example, the ideal-MHD
equations could be solved in the interior of compact objects, an
equivalent of the force-free MHD equations could be solved in the
magnetosphere, and finally the Maxwell equations for the vacuum
regions outside the compact object. However, this approach requires
the overall scheme to suitably match the different regions so as to
obtain a global solution. This task, unfortunately, is far from being
straightforward and, to date, it lacks a rigorous definition.

An alternative approach consists of considering the original
hyperbolic-relaxation system in the whole computational domain
and then employing suitable numerical schemes that work for all
regions. Among such schemes is the Strang-splitting technique
(Strang 1968), which has recently been applied by Komissarov
(2007) for the solution of the (special) relativistic resistive MHD
equations. The Strang-splitting scheme provides second-order accu-
racy if each step is at least second-order accurate, and this property

2 Implicit schemes could avoid this issue at an increased computational cost;
however, an explicit second-order accurate method approaching iteratively
the Crank—Nicholson scheme has been shown, in a simple model with
hyperbolic-relaxation terms, to work well when dealing with smooth profiles
without being too costly (Choptuik, private communication).
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is maintained under suitable assumptions even for stiff problems
(Jahnke & Lubich 2000). In practice, however, higher order accu-
racy is difficult to obtain even in non-stiff regimes with this kind of
splitting. Moreover, when applied to hyperbolic systems with relax-
ation, Strang-splitting schemes reduce to first-order accuracy since
the kernel of the relaxation operator is non-trivial and corresponds
to a singular matrix in the linear case, therefore invalidating the
assumptions made by Jahnke & Lubich (2000) to ensure high-order
accuracy. Komissarov (2007) avoided this problem by solving ana-
lytically the stiff part in a reduced form of Ampere’s law. Although
this procedure works well for smooth solutions, our implementation
of the method has revealed problems when evolving discontinuous
flows (shocks) for large-conductivities plasmas. Moreover, it is un-
clear whether the same procedure can be adopted in more general
configurations, where an analytical solution may not be available.
As an alternative approach to the methods solving the relativis-
tic resistive MHD equations on a single computational domain,
we here introduce an IMEX Runge—Kutta method (Asher, Ruuth &
Wetton 1995; Asher, Ruuth & Spiteri 1997; Pareschi 2001; Pareschi
& Russo 2005) to cope with the stiffness problems discussed above.
These methods, which are easily implemented, are still under de-
velopment and have few (relatively minor) drawbacks. The most
serious one is a degradation to first- or second-order accuracy for
a range of values of the relaxation time €. However, since high-
resolution shock-capturing (HRSC) schemes usually employed for
the solution of the hydrodynamic equations already suffer from
similar effects at discontinuities, the possible degradation of the
IMEX schemes does not spoil the overall quality numerical solu-
tion when employed in conjunction with HRSC schemes. The next
sections review in some detail the IMEX schemes and our specific
implementation for the relativistic resistive MHD equations.

3.2 The IMEX Runge-Kutta methods

The IMEX Runge—Kutta schemes rely on the application of an
implicit discretization scheme to the stiff terms and an explicit one
to the non-stiff ones. When applied to system (37), it takes the form
(Pareschi & Russo 2005)

i—1 v
, , 1 .
UD =U"+AtY & FIUY T+ Aty ai_/gR[U(f)],

Jj=1 j=1

v ) v 1 )
U =U"4+ At @ FIUV]+ At i~ R[UYT, (40)
+ ALY o FIUY+ ;w CRWUYI

i=1

where U® are the auxiliary intermediate values of the Runge—Kutta
scheme. The matrices A = (&; ;) and A = (a;;) are v X v matrices
such that the resulting scheme is explicit in F' (i.e. &;; = 0 forj > i)
and implicit in R. An IMEX Runge—Kutta scheme is characterized
by these two matrices and the coefficient vectors @; and w;. Since
simplicity and efficiency in solving the implicit part at each step is
important, it is natural to consider DIRK schemes (i.e. a;; = 0 for
J > 1) for the stiff terms.

A particularly convenient way of describing an IMEX Runge—
Kutta scheme is offered by the Butcher notation, in which the
scheme is by a double tableau of the type (Butcher 1987, 2003)

N

Z| c|A

(41
|&" |

where the index T indicates a transpose and the coefficients ¢ and
c used for the treatment of non-autonomous systems are given

0 0 0 o7 vy 0
1 1 0 1—7 1—2y o
[ 172 1/2 | 1/2 1/2

Y= Nk

Figure 1. Tableau for the explicit (left-hand side) implicit (right-hand side)
IMEX-SSP2 (2,2,2) L-stable scheme.

by

1
Ei = Zl,'j, C; ZZdij. (42)
j=1 j=1
The accuracy of each of the Runge—Kutta method is achieved by
imposing restrictions on some of the coefficients of their respective
Butcher tableaus. Although each of them separately can have an
arbitrary accuracy, this does not ensure that the combination of
the two schemes will preserve the same accuracy. In addition to the
above conditions for each Runge—Kutta scheme, there are also some
additional conditions combining terms in the two tableaus which
must be fulfilled in order to achieve a global accuracy order for the
complete IMEX scheme.

