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1. Introduction

Quantum corrections to classical geometric notions play a key role in the study of string

vacua. Quantum effects are known to resolve classical singularities, to connect seemingly

disparate moduli spaces, to provide quantitative tests of string dualities, and even to desta-

bilize classical string vacua. The degree to which these quantum effects are understood is

closely related to the number of space-time and world-sheet supersymmetries preserved by

the background.

In this work we will be concerned with quantum corrections in N = 1, d = 4 com-

pactifications of the perturbative heterotic string. This is probably the simplest string

compactification that leads to “almost familiar” models of N = 1 SUSY particle physics

coupled to gravity. The apparent simplicity of these backgrounds is due to the rather di-

rect relation between space-time physics and the (0,2) superconformal theory on the string

world-sheet. As long as the theory is at weak string coupling, the study of these N = 1

compactifications is reduced to two-dimensional physics. When the world-sheet SCFT is

based on a large radius geometry, the two-dimensional physics reduces to the study of

geometry of holomorphic vector bundles over certain complex manifolds.
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Despite such a well-understood conceptual framework, even theories with a weakly

coupled large radius limit remain mysterious. What are the quantum corrections to the

classical moduli space? Where does the world-sheet theory become singular, thereby requir-

ing some non-perturbative string phenomena to resolve the singularity? Can we compute

the moduli dependence of some simple quantities such as Yukawa couplings of charged mat-

ter fields? Answers to these questions are crucial to the study of non-perturbative effects

in the heterotic string, moduli stabilization in these backgrounds, and quantitative appli-

cations to phenomenology. Yet, they remain relatively unexplored even in the heterotic

string on the Calabi-Yau quintic hypersurface in P
4!

Motivated by these questions, we concentrate on a tame set of (0,2) theories: those with

a (2,2) locus and a geometric interpretation as a sigma model for a Calabi-Yau target-space

equipped with a rank 3 holomorphic vector bundle. The (2,2) locus amounts to setting the

holomorphic bundle to be the tangent bundle of the Calabi-Yau manifold, and the (0,2)

deformations are holomorphic deformations of the tangent bundle. Even within this class

of examples, it is possible for quantum effects to lift classical moduli [1]. Early on, it was

shown that generically world-sheet instantons contribute to a potential for deformations

that break (2,2) supersymmetry [2]. However, it was subsequently persuasively argued

that in a large class of models these instanton effects are either entirely absent [3], or

cancel among themselves [4 – 6]. This class includes the sigma models with target-space a

Calabi-Yau hypersurface in a toric variety, and it is these stable theories that we study.

These theories provide a fertile ground for exploring (0,2) deformations. On the one

hand, the (2,2) locus is well-understood: mirror symmetry elegantly answers the basic ques-

tions raised above, and the computational aspects of mirror symmetry are well developed

through the use of simple field-theoretic tools such as topological field theories and lin-

ear sigma models. On the other hand, they have (0,2) deformations that, while appearing

drastic from the world-sheet perspective, seem entirely benign from the space-time point of

view: the low energy theory is still a supersymmetric E6 ×E8 chiral gauge theory coupled

to N = 1 supergravity. Accordingly, the effect of small (0,2) deformations should just be

to slightly shift various Kähler potentials and Yukawa couplings.

Could the world-sheet theory also be affected less drastically than first thought? Is

there a sensible extension of mirror symmetry that would allow computations of quantum

corrections in the presence of (0,2) deformations? Are the tools developed to study the

(2,2) models useful off the (2,2) locus? Over the years, a number of results have suggested

this is the case.

First, as in the (2,2) case, there are exactly soluble (0,2) SCFTs where a mirror iso-

morphism may be explicitly constructed [7]. Second, the familiar A and B chiral rings

continue to make sense off the (2,2) locus [8, 9]. That is, the (0,2) theories on a genus

zero world-sheet have two finite topological rings, each computed by an appropriate half-

twisted theory. We refer to these as the A/2 and B/2 twists. Finally, studies of half-twisted

massive (0,2) linear sigma models and Landau-Ginzburg theories have shown that these

rings are eminently computable and provide a non-trivial generalization of quantum coho-

mology [8, 10, 11]. These findings suggest that there may be a well-defined mirror map,

exchanging A/2-twisted and B/2-twisted theories.
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In this work, we add to these results an analysis of half-twisted linear sigma models

for a Calabi-Yau hypersurface in a toric variety. The (0,2)-theories we consider are given

by small deformations away from the (2,2) locus. Our aim is to elucidate the role of non-

perturbative quantum corrections and bundle parameters in physical observables. Let us

now summarize the results we obtain.

1.1 A summary of the results

Our first set of results relates to (0,2) linear sigma models for projective toric varieties.

Following [12], we refer to such a theory as a V-model. This theory admits the A/2 twist,

and the natural parameters in the A/2-twisted V-model Lagrangian are divided into two

classes: complexified Kähler parameters, collectively denoted by q, which preserve (2,2)

supersymmetry; and the E-parameters describing the (0,2) deformations.

For technical reasons, we separate the E-parameters into two classes: the linear and

the non-linear. As one might guess from the terminology, the dependence of the twisted

correlators on the first class is easy to compute [13], while the second class remains a

challenge. Some computations in examples suggest that there are circumstances where the

half-twisted correlators do not depend on these non-linear parameters, but we do not have

a proof that this is so.

By relating the parameters in the Lagrangian to the geometry of V , it is easy to see

that the E-parameters should roughly be thought of as deformations of the tangent bundle

of the variety V . We say “roughly,” because to match the deformations of the bundle, this

space must be modded out by a certain group related to the group of automorphisms of V .

Although this quotient is difficult to define globally, it does give us some idea of the space

of deformations in a small neighborhood about a suitably generic point. We refer to these

deformations as the E-deformations. We expect that the A/2-twisted V-model should only

depend on the E-deformations, and not a particular choice of the E-parameters, which

means there must be field redefinitions in the theory that act on the E-parameters but do

not affect properly normalized amplitudes.

Our first result, obtained in section 3.2, is to describe the relevant field redefinitions

and use these to count the E-deformations. This corrects a formula in our earlier work [13],

where only linear E-deformations were considered.

There are two sets of techniques available to compute correlators in the A/2-twisted V-

model: the approach of [11], which uses algebraic techniques to compute sheaf cohomology

on the instanton moduli space; and an approach that computes the entire instanton series

by extending (2,2) Coulomb branch techniques [14] to include linear E-parameters [13]. The

first method is powerful — for instance, it should be able to determine any dependence

on the non-linear E-deformations — but requires a bit of commutative algebra machinery

and work at the level of Čech co-chains. The second method, though currently restricted

to linear deformations, is computationally simpler to use and provides a quick route to

quantum cohomology. In section 3.5 we propose a third method that avoids some of

the complications of [11] and closely resembles the familiar toric intersection theory on

instanton moduli space available on the (2,2) locus.
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Next, we turn to the M-model, the linear sigma model for a Calabi-Yau hypersurface

M ⊂ V . Our first task, as in the V-model, is to count the parameters in the M-model

Lagrangian modulo field redefinitions. The parameters are divided into the complexified

Kähler and E-parameters already familiar from the V-model and the new J-parameters

describing the choice of Calabi-Yau hypersurface in V , as well as the restriction of the

E-deformed bundle to it. The E- and J-parameters are restricted by (0,2) supersymmetry

to satisfy a number of bilinear constraints, collectively denoted by E · J = 0.