Since the details of these methods are not widely known, we
first consider a simple example to fix ideas. A second-order IMEX
scheme can be written in the tableau form given in Fig. 1. The
intermediate and final steps of this IMEX Runge—Kutta scheme
would then be written explicitly as

At

v =U"+—yRU",
€

U® =U"+AtFIU")

#2501 2RI + y RO,
Ut = Ut + %[F(U“)) + F(U™)]
+5{R[U‘”] + RIUPY}.
2¢

Note that at each substep an implicit equation for the auxiliary inter-
mediate values U must be solved. The complexity of inverting this
equation will clearly depend on the particular form of the operator
R(U).

3.2.1 Stability properties of the IMEX schemes

Stable solutions of conservation type equations are usually analysed
in terms of a suitable norm being bounded in time. With U" rep-
resenting the solution vector at the time r = nAt, then a sequence
{U"} is said to be ‘strongly stable’ in a given norm || - || provided
that || U™ || < ||U"|| for all n > 0.

The most commonly used norms for analysing schemes for non-
linear systems are the total variation (TV) norm and the infinity
norm. A numerical scheme that maintains strong stability at the
discrete level is called SSP (see Spiteri & Ruuth 2002 for a detailed
description of optimal SSP schemes and their properties). Because
of the stability properties of the IMEX schemes (Pareschi & Russo
2005), it follows that if the explicit part of the IMEX scheme is SSP,
then the method is SSP for the equilibrium system in the stiff limit.
This property is essential to avoid spurious oscillations during the
evolution of non-smooth data.
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The stability of the implicit part of the IMEX scheme is ensured
by requiring that the Runge—Kutta is ‘L-stable’, and this represents
an essential condition for stiff problems. In practice, this amounts
to requiring that the numerical approximation is bounded in cases
when the exact solution is bounded. A more strict definition can be
derived starting from a linear scalar ordinary differential equation,
namely

iV =qV¥. (43)

In this case, it is easy to define the stability (or amplification)
function C(2) as the ratio of the solutions at subsequent time-steps
C(z) = V"1 /W, where 7z = Atq. A Runge—Kutta scheme is then
said to be L-stable if |C(z)| < 1 (i.e. it is bounded) and C(co0) = 0
(Butcher 1987, 2003).

There are a number of IMEX Runge—Kutta schemes available
in the literature and we report here only some of the second- and
third-order schemes which satisfy the condition that in the limit
€ — 0, the solution corresponds to that of the equilibrium system
(38) (Pareschi & Russo 2005). These are given in their Butcher
tableau form in Fig. 2 and taken from Pareschi & Russo (2005). In

SSP2 (3,3,2)

0 0 0 0

1/2 /2 0 0

1 /2 1/2 0
1/3 1/3 1/3

1/4 /4 0 0

1/4 0 1/4 0
1 /3 1/3 1/3

1/3 1/3 1/3

SSP3 (3,3,2)
0 0 0 0
1 1 0 0
1/2 1/4  1/4 0
1/6 1/6 2/3
v ol 0 0
1—x 1—2y o 0
1/2 1/2 —~ 0 ¥
1/6 1/6  2/3
SSP3 (4,3, 3)
0 0 0 0 0
0 0 0 0 0
1 0 1 0 0
1/2 0 1/4 1/4 0
0 1/6 1/6 2/3
a « 0 0 0
0 —a « 0 0
1 0 11—« « 0
1/2 B n 1/2-8-n—a «
0 1/6 1/6 2/3

a = 0.24169426078821,
v=1-1/V2,

(= 0.06042356519705 ,
n= 0.12915286960590 .

Figure 2. Tableaux for the explicit (first row) and implicit (second row)
IMEX-SSP schemes. We use the standard notation SSPk(s, o, p), where k
denotes the order of the SSP scheme and the triplet (s, o, p) characterizes,
respectively, the number of stages of the implicit scheme (s), the number of
stages of the explicit scheme (o) and the order of the IMEX scheme (p).
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all these schemes, the implicit tableau corresponds to an L-stable
scheme. The tableaus are reported in the notation SSP k(s, o, p),
where k denotes the order of the SSP scheme and the triplet (s, o,
p) characterizes, respectively, the number of stages of the implicit
scheme (s), the number of stages of the explicit scheme (o) and the
order of the IMEX scheme (p).

4 IMEX RUNGE-KUTTA SCHEME FOR THE
AUGMENTED RESISTIVE MHD EQUATIONS

Having reviewed the main properties of the IMEX schemes, we now
apply them to the particular case of the special relativistic resistive
MHD equations. Our goal is to consider a numerical implementation
of the general system that can deal with standard hydrodynamic
issues (like shocks and discontinuities) as well as those brought
up by the stiff terms discussed in the previous section. Hence, we
adopt high-resolution shock-capturing algorithms (see Appendix
A) together with IMEX schemes. Because the first ones involve the
introduction of conserved variables in order to cast the equations in
a conservative form, we first discuss how to implement the IMEX
scheme within our target system and subsequently how to perform
the transformation from the conserved variables to the primitive
ones.

4.1 IMEX schemes for the Maxwell-hydrodynamic equations
and treatment of the implicit stiff part

For our target system of equations, it is possible to introduce a
natural decomposition of variables in terms of those whose evolution
do not involve stiff terms and those which do. More specifically,
with the electrical resistivity n playing the role of the relaxation
parameter €, the vector of fields U can be split in two subsets { X,
Y}, with X = { E} containing the stiff terms and Y = {B, ¥/, ¢, q,
7, S, D} the non-stiff ones.

Following the prototypical equation (37), the evolution equations
for the relativistic resistive MHD equations can then be schemati-
cally written as

0, Y=FX,Y), (44)

1
X =F(X,Y)+ mRX(X, Y), 45)

where the relaxation parameter € is allowed to depend also on the
Y non-stiff fields. The vector Y can be evolved straightforwardly as
it involves no stiff term. We further note that for our particular set
of equations, it is convenient to write the stiff part as

R(X,Y)=A(Y)X + S, (Y). (46)

As a result, the procedure to compute each stage U of the IMEX
scheme can be performed in two steps.

(i) Compute the explicit intermediate values {X*, Y*} from all

the previously known levels, i.e.

i—1
Y'=Y"+ At Y aFUY), 47
j=1

i-1 i—1
X*=X"+ At ZaijFX [UD] + At Z
j=1

j=I

dij 0
o RLUMT, (48)

€

where we have defined €/ = €[ YY) ] and a;;/€" in equation (48)
is a simple division and not a contraction on dummy indices.
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(i) Compute the implicit part, which involves only X, by solving
YO =y~ (49)
X0 = x* + AI%RX[U“)]. (50)

6 1

Note that the implicit equation, with the previous assumption (46),
can be inverted explicitly

_ At
XD = MY {X* +a,-,-ﬁSX(Y*)} , (5D
e[

At !
MY™) = [1 —an‘EA(Y*)} , (52)

since the form of the matrix [I — a;; AtA(Y*)/€® ]is known explic-
itly in terms of the evolved fields.

The explicit expressions for stiff part are then given simply by

R, =-WE+ W(E -v)v—WvxB, (53)
S, =—WuvxB, (54)
with the matrix A defined as
—1+4 2 VU Vv,
A=W | vy, -1+ o . (55
v, Uy v Uy -1+ vz2

Hence, the matrix M can be computed explicitly to obtain

a+Ww+aw??  aWuo, aW?v, v,
— aW?vv, a4+ W+aW?v;  aWuy,
P ) )
aWzvzvx aWZUZUy a+W+aW2v22,

where m= W? a + Wa?> + W +aand a = a;;0 D At

Summarizing. First, an intermediate state { E*} is found through
the evolution of the non-stiff part for the electric field. Secondly,
if the velocity v is known, the evolution of the stiff part can be
performed by acting with M to obtain

E = M) [E* + a;;AtaS, (v, B)]. (56)

At this point, the approach proceeds with the conversion from the
conserved variables to the primitive ones. Because of the coupling
between the electric and the velocity fields, such a procedure is
rather involved and more complex than in the ideal-MHD case; a
detailed discussion of how to do this in practice will be presented
in Section 3.2.

It is interesting to highlight the consistency at two known limits
of the implicit solution of the stiff part. In the ideal-MHD limit
(i.e. 0 — 00), the first term of equation (56) vanishes, while the
contribution of the second term leads to the ideal-MHD condi-
tion (24). On the other hand, in the vanishing conductivity limit
(i.e. ¢ — 0), the second term in equation (56) vanishes and the
matrix reduces to the identity M(v) = I. In this case, the electric
field is obtained only by evolving the explicit part, i.e. E =E*.

Finally, it is important to stress that one could, in principle, have
considered the alternative route of adopting instead X = {E, g},
so that the right-hand side of ¢ would be considered stiff with
R,=0and S, = V-R,. However, this choice could lead to spurious
numerical oscillations in the solution since the fluxes of ¢ can be
discontinuous, while they would be evolved with an implicit Runge—
Kutta method. As it has been shown under fairly general conditions,
high-order SSP schemes are necessarily explicit (Gottlieb, Shu &
Tadmor 2001), so it follows that this part of the equations cannot be
evolved with the implicit Runge—Kutta method unless a low-order
scheme is implemented.

4.2 Transformation of conserved variables to primitive ones

As mentioned in the previous section, in order to evolve our system
of equations, the fluxes {F., Fg, Fp} must be computed at each
time-step. These fluxes depend on the primitive fields {p, p, v, E,
B}, which must be recovered from the evolved conserved fields {D,
7, S, E, B}. These quantities are related by complicated equations
which become transcendental except for particularly simple equa-
tions of state (EOS). As a result, the conversion must be, in general,
pursued numerically and the primitive variables are then given by
the roots of the function

where p(p, €) is given by the chosen EOS and p is the trial value
for the pressure eventually leading to the primitive variables.