As in the V-model, we expect that a number of these parameters may be absorbed by

field redefinitions into irrelevant D-terms. In section 4.1, we describe what we believe to be

the complete set of such redefinitions modulo certain genericity assumptions. Combining

the count of parameters in the Lagrangian modulo the E · J constraint and the field

redefinitions, we obtain a count of linear model deformations. These do not completely

describe the full space of marginal deformations of the SCFT; however, we hope that they

will play an analogous role to the toric and polynomial deformations of (2,2) models.

Next, we turn to a study of the A/2-twisted M-model. We use localization properties

of the half-twisted path integral to show that the genus zero A/2-twisted correlators are

independent of the J-parameters and reduce to computations in the associated V-model.

This (0,2) extension of the quantum restriction formula of [12] is derived in section 4.4.

Combining this with our results on the V-model, we obtain the complete dependence of

the A/2-twisted M-model correlators on the q and the linear E-parameters. In addition,

we compute the (0,2) analogue of the discriminant locus in the model, and show that the

correlators obtained by quantum restriction do show the expected divergences. We apply

our results to some interesting models, including the bi-cubic hypersurface in P
2 × P

2.

Having obtained a reasonable understanding of the A/2-twist, we turn to the B/2-twist

of the M-model, where our results are not as complete. We again rely on localization of the

B/2-twisted path integral, and by analysing the zero mode sector, we derive in section 5.2

sufficient conditions for the genus zero B/2-twisted correlators to be independent of the

q parameters, and, therefore, to reduce to classical geometric computations on M . The

conditions are satisfied in a number of models, such as the bi-cubic hypersurface in P
2×P

2

and the two-Kähler parameter hypersurfaces in weighted P
4.

A priori, this analysis does not guarantee the B/2-twisted correlators to also be inde-

pendent of the E-parameters; however, we show in section 5.4 that B/2-twisted theories

that are independent of Kähler parameters and have a Landau-Ginzburg phase are auto-

matically independent of E-deformations.

1.2 A brief glimpse of applications

Our results show that the dependence on bundle moduli of certain un-normalized Yukawa

couplings is readily computable. There are many new hints of various non-renormalization

results, such as those obtained in the B/2 theories we study, as well as explicit computations

of how quantum effects modify expectations from classical geometry. For instance, the

expression we derive for the discriminant locus of the A/2-twisted M-model implies that the

Kähler moduli and the E-parameters enter on the same footing, with the former resolving

classical bundle singularities, and the latter smoothing singularities in (2,2) SCFTs.
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On the (2,2) locus the linear model parameters, often termed algebraic coordinates,

turn out to be particularly suited to the study of mirror symmetry. The existence of

these coordinates and the corresponding global monomial-divisor mirror map was explored

in [12, 15] based on earlier work of [16 – 19]. It was shown that in terms of these coordinates

mirror symmetry becomes a comparison of rational functions, and the choice of canonical

coordinates for the SCFT (i.e. special coordinates in case of (2,2) supersymmetry) becomes

a question that can be studied in the classical B-model.

A similar structure may exist at least in a neighborhood of the (2,2) locus. In general,

the untwisted (0,2) M-model depends on the Kähler parameters q, as well as the defor-

mations contained in the E- and J-parameters. The E- and J-parameters are difficult to

disentangle because of the supersymmetry constraint E · J = 0, as well as ambiguities

introduced by the field redefinitions.

Our analysis suggests that locally in moduli space the deformations may be decomposed

into the Kähler and E-deformations and the J-deformations. In terms of these, we have

shown that the A/2-twisted correlators are independent of the J-deformations, and we

have presented evidence that the B/2-twisted correlators are independent of the Kähler

and E-deformations. It is then natural to guess that the action of (0,2) mirror symmetry

should exchange these sets of deformations.

The computational techniques we have developed for counting parameters and com-

puting the dependence of correlators on Kähler, E- and J-parameters should be of use to

check the purported mirror pair, and we may be able to formulate a (0,2) mirror map in

terms of linear model parameters. No doubt, the details are bound to be more involved,

but the effort promises high returns. If successful, it may help to determine the Kähler

potential in these theories, lead to a quantitative understanding of the moduli space in the

neighborhood of the (2,2) locus, and allow us to compute normalized Yukawa couplings

in this class of models. Our results and techniques could also shed light on aspects of

the moduli space far from the (2,2) locus, such as the transitions between disparate linear

sigma model descriptions and resolutions of singularities studied in [20, 21].

It should be noted that phenomenologically interesting heterotic compactifications

(e.g. [22]) do not possess a (2,2) locus, and our results are not directly applicable to

those theories. Nevertheless, we believe the techniques we have developed should gen-

eralize to those examples, at least for compactifications without torsion and an extra U(1)

left-moving current algebra. The half-twisted correlators should still be amenable to solu-

tion via localization, and phenomenologically interesting examples should merely require

a more involved notation and book-keeping. It is less clear how to apply our ideas to

heterotic compactifications with torsion and non-Kähler target-space, but a careful study

of the half-twisted theories based on the linear model constructed in [23] should be a useful

first step.

1.3 Organization of the paper

The rest of the paper is organized as follows. To keep our work reasonably self-contained,

we begin with a review of (2,2) linear sigma models and some details of relevant toric

geometry. In the next three sections, we tackle the A/2-twisted V-model (this is also

– 6 –
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mostly review), followed by the A/2 and B/2 twists of the M-model. We conclude with

a discussion of outstanding issues and what we feel to be the next obvious questions to

pursue. We have included an appendix with our conventions for (0,2) supersymmetry and

the half-twists that are used throughout the paper.

2. The linear model on the (2,2) locus

The material in this section is largely a review of the results obtained in [24, 12]. The

reader is referred to those references for a further discussion of the linear sigma models

we study.

The gauged linear sigma model (GLSM) [24] has proven to be a versatile tool in

exploring the moduli space of non-trivial superconformal theories. The utility of the GLSM

often amounts to relating questions about quantum geometry to classical geometric notions.

For example, it provides a physical realization for the construction of [17] of mirror pairs of

Calabi-Yau hypersurfaces in Fano toric varieties, and reduces many computations in these

models to a study of toric geometry. Before we discuss the details of the gauge theory, we

will remind the reader of some aspects of toric geometry relevant to the physics of linear

models. A more detailed and precise discussion of these properties is given in [26].

2.1 Toric geometry basics

The toric varieties that we will encounter in this paper will be smooth and projective.

However, many of the tools we use apply to the larger class of Fano toric varieties with

certain restrictions on the allowed singularities. It is this larger class that is relevant for

the constructions of [17].