Note that since Y@ =Y* (cf. equation 49), the values of the
conserved quantities {D, 7, S, B} at time (n + 1)Ar are obtained
by evolving their non-stiff evolution equations which, however,
provide only an approximate solution for the electric field { E*}. As
discussed in the previous section, the final solution for the electric
field E requires the inversion of an implicit equation and, hence, is
a function of the velocity v and the fields { B, E*} (cf. equation 56).
However, the velocity is a primitive quantity and thus not known
at the time (n + 1)A t. It is clear, therefore, that it is necessary
to obtain, at the same time, the evolution of the stiff part of the
equations and the conversion of the conserved quantities into to
the primitive ones. In what follows, we describe how to do this in
practice using an iterative procedure.

(i) Adopt as initial guess for the velocity its value at the previous
time level v = v". The electric field E is computed by equation (56)
as a function of (E*, v, B).

(i) Adopt as initial guess for the pressure its value at the previous
time level p = p". Compute in the following order

S—ExB

v = ,

T —1(E2 + B?)/2+p
W= —u,

V1 =2

D
p =1 (58)
. _ 1= (E*+ B»)/2— DW + p(1 — W?)

- DW '

(iii) Solve numerically equation (57) by means of an iterative
Newton—Raphson solver, so that the solution at the iteration m + 1
can be computed as

AYZY
f/(p)?l) ’

The derivative of the function f{(p) needed for the Newton—Raphson
solver can be computed as

f(p)=v’el — 1, (60)
with ¢, being the local speed of the fluid which, for an ideal-fluid
EOS p(p,€) =(I' — 1) pe, is given by
2o rar - l)e.
$ 1+ Te
(iv) With the newly obtained values for the velocity v and the

pressure p, the steps (i)—(iii) can be iterated until the difference
between two successive values falls below a specified tolerance.

Pm+1 = Pm (59)

(61)

The approach discussed above is a simple procedure that can be
implemented straightforwardly and works well for moderate ratios
of |B |?/p (ie. |B |*/p < 5), converging in less than 10 iterations
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for both smooth electromagnetic fields and discontinuous ones.
Faster and more robust procedures to obtain the primitive variables
certainly can be implemented, but this is beyond the scope of this
work.

5 NUMERICAL TESTS

In this section, we present several one-dimensional or two-
dimensional tests which have been used to validate the implemen-
tation of the IMEX Runge—Kutta schemes in the different regimes
of relativistic resistive MHD. In all these tests, we employ the
ideal-fluid EOS with I' = 2 for the one-dimensional tests and I"
= 4/3 in the two-dimensional ones. The damping coefficient of
the hyperbolic divergence cleaning is set to x = 1. The magnetic
field is divergence-free and the charge is preserved up to the trun-
cation error. The different tests span several prescriptions for the
conductivity and compare the solutions obtained either with those
expected in the ideal-MHD limit or with those computed with the
Strang-splitting technique.

More specifically, in one-dimensional, we consider large-
amplitude circularly polarized (CP) Alfvén waves to test the ability
of the code to reproduce the ideal-MHD results when adopting a
very large conductivity. The intermediate conductivity regime is
instead tested by simulating a self-similar current sheet. Finally, a
large range of uniform and non-uniform conductivities are used for
a representative shock-tube problem. In two-dimensional, on the
other hand, we first consider a commonly employed test for ideal-
MHD codes corresponding to a cylindrical explosion. Subsequently,
we simulate a toy model for a ‘magnetized neutron star’ when mod-
elled as a cylindrically symmetric density distribution obeying a
Gaussian profile. The behaviour of the magnetic field is studied
again for a range of constant and non-uniform conductivities.

5.1 One-dimensional tests

5.1.1 Large amplitude CP Alfvén waves

This test is discussed in detail by Del Zanna et al. (2007) and
we report here only a short summary. The solution describes the
propagation of a large amplitude circularly polarized Alfvén waves
along a uniform background field By in a domain with periodic
boundary conditions. The exact solution in the ideal-MHD limit
and assuming vy = 0 for simplicity is given by (Del Zanna et al.
2007)

(By, B.) = naBo{cos[k(x —vat)], sin[k(x — va0)]},

Va
(U)-, vz) _FO(B)V Bz)a (62)

where B, = By, k is the wave vector, 14 is the amplitude of the wave
and the special relativistic Alfvén speed v, is given by

—1

, 2B;

v 204 B2 r
AT R+ BX1+13)

T44f1— | —A%
-l

(63)

In practice, using such ideal-MHD solution it is possible to assess
the accuracy of evolution of the resistive equations by requiring
that for very large conductivities the numerical solution approaches
the exact one as the resolution is progressively increased. It is also
worth remarking that although we do not expect the solution of
the resistive MHD equations to converge to that of ideal MHD for
any finite value of o, we also expect the differences between the
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1= Ax=1/50 ||
-- Ax=1/100
— Ax=1/200

Figure 3. Magnetic field component By, for a large-amplitude CP Alfvén
wave and three different resolutions Ax = {1/50, 1/100, 1/200}. The
conductivity is constant with a magnitude of ¢ = 10°. The agreement
betweem the exact solution and that corresponding to the high resolution
one is excellent.

two to be O(v/o) and thus negligibly small for sufficiently large
values. For this reason, we have performed the evolution with a high
uniform conductivity of o = 10° for three different resolutions N =
{50, 100, 200} covering the computational domain x € [—0.5, 0.5].
In addition, the initial data parameters have been chosen so that
p=p=na=1and By = 1.1547, thus yielding v4 = 1/2, with a
full period being achieved at t = 2.

Fig. 3 confirms this expectation by reporting the component B,
after one period and thus overlapping with the initial one (at t = 0)
for the highest resolution. This test shows clearly that in the limit
of very high conductivity, the resistive MHD equations tend to a
solution which is very close to the same solution obtained in the
ideal-MHD limit. The convergence rate measured for the different
fields is consistent with the second-order spatial discretization being
used as expected for smooth flows (see Appendix A).

5.1.2 Self-similar current sheet

The details of this test are described by Komissarov (2007), so
again we provide here only a short description for completeness.
We assume that the magnetic pressure is much smaller than the
fluid pressure everywhere, with a magnetic field given by B = [0,
By (x, 1), 0], where B, (x, t) changes sign within a thin current layer
of width Al. Provided the initial solution is in equilibrium (p =
constant), the evolution is a slow diffusive expansion of the layer
due to the resistivity and described by the diffusion equation (cf.
equation 27 with v = 9, E = 0):

1
9,B, — —03B, = 0. (64)
5 0: B,

As the system expands, the width of the layer becomes much larger
than A [ and it evolves in a self-similar fashion. For r > 0, the
analytical exact solution is given by

1 [o
B,(x,t) = Bgerf (| =,/ — ], 65
v(x, 1) = By ( 2\ & ) (65)
where & = t/x* and ‘erf’ is the error function. This solution
can be used for testing the moderate resistive regime. Following
Komissarov (2007), and in order to avoid the singular behaviour at
t =0, we have chosen as initial data the solution at # = 1 with p = 50,
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Figure 4. Magnetic field component By, in a self-similar current sheet. The
solution is computed with N = 200 gridpoints (A x = 1/200) and shown at
the initial time 7 = 1 and 10. The conductivity is uniform with a magnitude
of o =102 (i.e. n = 1/o = 0.01). The numerical solution is in excellent
agreement with the exact one.

p=1,E=v=0and o = 100. The domain covers the region x €
[—1.5, 1.5] with N = 200 points.

The numerical simulation is evolved up to ¢t = 10 and then the
numerical and the exact solution are compared in Fig. 4. The two
solutions match so well that they are not distinguishable on the plot,
thus, showing that the intermediate-conductivity regime is also well
described by our method.

5.1.3 Shock-tube problem

As prototypical shock-tube test we consider a simple MHD version
of the Brio and Wu test (Brio & Wu 1988), where the initial left and
right states are separated at x = 0.5 and are given by

(p", p*. BE) = (1.0,1.0,0.5),

(,oR, X, Bf) = (0.125,0.1, —0.5),

while all the other fields set to 0. We consider both uniform and non-

uniform conductivities. In the latter case, we adopt the following
prescription

o =ogD”, (66)

thus allowing for non-linearities in the dependence of the conduc-
tivity on the conserved quantity D. This is one of the simplest cases,

0.51
— exact
o Ax = 1/100] 1
Ax = 1/200
0.25 ~— Ax = 1/400
m” 0
0251
0.5
075
L 1 L 1 L 1 L 1 L
0 0.2 0.4 0.6 0.8

X

but in realistic situations a more general expression for the conduc-
tivity can be assumed, where o is a function of both the rest-mass
density and the specific internal energy, i.e. 0 = o (p, €).

The exact solution of the ideal-MHD Riemann problem was
found by Giacomazzo & Rezzolla (2006), and in our particular
case it has been computed with a publicly available code (see
Giacomazzo & Rezzolla 2006). When B, = 0, the structure of the
solution contains only two fast waves, a rarefaction moving to the
left and a shock moving to the right, with a tangential discontinuity
between them. More demanding Riemann problems have also been
performed but the procedure to convert the conserved variables into
the primitive ones has shown in these case a lack of robustness for
moderate ratios of | B|?/p between 1 and 5.

We have first considered the case of uniform (y = 0) and very
large conductivity (oo = 10°) as in this case we can use the solution
in the ideal-MHD limit as a useful guide. The profile of the magnetic
field component B, for three different resolutions A x = {1/100,
1/200, 1/400} and the exact solution are shown in the left-hand
panel of Fig. 5 at r = 0.4. Overall, the results indicate that even in
the presence of shocks our numerical solution of the resistive MHD
tends to the ideal-MHD solution as the resolution is increased. It is
also interesting to study the behaviour of the solution for different
values of the constant o while still keeping a uniform conductivity
(i.e. y = 0). This is shown in the right-hand panel of Fig. 5, which
displays the different solutions obtained, and where it is possible to
see how they change smoothly from a wave-like solution for oy =
0 to the ideal-MHD one for oy = 10°. These tests have also been
performed with a CFL factor 20 times smaller in order to confirm
that the errors introduced by the implicit integration of the stiff
equation are very small. A comparison of the solutions obtained
in two cases has revealed only very small differences and of the
order of 107>, We interpret this as an evidence that a CFL-limited
time-step is, in general, sufficient to achieve very good accuracy.

This set up is also useful to perform a comparison between the
IMEX and the Strang-splitting approaches. In Fig. 6, we show the
L'-norm of the difference between the numerical solution obtained
with both schemes and the ideal-MHD exact solution, for different
values of the conductivity with N = 400 points.