A toric variety V of dimension d has a quotient presentation

V ≃ C
n − F

[C∗]r
, (2.1)

where d = n− r, and the C∗ action on Cn is given by

zi →
r∏

a=1

(ta)
Qa

i zi, ta ∈ [C∗]r, (2.2)

where Qa
i is a matrix of integral charges. The exceptional set F is a union of intersections

of hyperplanes in C
n.

This data is encoded by the toric fan ΣV . Recall that a fan in R
d is a collection of

strongly convex rational polyhedral cones such that: (a) the face of any cone is also in

the collection, and (b) the intersection of any two cones is a face of each. We say that V

is simplicial if every full-dimensional cone in the fan has d generators. In this case, the

quotient construction above is a standard geometric quotient, and the zi are profitably

thought of as homogeneous coordinates on V . Smooth toric varieties are always simplicial.

Let the one-dimensional cones of ΣV be denoted by ρi ∈ R
d, i = 1, . . . , n. The ρi

are linearly dependent, and an integral basis for the relations yields a basis for the (C∗)r

action on the zi. The exceptional set is also determined by ΣV : for each collection {ρi}i∈I

– 7 –
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that does not belong to a full-dimensional cone, F contains the intersection of hyperplanes

∩i∈I{zi = 0}.
The ρi are in one-to-one correspondence with the torus-invariant divisors on V : ρi →

Di, with Di the image under the quotient of the hyperplane {zi = 0} to V . These divisors

are dual to ξi ∈ H1,1(V ), which satisfy a number of properties:

1. ξi generate Hk,k(V ) under the wedge product, subject to the Stanley-Reisner rela-

tions: for each irreducible set I in F , we have ∧i∈Iξi = 0.

2. The top exterior powers have a canonical normalization. Denoting
∫
V ξi1 · · · ξid by

#(ξi1 · · · ξid), we find that for non-zero wedge products ξi1 · · · ξid ∈ Hd,d(V ) we have

#(ξi1 · · · ξid) = |det(ρi1 , . . . , ρid)|−1. (2.3)

3. The ξi are linearly dependent: ξi =
∑

aQ
a
i ηa, where {η1, . . . , ηr} is an integral basis

for H2(V ).

4. This is a complete description of the de Rham cohomology of V .

For later use, we note that the normalization condition could be equivalently written in

terms of the Qa
i , since

det(ρi1 , . . . , ρid) = ± detpQ, (2.4)

where

detpQ = ǫi1···idid+1···inQ1
id+1

· · ·Qr
in , (2.5)

and ǫi1···in is the usual fully antisymmetric tensor.

In addition to these aspects of toric intersection theory, we will also have use for some

properties of Aut(V ), the group of automorphisms of a complete, simplicial toric variety

V with homogeneous coordinate ring S = C[z1, . . . , zn] [27]. These properties are:

1. Aut(V ) fits into an exact sequence

1 // [C∗]r // Ãut(V ) // Aut(V ) // 1. (2.6)

2. Ãut(V ) is an affine algebraic group of complex dimension

dim Ãut(V ) =

n∑

i=1

|Si|, (2.7)

where Si is the set of all monomials in S that have the same charges as zi.

3. The connected component of Ãut(V ) is naturally isomorphic to the group of graded

C-algebra automorphisms of S, meaning that Ãut(V ) has a natural action on C
n−F .

With these tools in hand, we are ready to explore the linear sigma models.

– 8 –
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2.2 The V-model

The V-model is a (2,2) supersymmetric abelian gauged linear sigma model that, for

suitably chosen parameters, flows to a non-linear sigma model with target-space a d-

dimensional toric variety V . It is easiest to present its action in terms of (2,2) superspace.

The field content is n chiral superfields Φi and r real vector multiplets Va. It is also useful

to consider the gauge field-strength superfields Σa, which are twisted chiral multiplets. In

terms of these, the Lagrangian takes the form

L =

∫
d4θK +

{∫
dθ+dθ

−
W̃ (Σ) + h.c.

}
, (2.8)

where K is the Kähler potential and W̃ is the twisted superpotential. These are given by

K =
n∑

i=1

Φ
i
exp

[
2

r∑

a=1

Qa
i Va

]
Φi − e−2

0

r∑

a=1

ΣaΣa, W̃ = − i

2
√

2

r∑

a=1

τaΣa. (2.9)

Here e0 is the dimensionful coupling of the gauge theory, the Qa
i are the gauge charges,

and the τa are the complexified Fayet-Ilioupoulos parameters: τa = iρa + θa/2π.

For a suitable choice of ρa the low energy well approximated by a non-linear sigma

model (NLSM) with target-space the classical moduli space of the gauge theory,

M0(r) =
{
Da =

∑
iQ

a
i |φi|2 − ρa = 0

}
/[U(1)r], (2.10)

and complexified Kähler class B + iJ linear in τa.

A useful notion for the study of the V-model is the cone Kc ⊂ R
r defined as the set of

ρa ∈ R
r for which the D-terms have a solution. The assumption that V is projective (or

more generally Fano) ensures that Kc is a pointed polyhedral cone in R
r. Kc is subdivided

into sub-cones by hyperplanes where a gauge group becomes un-Higgsed. For each of these

sub-cones, the target-space is a toric variety birational to V . Each of these may be given a

holomorphic quotient description as in eq. (2.1), with the various quotients differing only

in the exceptional set F . In keeping with standard physics terminology, we refer to the

subcones of Kc as phases. By definition, in the V-model there exists a subcone of Kc where

M0(r) is the variety V . The region outside of Kc is also quite interesting, and we will

return to it later.

2.3 The A-twisted V-model

The V-model admits the A-twist, a shift of the Lorentz generator by the vectorial R-

symmetry [24]. Since the supercharges Q±,Q± carry R-charge, their spins are also modi-

fied, and as a result, the twisted field theory possesses a nilpotent BRST operator QT =

Q+ +Q−, whose cohomology isolates the chiral ring of the V-model. Writing the action of

the theory as a sum of QT -closed and QT -exact terms, we discover that the twisted theory

is a topological field theory (TFT). An examination of the action of QT reveals that, at

least as far as local, gauge-invariant operators are concerned, this cohomology is spanned

by the σa fields — the lowest components of the Σa multiplets. To determine the ring

structure, we must, therefore, compute the correlators 〈σa1(x1) · · · σak
(xk)〉 in the TFT.

– 9 –



J
H
E
P
0
2
(
2
0
0
9
)
0
2
6

Even without any detailed computations, it is easy to see that the correlators must

be holomorphic functions of the τa, since the τa only appear in the action via QT -exact

terms that decouple from correlators of QT -closed observables. In addition, they must be

independent of the xi, since the energy-momentum tensor of the theory is QT -exact.