Several comments are in order. First, the reported difference
between the numerical solution for the resistive MHD equations and
the ideal-MHD equations should not be interpreted as an error given
that the latter is not the correct solution of the equations. Hence,
the fact that the use of a Strang-splitting method yields smaller dif-
ferences is simply a measure of its ability of better capture steep

T T T T T T T T
0.5——— —
025 NN ]
A
(RS
N\
= O 1
\;
-0.25+ 6=0 \ i
0=10 i\
- 2 i\
=10 D\
-0.5r - 5=10° N\
~ 6=10° o\
075+ — exact RN B
L | L | L | L | L
0 0.2 0.4 X 0.6 0.8 1

Figure 5. Left-hand panel: magnetic field component By in the solution of the shock-tube problem. Different lines refer to three different resolutions and to
the exact ideal-MHD solution at # = 0.4. The conductivity is uniform with a magnitude of oo = 10°. Right-hand panel: the same as in the left-hand panel but
for different uniform conductivities. Note that for 09 = 0 the solution describes a discontinuity propagating at the speed of light and corresponding to Maxwell
equations in vacuum. As the conductivity increases, the solution tends to the ideal-MHD one.
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Figure 6. Differences in the magnetic field component B, between the nu-
merical solution computed with either the Strang or the IMEX schemes and
the exact solution of the shock tube in the ideal-MHD limit. The differ-
ences are computed for several uniform conductivities, although the Strang-
splitting technique does not yield a stable solution for values larger than o
~ 7000 for the reference resolution of Ax = 1/400 (i.e. with 400 gridpoints).
Shown in the inset is the maximum conductivity for which a solution was
possible, o max, as a function of the number of gridpoints, N.

gradients. Secondly, while the IMEX approach does not show any
sign of instability for o ranging between 10?> and 10°, the imple-
mentation adopting the Strang-splitting technique becomes unstable
for moderately high values of the conductivity and, at least for the
shock-tube problem, no numerical solution was possible for oy 2>
7000 at the above resolution. Increasing the resolution can help to
increase the maximum value of the resistivity which can be han-
dled, but since this gain is only linear with the number of gridpoints
aiming for higher conductivities results impractical. This is shown
in the inset of Fig. 6, which reports the maximum conductivity for
which a solution was possible, o m,y, as a function of the number
of gridpoints, N. Finally, we note that the difference between the
IMEX numerical solution and the exact ideal-MHD one saturates
between oy ~ 10° and 10°. This is not surprising since the dif-
ferences are expected to be O(1/0), and thus the saturation in the
differences essentially provides a measure of our truncation error at
the resolution used.

A more challenging test is offered by the solution of the shock-
tube in the presence of a non-uniform conductivity. In particular, we
have considered the same initial states and the same non-uniform
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conductivity discussed above, but used different values for the ex-
ponent y in (66) while keeping o constant. The results of this test
are shown in the left-hand panel of Fig. 7, where the conductivity
is plotted at # = 0.4 for several values of y. Note that the conduc-
tivity traces the evolution of the rest-mass density and the solution
can also be found when o varies of almost 12 orders of magnitude
across the grid. Similarly, the right-hand panel of Fig. 7 displays
the component B, for the different values of y . It should be stressed
that because of the relation (66) between ¢ and p, the region on
the left has at this time a very high conductivity and the numerical
solution tends to the ideal-MHD one. The opposite happens on the
right region, where the conductivity is lower for higher values of y.
Clearly, the results presented in Fig. 7 show that our implementation
can handle non-uniform (and quite steep) conductivity profiles even
in the presence of shocks.

5.2 Two-dimensional tests

5.2.1 The cylindrical explosion

We now consider problems involving shocks in more than one di-
mension. A demanding test for the relativistic codes is the cylin-
drical blast wave expanding in a plasma with an initially uniform
magnetic field. Although there is no exact solution for this prob-
lem, strong symmetric explosions are useful tests since shocks are
present in all the possible directions and the numerical implementa-
tion is therefore tested in all of its parts. For this test, we set a square
domain (x, y) € [ — 6, 6] with aresolution A x = A y = 1/200. The
initial data are such that inside the radius r < 0.8 the pressure is set
to p = 1 while the density to p = 0.01. In the intermediate region
0.8 < r < 1.0, the two quantities decrease exponentially up to the
exterior region r > 1, where the ambient fluid has p = p = 0.001.
The magnetic field is uniform with only one non-trivial component
B = (0.05, 0, 0). The other fields are set to be zero (i.e. E = g =
0), which is consistent within the ideal-MHD approximation.