The ring structure is eminently computable by localization of the path-integral. This

localization is a consequence of the fermionic world-sheet scalar symmetry [16]. The basic

point is that a non-trivial orbit of such a fermionic symmetry cannot contribute to the

path-integral for a correlator of QT -invariant operators, and non-zero contributions come

entirely from an arbitrarily small neighborhood of the fixed-point set. Thus, the path-

integral reduces to an integration over the fixed points of QT with a measure that may be

determined by expanding the action around the invariant configurations. Supersymmetry

ensures that the contributions from the non-zero modes in the expansion will cancel in

pairs, thereby reducing the correlator to a finite-dimensional integral. Provided that the

fixed-point set is smooth and compact, the correlator is easy to compute without any

additional input.

In the case at hand, an examination of the action of QT identifies the QT fixed points

to be the configurations satisfying

dσa = 0,
∑

aQ
a
i σaφ

i = 0 (no sum on i), ∇zφ
i = 0, Da + fa = 0, (2.11)

where fa is the gauge field strength of the a-th gauge field. The solutions to these equations

depend on the choice of phase of the V-model. Choosing a phase with subcone K ⊂ Kc,

we find that the first two equations require σ = 0, and the last two are solved by gauge

instanton configurations, whose topological class is labelled by instanton numbers

na = − 1

2π

∫
fa, (2.12)

which are restricted to lie in the dual cone K∨.1

A consequence of the R-symmetry of the untwisted theory is that non-zero contribu-

tions to 〈σa1 · · · σak
〉 only come from instanton sectors obeying k = d+

∑
iQ

a
i na.

2.3.1 Gauge instanton moduli space

Instanton configurations with instanton number na ∈ K∨ have a remarkably simple moduli

space: it is a compact toric variety Mn, with combinatorics determined by the fan ΣV

and the instanton numbers na. More precisely, let di = Qa
i na and consider the following

replacements in the holomorphic quotient description of V :

1. C
n → Y = ⊕iH

0(O(di)) ≃ ⊕i|di≥0C
di+1, with coordinates

zi →
{
zij , j = 0, . . . di, for di ≥ 0,

0 for di < 0.

1Recall that given a cone K ⊂ R
r, the dual cone K

∨
⊂ (Rr)∨ is the set of all dual vectors with a

non-negative pairing with all generators of K.
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2. F → Fn, where for each intersection ∩i∈I{zi = 0} ⊂ F, Fn ⊂ Y contains the

intersection ∩i∈I+ ∩j {zij = 0}, where I+ ⊆ I is the set of i ∈ I with di ≥ 0.

3. (C∗)r → (C∗)r, with action zij →∏
a t

Qa
i

a zij for all j.

The instanton moduli space is

Mn =
Y − Fn

[C∗]r
, (2.13)

a toric variety of dimension d+
∑

i|di≥0(1 + di) − n. Its toric divisors {ξi0, ξi1, . . . ξidi
} are

linearly dependent:

ξi0 = ξi1 = · · · ξidi
≡ ξi =

∑

i

Qa
i ηa, (2.14)

where the ηa furnish an integral basis for H2(Mn,Z).

The intersection theory on Mn is now easy to compute by the same combinatoric

methods that yield the intersection theory on V . It is convenient to extend the definition

of #(· · · )Mn from that of #(· · · )V : we set

#(ηa1 · · · ηak
)Mn = 0 unless k = dimMn. (2.15)

If k = dimMn, then the intersection is given by the toric formulas described in section 2.1.

2.3.2 Correlators in the GLSM and NLSM

This description of the moduli space and intersection theory on it leads to a formula for

the correlators:

〈σa1 · · · σak
〉 =

∑

n∈K∨

#(ηa1 · · · ηak
χn)Mn

r∏

a=1

qna
a , (2.16)

where

qa = e2πiτa

, (2.17)

σa → ηa is a canonical identification of the operator σa with ηa ∈ H2(Mn,Z), and χn is

the Euler class of a certain obstruction bundle, explicitly given by

χn =
∏

i|di<0

ξ−1−di

i . (2.18)

A moment’s thought shows that the expression is consistent with the selection rule that

follows from the anomalous ghost number symmetry. This completely determines the A-

twisted correlators of the V-model.

We mentioned that under RG flow the untwisted GLSM flows to the non-linear sigma

model with target-space V . That theory also has an A-twist, and the resulting path-integral

localizes onto the usual world-sheet instantons of the non-linear model. The world-sheet

instantons have non-compact moduli spaces, making explicit computations difficult. The

V-model gauge-instantons provide a toric compactification of that non-compact moduli

space, with the two differing only in positive co-dimension. Thus, it is not surprising that

the τa are the Kähler coordinates on the moduli space of the non-linear sigma model,

and the instanton sums are directly related to generating functions for Gromov-Witten

invariants of the variety V .
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2.4 The M-model

The M-model is a linear sigma model for M—a Calabi-Yau hypersurface in the Fano toric

variety V . A clue how to construct such a theory is provided by the R-symmetry of the

V-model. The classical U(1)L × U(1)R R-symmetry is violated by gauge instantons, with

anomaly proportional to
∑

iQ
a
i na in a background with instanton number na.

A way to fix this problem is to add an additional matter superfield Φ0 with charges

Qa
0 = −∑iQ

a
i . The resulting theory, dubbed the V+-model in [12], is a linear sigma

model for a toric Calabi-Yau manifold of dimension d + 1—namely the total space of

the anticanonical bundle over V . Since V + is non-compact, we have the possibility of

introducing a non-trivial superpotential coupling for the matter fields. We take

W = Φ0P (Φ1, . . . ,Φn), (2.19)

where P is a polynomial of multi-degree
∑

iQ
a
i . This, finally, is the M-model. Note that

the R-symmetry preserved by the M-model is not the naive R-symmetry of the V+-model

but rather assigns to the Φ0 multiplet charges (1, 1) under U(1)L × U(1)R.

The classical moduli space of the M-model consists of the D-term constraints of the

V + theory, as well as new F-term constraints:

φ0P,i = 0 for i > 0, and P (φ) = 0. (2.20)

For generic choice of coefficients in P , P = 0 is a smooth hypersurface in V , so that the only

solution to the first set of conditions is to set φ0 = 0. This reduces the D-term constraints

to those of the V-model, and the remaining F-term constraint P = 0 leads to the desired

result: the resulting moduli space is the Calabi-Yau hypersurface M ⊂ V . This theory is

believed to flow to a non-trivial IR fixed point that is in part characterized by the structure

of the familiar (a,c) and (c,c) rings.

An important property of the M-model is that Kc is no longer pointed, but rather

covers all of R
r. The Kähler moduli space is still conveniently divided into phases, and

the interpretation of the low energy theory varies significantly from phase to phase. We

will make use of this in our study of the B/2-twisted M-model. In what follows, we will

refer to any phase containing, possibly as a multiple of a generator, the vector
∑

iQ
a
i as a

geometric phase. We will also apply this terminology to the phases of the V-model.

2.5 A-twist of the M-model: quantum restriction

Like the V-model, the M-Model admits the A-twist. The only subtlety in performing the

twist and localization is due to the non-trivial R-charge of φ0. Working in a geometric

phase, we find that under the twist φ0 becomes a holomorphic one-form on the world-

sheet, denoted by φ0
z, whose kinetic term has no zero modes on a genus zero world-sheet.

Details of this aspect of the twist have been worked out recently in [28].

The QT -cohomology of local gauge-invariant observables is spanned by the σa. These

observables yield a subset of the (a,c) ring of the SCFT: the σa correspond to elements

of H1,1(M) that are pull-backs of elements of H1,1(V ). These deformations of the M-

Model are known as toric Kähler deformations [25, 26]. The ring structure of these toric
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deformations is captured by the genus zero correlators in the A-twisted M-model, which

we denote by 〈〈σa1 · · · σak
〉〉 to distinguish them from those of the V-model.

The selection rule of the V-model is modified, since the ghost number symmetry is no

longer anomalous, and there is an extra multiplet Φ0 with R-charge 1. The upshot is that

the M-model correlators vanish unless k = d− 1, and we expect all instantons to make

contributions to the non-zero correlators.

Given the close relationship between the observables of the M- and V-models, it is

perhaps not surprising that correlators of the former are related to those of the latter. This

relationship is elucidated by considering in further detail the twist and localization of the M-

model. The localization conditions are those of the V-model (eq. (2.11)), supplemented by

φ0
z = 0, and P (φ) = 0, (2.21)

so that the path-integral localizes onto subsets Mn;P of the compact toric moduli

spaces Mn.

Although still compact, the subsets Mn;P ⊂ Mn are difficult to describe, and an

explicit computation of the A-twisted M-model correlators remains to be carried out. In

contrast to the V-model, the generic gauge instanton in the M-model does not correspond

to a world-sheet instanton of the non-linear sigma model. This suggests that the correlators

computed in the M-model are not simply related to the chiral ring of the SCFT. This dis-

appointing observation is tempered by powerful (2,2) non-renormalization theorems which

leave just one loop-hole for the disagreement: the correlators may differ by some non-trivial

map relating the complexified Kähler parameters ta of the SCFT and the τa of the lin-

ear model [24]. Presumably, this renormalization could be derived by integrating out the

point-like instantons, but this has not been explicitly demonstrated.

While it may be difficult to find the map τ(t) directly in the M-model, we may still ask

how to compute the correlators in terms of the τa. Here, we have an important simplifica-

tion: the chiral superpotential couplings are QT -exact, and so the correlators 〈〈σa1 · · · σad
〉〉

must be independent of the details of the hypersurface. This is the familiar statement that

the A-model is independent of the complex structure moduli. In [12] this, combined with

degree considerations implied by the ghost number symmetry and an analysis of the singu-

lar locus of the theory, was used to relate the M-model correlators to those of the V-model:

〈〈σa1 · · · σad
〉〉 = 〈σa1 · · · σad

−K
1 −K

〉, (2.22)

where

−K =
n∑

i=1

Qa
i σa (2.23)

corresponds to the anti-canonical divisor on V . This is the (2,2) quantum restriction

formula.

2.6 B-twist of the M-model

The M-Model also admits the B-twist, where the axial R-symmetry is used to define new

Lorentz transformations of the fields. Under this twist the topological BRST charge isQT =
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Q+ + Q−, and its cohomology captures a subset of the (c,c) ring of the SCFT. The local,

gauge-invariant operators are the monomials Oα = φ0fα(φi) found in the superpotential

W = φ0P (φi) =
∑

α

Oα. (2.24)

The natural correlators to consider are 〈〈Oα1 · · ·Oαd−1
〉〉. These B-twisted correlators are

independent of the τa (this time it is the twisted chiral superpotential that is QT -exact),

and an analysis of the Q±-fixed points shows that the path-integral localizes onto constant

maps from the world-sheet to M . This is just what one expects for the (c,c) ring of the

SCFT based on the Calabi-Yau manifold M .

2.7 Parameters in the (2,2) M-model

Naively, the M-model action contains the r complexified Kähler parameters already famil-

iar from the V-model, as well as the coefficients of monomials in the superpotential. It

is well-known that these explicit parameters of the linear theory may not capture all the

deformations of the M-model. The hypersurface M may have Kähler classes that are not

obtained as restrictions of classes from V , and it may have complex structure deformations

that cannot be described as deformations of the defining polynomial [29, 25, 18]. Defor-

mations by these “non-toric” and “non-polynomial” parameters are difficult to study in

the linear theory. Nevertheless, the restriction to polynomial and toric deformations is a

sensible one. For instance, under mirror symmetry the toric deformations are mapped to

polynomial deformations of the mirror.

A naive count of the (2,2) M-model complex structure parameters is given by the

number of monomials in the superpotential. This obviously produces a gross over-counting:

in the example of the quintic, there are 126 monomials in P , but we know very well that 25

of these are redundant. To understand how this redundancy manifests itself in the linear

model, consider the set of field redefinitions of this M-model allowed by gauge-invariance

and R-symmetry:

Φ0 → uΦ0, Φi → U i
jΦ

j , u 6= 0, U ∈ GL(5,C). (2.25)

By using these transformations, we may absorb parameters from the superpotential into

the (presumably irrelevant) D-terms. How many parameters may be eliminated in this

fashion? We must remember that these field redefinitions contain the complexified gauge

symmetry, which leaves the superpotential invariant. Moreover, expanding about a generic

superpotential, this is the only non-R symmetry of the superpotential. Thus, we expect

that of the GL(5,C) transformations precisely one cannot be used to eliminate parameters

in P . Denoting the number of monomials in P by #(P ), we conclude that there are

N2,2
c-x (quintic) = #P − (1 + dim GL(5,C) − 1) = 101 (2.26)

complex structure deformations of the quintic.

The example of the quintic generalizes to an arbitrary M-model: GL(5,C) is replaced

by Ãut(V ), and the gauge group has rank r, leading to

N2,2(M) = r +N2,2
c-x = r + #(P ) − dim Ãut(V ) + (r − 1) (2.27)
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toric and polynomial deformations of the M-model. This correctly reproduces the count of

toric and polynomial deformations for M ⊂ V obtained by Batyrev in [17]. Table 2 lists

additional hands-on examples.

While this simple counting gives an indication of the dimension of the moduli space

near a generic point, there are important and, in general, not well-understood subtleties in

making sense of the quotient of the naive parameter space by Ãut(V ) [19]. To avoid these

issues, we will always assume the theory to be near a suitably generic point in the moduli

space, where these difficulties should not arise.

2.8 The virtues of localization

Many of the results discussed in this section, and in particular those to do with explicit

computation of correlators in the twisted theories, rely on the localization argument. Lo-

calization is also at the heart of why many results obtained for twisted (2,2) theories

generalize to (0,2) half-twisted theories. Not only do both the twisted and half-twisted

path integrals localize, but in fact they localize onto intimately related sets. An example

of this is already familiar from the half-twisted Landau-Ginzburg theories studied in [30].