The evolution is performed with a high conductivity o = 10° in
order to recover the solution from the ideal-MHD approximation.
As shown in Fig. 8, which reports the magnetic field components
B, (left-hand panel) and By (right-hand panel) at time = 4, we
obtain results that are qualitatively similar to those published in
different works (Komissarov 1999a; Neilsen et al. 2006; Del Zanna
et al. 2007; Komissarov 2007). While a strict comparison with an
exact solution is not possible in this case, the solution found matches
extremely well the one obtained with another two-dimensional code
solving the ideal-MHD equations. Most importantly, however, the
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Figure 7. Left-hand panel: evolution of a non-uniform conductivity o in the shock-tube problem for different values of y and indicated by the different lines
(00 = 10° for all lines). Note the large variability on the magnitude of the conductivity. Right-hand panel: the same as in the left-hand panel but for the magnetic

field component B),.
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Figure 8. Magnetic field components By (left-hand panel) and By, (right-hand panel) for the cylindrical explosion test at time ¢ = 4.

figure shows that the solution is regular everywhere and similar
results can also be obtained with smaller values of the conductivity
(e.g. no significant difference was seen for o > 10%).

5.2.2 The cylindrical star

We next consider a toy model for a star, thought as an infinite
column of fluid aligned with the z-axis but with compact profile
in other directions. Because of the symmetry in the z-direction,
0.U = 0 for all the fields and the problem is therefore two-
dimensional. More specifically, we consider initial data given by

p = poe 710" ©7)

v=(",1%,v%) = p(0,0?,0), (68)
r2

B=(B",B’, B )=p {0, 0,2By(1 — 7)} , (69)
Ty

where r = \/x? 4 y? is the cylindrical radial coordinate. The other
fields can be computed at the initial time by using the polytropic
EOS p = p', the ideal-MHD expression (24) for the electric field
and the electric charge from the constraint equation ¢ = V -E.

0.1

0.08

We have chosen ry = 0.7, p = 1.0, ® = 0.1 and B, = 0.05.
An atmosphere ambient fluid with p = 0.01 is added outside the
cylinder. Finally, the resolution is Ax = 1/200 and the domain is
(x,y) €[-3,3].

This simple problem exhibits some of the issues present in a
magnetized rotating neutron star: a compactly supported rest-mass
density distribution, an azimuthal velocity field and a poloidal mag-
netic field. Suitable source terms describing a gravitational potential
have been added to the Euler equations in order to get, at least at
the initial time, a stationary solution. In the ideal-MHD limit, the
magnetic lines are frozen in the fluid and thus a static profile is also
expected for the magnetic field.

In the left-hand panel of Fig. 9, we plot the slice y = 0 of the
magnetic field component B* at f = 14 as obtained from the evolution
of the resistive MHD system for different uniform conductivities
in the range o € [10%, 10°]. In the limiting case oy = 0, the
solution corresponds to a wave propagating at the speed of light
(i.e. the solution of the Maxwell equations in vacuum), while for
large values of o the solution is stationary (as expected in the
ideal-MHD limit). The behaviour observed in the left-hand panel
Fig. 9 is also the expected one: the higher the conductivity, the
closer the solution is to the stationary solution of the ideal-MHD
limit. Furthermore, for these values of the conductivity, the electric
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Figure 9. Left-hand panel: slice, at y = 0, of the magnetic field component B* for different conductivities ¢ and the exact solution in the ideal-MHD limit.
The resolution is A x = 1/200 and the solution is plotted at r = 14. Right-hand panel: the same configuration as in the left-hand panel but with a non-uniform
conductivity with 0¢ = 10° and y = [0, 3, 6, 9]. The values inside the star are essentially the same for any y, while there are significant differences outside.
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charge conservation shows the second-order convergence expected
from having employed the divergence-cleaning technique also to
the electric field.

For low conductivities, on the other hand, there is a significant
diffusion of the solution, which is quite rapid for oy < 10? and for
this reason those values are not plotted here. We note that values
of the conductivity larger than oy > 107 lead to numerical instabil-
ities that we believe are coming from inaccuracies in the evolution
of the charge density ¢, and which contains spatial derivatives of the
current vector. In addition, the stiff quantity E, is seen to converge
only to an order ~1.5. This can be due to the ‘final layer’ problem
of the IMEX methods, which is known to produce a degradation on
the accuracy of the stiff quantities. Luckily, this does not spoil the
convergence of the non-stiff fields, which are instead second-order
convergent. It is possible that the use of stiffly accurate schemes can
solve this degradation of the convergence and this is an issue we are
presently exploring.

We finally consider the same test, but now employing the non-
uniform conductivity given by equation (66) with oy = 10° and
different values for y. The results are presented in the right-hand
panel of Fig. 9, which shows that the magnetic fields inside the
star are basically the same in all the cases, stressing the fact that
the interior of the star will not be significantly affected by the
exterior solution, which has much smaller conductivity. However,
the electromagnetic fields outside the star do change significantly
for different values of y, underlining the importance of a proper
treatment of the resistive effects in those regions of the plasma
where the ideal-MHD approximation is not a good one.

6 CONCLUSIONS

We have introduced IMEX Runge—Kutta schemes to solve numer-
ically the (special) relativistic resistive MHD equations and thus
deal, in an effective and robust way, with the problems inherent to
the evolution of stiff hyperbolic equations with relaxation terms.
Since for these methods the only limitation on the size of the time-
step is set by the standard CFL condition, the approach suggested
here allows us to solve the full system of resistive MHD equations
efficiently without resorting to the commonly adopted limit of the
ideal-MHD approximation.

More specifically, we have shown that it is possible to split the
system of relativistic resistive MHD equations into a set of equations
that involve only non-stiff terms, which can be evolved straightfor-
wardly, and a set involving stiff terms, which can also be solved
explicitly because of the simple form of the stiff terms. Overall,
the only major difficulty we have encountered in solving the resis-
tive MHD equations with IMEX methods arises in the conversion
from the conserved variables to the primitive ones. In this case, in
fact, there is an extra difficulty given by the fact that there are four
primitive fields which are unknown and have to be inverted simulta-
neously. We have solved this problem by using extra iterations in our
one-dimensional Newton—Raphson solver, but a multidimensional
solver is necessary for a more robust and efficient implementation
of the inversion process.

With this numerical implementation, we have carried out a num-
ber of numerical tests aimed at assessing the robustness and ac-
curacy of the approach, also when compared to other equivalents
ones, such as the Strang-splitting method recently proposed by
Komissarov (2007). All of the tests performed have shown the ef-
fectiveness of our approach in solving the relativistic resistive MHD
equations in situations involving both small and large uniform con-
ductivities, as well as conductivities that are allowed to vary non-
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linearly across the plasma. Furthermore, when compared with the
Strang-splitting technique, the IMEX approach has not shown any
of the instability problems that affect the Strang-splitting approach
for flows with discontinuities and large conductivities.

While the results presented here open promising perspectives for
the implementation of IMEX schemes in the modelling of rela-
tivistic compact objects, at least two further improvements can be
made with minor efforts. The first one consists of the generalization
of the (special) relativistic resistive MHD equations with a scalar
isotropic Ohm’s law to the general relativistic case, and its appli-
cation to compact astrophysical bodies such a magnetized binary
neutron stars (Anderson et al. 2008; Liu et al. 2008). The solution
of the resistive MHD equations can yield different results not only
in the dynamics of the magnetosphere produced after the merger,
but also provide the possibility to predict, at least in some approx-
imation, the electromagnetic radiation produced by the merger of
these objects. The second improvement consists of considering a
non-scalar and anisotropic Ohm’s law, so that the behaviour of the
currents in the magnetosphere can be described by using a very high
conductivity along the magnetic lines and a negligibly small one
in the transverse directions (Komissarov 2004). Such an improve-
ment may serve as a first step towards an alternative modelling of
force-free plasmas.
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APPENDIX A: TVD SPACE DISCRETIZATION

We are generically interested in solving hyperbolic conservation
laws of the form

3,U+ 3, F(U) = SW), (AD)

where U is the vector of the evolved fields, *F are their fluxes
and S contains the sources terms. The semidiscrete version of this
equation, in one dimension, is simply given by

Fipp—Fi_p

a[U,' = —
Ax

+SW), (A2)

where F;., are consistent numerical fluxes evaluated at the inter-
faces between numerical cells. These consistent fluxes are computed

by using HRSC methods, which are based on the use of Riemann
solvers. More specifically, we have implemented a modification of
the Local Lax—Friedrichs approximate Riemann solver introduced
by Alic et al. (2007), which only needs the spectral radius (i.e. the
maximum eigenvalue) of the system. In highly relativistic cases,
like the ones we are interested in, the spectral radius is close to the
light speed ¢ = 1 and so the Local Lax—Friedrichs reduces to the
simpler Lax—Friedrichs flux:

N

1
Fiip= E[FL + Fr + (uy — ugr)], (A3)

where u;, ug are the reconstructed solutions on the left- and the
right-hand side of the interface and F, Fy are their corresponding
fluxes. The standard procedure is then to reconstruct the solution
uL, ug by interpolating with a polynomial, and then compute the
fluxes F, = F(u) and Fr = F(ug). In our implementation, we first
recombine the fluxes and the solution as (Alic et al. 2007)

Fr=F tu. (A4)

Then, using a piecewise linear reconstruction, these combinations
can be computed on the left-/right-hand side of the interface as

1 _ _ 1
FL+=F,-++§A,-+, Fr :FiJrl_EAiJrl7 (AS)
where AF are just the slopes used to extrapolate F:" to the interfaces.

Finally, the consistent flux is computed by a simple average:

N

1
Fipip= E(Ff + Fy). (A6)
For a linear reconstruction, the slopes can be written as

Al =L(FL-F . F -FL).

i i

ALy =L(Fl—FL, FL - FY) (A7)

i i

so that it is trivial to check that the standard Lax—Friedrichs (A3)
is recovered when A = A;. The choice of these slopes becomes
crucial in the presence of shocks or very sharp profiles, while the
use of some non-linear operators L(x, y) preserves the total varia-
tion diminishing (TVD) condition on the interpolating polynomial.
In this way, the TVD schemes capture accurately the dynamics of
strong shocks without the oscillations which appear with standard
finite-difference discretizations. Monotonicity is typically enforced
by making use of slope limiters and we have, in particular, imple-
mented the monotonized-centred (MC) limiter:

1 1
L(x,y) = E[sign(x) + sign(y)|min(2|x|, 2|yl EIX +yD, (A8

which provides a good compromise between robustness and accu-
racy. Note that, with linear reconstruction, the scheme is second-
order accurate in the smooth regions, although it drops to first order
near shocks and at local extrema.
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