In what follows, we will see that similar results hold in the GLSM: the A and A/2 twisted

path-integrals localize onto the same configurations; the fixed-point set of the B-twisted

theory is in general a subset of the fixed-point set of the B/2 twisted theory, but in many

examples we can show the two to be identical.

In short, it is the localization of the path-integral that makes our computations possible.

This feature is expected to persist for arbitrary (0,2) deformations, as well as (0,2) theories

without a (2,2) locus. This makes us confident that many of our results will generalize to

the more phenomenologically interesting theories.

3. A/2 twist and projective toric varieties

Although our main interest lies in the A/2 twist and (0,2) deformations of the M-model,

experience with the (2,2) theories suggests that it behooves us to first examine the A/2

twisted V-model. In this section we review several approaches to solving the (0,2) deformed

A/2 twisted GLSM with target-space a smooth Fano toric variety V .

3.1 (0,2) superspace

To discuss the (0,2) deformations, we first describe the (2,2) locus in terms of (0,2) su-

perspace, with coordinates x±, θ+, θ
+
, superspace covariant derivatives D+, D+, and su-

percharges Q+,Q+.2 Under this decomposition, the matter superfields Φi
(2,2) appearing in

eq. (2.8) decompose as

Φi
(2,2) → Φi, Γi, (3.1)

where Φi is a (0,2) chiral superfield, and Γi is a Fermi superfield. The vector multiplet

V
(2,2)
a decomposes into a (0,2) vector multiplet and a chiral superfield, and the twisted

2The reader will find additional details in appendix A. We mostly follow the conventions in [24].
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chiral field-strength multiplets split up as

Σ(2,2)
a → Σa,Υa, (3.2)

where Σa is a (0,2) chiral superfield, and Υa is another Fermi multiplet. Let us describe

these multiplets in a little more detail.

Working in Wess-Zumino gauge, we find that the vector field and its field-strength

have the superspace expansion

Va,− = va,− − 2iθ+λa,− − 2iθ
+
λa,− + 2θ+θ

+
Da,

Υa = iD+Va,− + θ+∂−va,+

= −2(λa,− − iθ+(Da − ifa,01) − iθ+θ
+
∂+λ−,a). (3.3)

The bosonic multiplets have an expansion involving gauge-covariant derivatives ∇:

Φi = φi +
√

2θ+ψi
+ − iθ+θ

+∇+φ
i,

Σa = σa +
√

2θ+λa,+ − iθ+θ
+
∂+σa. (3.4)

These fields obey a chirality constraint

D+Φi = D+Σa = 0. (3.5)

The fermionic matter multiplets Γi are the most interesting new structures to emerge from

the (2,2)→(0,2) reduction. These fields are not chiral, but rather satisfy

D+Γi =
√

2Ei(Φ,Σ), (3.6)

where on the (2,2) locus the Ei are given by

Ei = i
√

2
∑

a

Qa
i Φ

iΣa. (3.7)

The explicit superspace expansion is given by

Γi = γi
− −

√
2θ+Gi − iθ+θ

+∇+γ
i
− −

√
2θ

+
Ei(Φ,Σ)

= γi
− −

√
2θ+Gi −

√
2θ

+
Ei(φ, σ)

− iθ+θ
+
[
∇+γ

i
− + 2iEi

,jψ
j
+ + 2iEi

,aλa,+

]
. (3.8)

The action is a sum of a kinetic term, written as an integral over the whole superspace,

and a (0,2) superpotential term:

LF-I =
1

4

∫
dθ+

r∑

a=1

τaΥa + h.c.. (3.9)

The action has an important classical symmetry, U(1)L × U(1)R, with charges display

in table 1. On the (2,2) locus these are just the classical left-moving and right-moving

R-symmetries, and the vectorial subgroup may be used to define the (half-)twist.
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θ+ Φi Γi Σa Υa

U(1)R 1 0 0 1 1

U(1)L 0 0 −1 −1 0

Table 1: The U(1)L × U(1)R symmetry charges for the V-model.

3.2 The E-parameters and E-deformations

Having described the (2,2) locus, we are now ready to contemplate (0,2) deformations.

With the matter content as above, there is not much choice in how to deform the theory

while preserving the global symmetries: we must deform the chirality constraints of the Γi

multiplets to the most general polynomials in the chiral fields allowed by gauge invariance

and the classical U(1)L × U(1)R symmetry. The result is the set of E-parameters.

Recall from section 2.1 that for each i we introduced the finite set Si containing the

monomials
∏

j(Φ
j)nj with charges Qa

i . Each of these monomials is allowed to appear in Ei

by gauge invariance and global symmetries. A look at the symmetry charges shows that

the Ei must remain linear in the Σa to maintain the classical U(1)L × U(1)R symmetry.

Thus, the most general form of E-parameters takes the form

Ei = i
√

2
r∑

a=1

ΣaE
ai(Φ) = i

√
2

r∑

a=1

∑

µ∈Si

Eai
µ µ Σa, (3.10)

where the Eai
µ are complex parameters.

Since the monomials in the Si correspond to generators of the component of Ãut(V )

connected to the identity, there is a direct relation between the E-parameters and the

elements of the group Ãut(V ) discussed in section 2.1. Evidently, the Ei introduce r ×
dim Ãut(V ) continuous parameters into the action.

It is important to recall that the V-model is believed to be a massive theory. As such,

it might seem strange to discuss “parameters” of this model. However, the massive theories

we consider do have topological rings that are accessed by the half-twisted theory [9]; it is

in these half-twisted theories that we count parameters. The expected geometric interpre-

tation suggests that the half-twisted theory should depend on the r Kähler parameters any

deformation parameters of the tangent bundle TV . In favorable circumstances, the latter

are counted by dimH1(V,EndTV ), but in general there may be elements of H1(V,EndTV )

that cannot be integrated to finite deformations. As we will see shortly, the E-parameters

describe unobstructed deformations of TV , so we should expect

#(E-deformations) ≤ dimH1(V,EndTV ).

A look at a few simple examples (e.g. V ≃ P
1×P

1) shows that the number of E-parameters

is greater than dimH1(V,EndTV ), making it clear that not all E-parameters correspond

to bundle deformations.

The resolution to this over-count is similar to the one we already encountered in count-

ing (2,2) deformations. A correct count is obtained if the following field redefinitions are
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used to absorb parameters:

Φi →
∑

µ∈Si

U i
µµ,

Γi →
∑

µ∈Si

U i
µ

∂µ

∂Φk
Γk,

Σa → Gb
aΣb, (3.11)

where U i
µ label Ãut(V ) parameters of the redefinition and Gb

a ∈ GL(r,C). As in our

counting of the deformations of the (2,2) M-model, we must remember that r of these

redefinitions are global gauge symmetries, which do not act on the E-parameters. Thus,

we find that the V-model should have

N(V ) = 2r + (r − 1) dim Ãut(V ) − r2, (3.12)

deformations.

A simple test of this formula is obtained by taking V to be

V = P
1 × · · · × P

1
︸ ︷︷ ︸

m times

. (3.13)

a product of m factors of P
1. In this case, r = m, and dim Ãut(V ) = 4m, leading to

N(V ) = m + 3m(m − 1). This matches H1(V,EndTV ), which in this case is computable

from elementary facts about line bundles on P
1. We will now give a geometric argument

for the origin of this formula.

3.2.1 A geometric interpretation

The geometric import of the E-deformations is simple to see in terms of the low-energy

NLSM. While the right-handed fermions continue to couple to the tangent bundle of the

toric variety TV , the left-handed fermions couple to a deformation of TV , a bundle E → V .

Just as TV may be built as the quotient

0 // Or
Qa

i zi

// ⊕iO(Di) // TV
// 0, (3.14)

we may define E via the exact sequence

0 // Or E
// ⊕iO(Di) // E // 0. (3.15)

Let us describe these quotients in a more hands-on way that should be familiar to any

devoted reader of [31]. Consider the space of vector fields on C
n − F , v = vi∂/∂zi. To

obtain vector fields on V , i.e. sections of TV , we must impose the equivalence relations

v ∼ v +
∑

a,i

λaQ
a
i z

i ∂

∂zi
, λa ∈ C

r. (3.16)

Note that the Euler vector fields ea = Qa
i z

i∂/∂zi make sense under the C
∗ action on the

coordinates zi. In order for the quotient to produce a smooth bundle, the Euler vector
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fields must span an r-dimensional subspace of the tangent space at every point p ∈ C
n−F .

When V is smooth, this is guaranteed to be the case.

To construct the bundle E instead of TV , we merely modify the vector fields as follows:

∑

i

Qa
i z

i ∂

∂zi
→
∑

i

Eai(z)
∂

∂zi
. (3.17)

The modified fields are still well-defined with respect to the toric action, and furthermore,

for small deformations the rank condition remains preserved for every p ∈ C
n − F . Thus,

we expect to get a smooth bundle E .

This explicit description makes it clear that two sets of vectors ea and e′a define

equivalent holomorphic bundles when exist f ∈ Ãut(V ), and g ∈ GL(r,C) such that

ea = ga
b df(e′a), (3.18)

where df denotes the push-forward map associated to f . Recalling that the f include the

[C∗]r action which leaves the ea invariant, we see that the E-deformations of the GLSM

are just the deformations of E obtained by deforming the defining exact sequence.

3.2.2 Linear and non-linear deformations

The non-linear E-deformations, i.e. those that involve monomials µ 6= Φj for some j, turn

out to be more difficult to study than the linear ones. We suggested in [13] that these

non-linear deformations should not affect the A/2-twisted V-model, but this is probably

too naive. It may be that such an independence holds when the linear parameters are

sufficiently close the (2,2) locus, but we have not shown this to be the case.

To organize the linear E-parameters, it is convenient to assemble the matter content

into sets of fields with the same gauge charges. Labeling these sets by index α and the

corresponding charges Qa
(α), we then recast

D+Γi =
∑

a,j

Eai
jΦ

jΣa (3.19)

as

D+Γ(α) = 2iM(α)Φ(α), M(α) =

r∑

a=1

ΣaE
a
(α), (3.20)

where M(α) is a kα × kα matrix. Clearly,
∑

α kα = n.

3.3 The A/2-twisted V-model in the geometric phase

The A/2 Twist of the (0,2) NLSM with toric target-space was considered in [10]. The

point of view advocated in [10] was to combine the familiar structure of (2,2) worldsheet

instantons with the notion that in (0,2) theories the basic A/2 twisted observables (the σa

in our case) should correspond to classes in H1(V, E∨). Classically (i.e. for constant maps),

the computation of a correlator is reasonably clear: 〈σa1 · · · σad
〉 should yield a map

H1(V, E∨) ×H1(V, E∨) × · · · ×H1(V, E∨) → Hd(V,∧dE∨) ≃ Hd,d(V ) ≃ C. (3.21)
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The second-to-last isomorphism automatically holds in theories with a (2,2) locus [9].

By using the universal instanton construction, the authors of [10] described how to

pull back the bundle (more generally, sheaf) E to a sheaf on Mn, how to construct the

obstruction sheaf (the source of the χn insertion on the (2,2) locus), as well as how to

in principle compute the induced sheaf cohomology on the instanton moduli space. As

usual in NLSM computations, these results required some choice of compactification of the

instanton moduli space. In the case when V is a toric variety, the GLSM naturally provides

such a compactification. The ideas in [10] were refined and developed in [11], culminating

in a general method for computing the A/2 correlators in the V-model. The result should

be thought of as a quantum deformation of the sheaf cohomology on H∗(V,∧kE∨).

While the method of [10, 11] is well-motivated and leads to sensible results, a number

of questions naturally arise. First, can we be sure that the linear model path-integral is

compputed by this sheaf cohomology on the instanton moduli space? Second, to derive

the quantum cohomology relations, one must first compute correlators and then extract

relations they satisfy. Can these relations be obtained in a more straight-forward fashion?

Finally, we know that on the (2,2) locus toric geometry techniques reduce the intersection

theory on Mn to simple combinatorics. Is there a formulation of the (0,2) sheaf cohomology

reminiscent of the toric geometry structures? We will now argue that these questions are

answered affirmatively.

3.4 The half-twist in the Coulomb phase

We mentioned in our discussion of the (2,2) V-model that when V is Fano, the cone

Kc, where the D-terms have a solution is pointed. Thus, there exists a region in the ρa

parameter space where SUSY appears to be broken. This turns out to be an artifact of

the classical analysis. In this non-geometric phase the SUSY vacua are there are discrete

Coulomb vacua, where the σ fields obtain large VeVs, the Φi matter multiplets get massive,

and the dynamics of the Σa multiplets are determined by an effective twisted superpotential

W̃eff(Σ) [24, 12]. This effective superpotential encodes the quantum cohomology relations

of the A-twisted V-model, and localization techniques applied in the non-geometric phase

yield the correlators in the V-model [14].

In [13] we argued that a similar situation holds in the A/2-twisted V-model. By working

in the non-geometric phase and assuming linear E-parameters, we were able to integrate

out the Φi,Γi multiplets and obtain an effective description of the remaining light degrees

of freedom in terms of a massive Landau-Ginzburg theory with an effective (0,2) potential

Leff =

∫
dθ+

r∑

a=1

ΥaJ̃a(Σ)|
θ
+

=0
+ h.c., (3.22)

with

J̃a = log

[
q−1
a

∏

α

detM
Qa

(α)

(α)

]
, (3.23)

where the M(α) are described in 3.20.
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In the case of linear E-deformations, the effective potential immediately yields the

quantum cohomology relations

〈σa1 · · · σak

∏

α|Qa
(α)

>0

detM
Qa

(α)

(α) 〉 = qa〈σa1 · · · σak

∏

α|Qa
(α)

<0

detM
−Qa

(α)

(α) 〉 for all a. (3.24)

As on the (2,2) locus, it is easy to extend this description to an explicit formula for the

genus zero A/2-twisted correlators. A simple generalization of the localization formulae

in half-twisted Landau-Ginzburg models yields the correlators as a sum over the common

zeroes of the J̃a(σ):

〈σa1 · · · σak
〉 =

∑

σ| eJ=0

σa1 · · · σak

[
det
a,b

J̃a,b

∏

α

detM(α)

]−1

. (3.25)

As expected, the correlators are position-independent, given by meromorphic functions

of the qa and the E-deformations, and satisfy the quantum cohomology relations. When

applied to the example of V ≃ P
1×P

1, the results are in agreement with the computations

of [11].

3.5 “Toric” (0,2) intersection theory

In this section, we return to the geometric phase and obtain the instanton contributions

in an alternative way that closely resembles the familiar (2,2) computations. We restrict

attention to linear E-parameters and assume V to be a smooth projective toric variety.

At first sight, it is not clear why the (0,2)-deformed V-model should have any toric-like

structure, since the E-deformations break the toric symmetries. On the (2,2) locus, the

toric symmetries are easy to see: the Lagrangian is invariant under

(Φi,Γi) → (eiαiΦi, eiαiΓi). (3.26)

While a rank r subgroup of this action is gauged, the remaining d symmetries generate the

U(1)d torus action on the toric variety V . Generic E-deformations break this symmetry

completely. Essentially, this is the statement that the bundle E → V is not toric, and it is

not clear that any of the familiar features of toric intersection theory should apply to the

sheaf cohomology groups Hk(V,∧kE∨).

A closer look at the localization conditions of the half-twisted theory suggests a more

optimistic perspective. Examining the action of QT = Q+ given in section A.3.1, we find

these are given by

∂zσa = 0, Eaiσa = 0 (no sum on i), ∇zφ
i = 0, Da + fa = 0, (3.27)

Comparing these conditions to those of the topological theory at the (2,2) locus (eq. (2.11)),

we see that as long as Eai(φ) has rank r for all φ outside the exceptional set (this will be

true for small E-deformations), the only solution to the first two conditions is σa = 0, and

the resulting moduli space of solutions is again the collection of gauge-instanton moduli

spaces — the familiar compact toric Mn!
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In the (2,2) case, once we knew how to do intersection theory on V and the form of

χn, we had the tools for determine the instanton contributions to the correlators as well.

It is reasonable to suspect that the same holds in the (0,2) theories: once we have the tools

to study the ring structure on H∗(V, E∨), we should be able to extend the results to Mn

without too much trouble. Let us emphasize that this extension is precisely what has been

described in [10]. Our goal here is simply to obtain their results in a more “toric” fashion.

Taking our inspiration from the A/2 twisted action evaluated at instanton number zero, as

well as the familiar form of the (2,2) results, we have developed a conjectured procedure

to determine the (0,2) intersection ring on V . We will now describe our conjecture and the

tests it satisfies.

We begin by introducing a set of anti-commuting objects πi, and a set of commuting

objects η̃a. The former keep track of “bundle” indices, while the latter should be thought

of as a basis for H1(V, E∨). Given these, we define anti-commuting objects ξ̃i by

ξ̃i = πj η̃aE
aj
i . (3.28)

As the notation suggests, the ξ̃i are to play a role similar to the ξi in the toric intersec-

tion theory.

The next step is to construct the analogue of the Stanley-Reisner relations. There is

an obvious guess: for each irreducible component of the exceptional set F , say labelled by

a set I, we set ∏

i∈I

ξ̃i = 0. (3.29)

Let us see that this leads to sensible results on the (2,2) locus, where Eaj
i = Qa

i δ
j
i . Plugging

this in, we find
∏

i∈I

ξ̃i = πi1πi2 · · · πi|I| η̃a1Q
a1
i1
η̃a2Q

a2
i2

· · · η̃a|I|
Q

a|I|

i|I|
= 0, ( no sum on the i indices). (3.30)

Without additional assumptions on the πi, the only way for this to hold is if

∏

i∈I

η̃aQ
a
i = 0, (3.31)

which is the usual Stanley-Reisner relation, provided we identify ηa = η̃a.

These relations take on an elegant form when we re-cast the Eaj
i in terms of the Ea

(α)

defined in eq. (3.20). Recall that the exceptional set F is the set of [C∗]r orbits in C
n for

which the D-terms have no solution. This immediately implies that given two fields φi1 , φi2

with identical gauge charges and some irreducible component of F labelled by the set I,

i1 ∈ I if and only if i2 ∈ I. Thus, we may replace I with a set A(I) = {α1, · · · , αk}. A

little thought then shows that eq. (3.29) may be re-written as

∏

α∈A(I)

det
[
η̃aE

a
(α)

]
= 0. (3.32)

To complete the story, we must find a way to normalize the top cup product of the η̃a.

On the (2,2) locus this was easy to do in terms of non-zero intersections of d T -invariant
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divisors Di1 , . . . ,Did . These have a non-trivial intersection if and only if the corresponding

one-dimensional cones ρi1, . . . , ρid belong to a full-dimensional cone σp ∈ ΣV , in which case

the divisors intersect at the T -invariant point p ∈ V . This is the origin of the normalization

described in eqs. (2.3), (2.5).

Taking our cue from this (2,2) result, we conjecture that for every T -invariant point

p, there are normalization conditions

#(ξ̃i1 · · · ξ̃id) = #(η̃a1 · · · η̃ad
) #(πj1 · · · πjd

)|p Ea1j1
i1

· · ·Eadjd

id
, (3.33)

where #(ηa1 · · · ηad
) is the symmetric product to be determined, and

#(ξ̃i1 · · · ξ̃id) = detpQ,

#(πj1 · · · πjd
)|p = |detpQ| ǫj1···jdjd+1···jn

[
ǫi1···idid+1···in

]2
E

1,jd+1

id+1
· · ·Er,jn

in
. (3.34)

Besides passing obvious checks such as anti-symmetry of #(ξ̃i1 · · · ξ̃id) and the sym-

metry of #(η̃a1 · · · η̃ad
), eqs. (3.33), (3.34) pass a number of non-trivial checks. First, on

the (2,2) locus we immediately recover the familiar normalization conditions. Second, the

#(η̃a1 · · · η̃ak
) so obtained match the qa → 0 limit of correlators studied by Coulomb branch

techniques in [13]. Given the intricate structure of those amplitudes (see eqs. (6.10,6.20)),

this amounts to an important test of the formula. Finally, when the conjecture is extended

to higher instanton numbers, it continues to match the explicit computations in all the

cases we checked.

The details of the extension from #(· · · )V to #(· · · )Mn are easily guessed by examining

the zero mode structure of the A/2-twisted V-model. The result is that in addition to

the modifications discussed in section 2.3.1, for each α with non-negative degree dα =∑
a naQ

a
(α), we replace

Ea
(α) → Ea

(α) ⊗ 1(dα+1)2 , (3.35)

in the normalization formulas. Extra fermion zero modes for each dα < 0 lead to an extra

factor of

χn =
∏

α|dα<0

det(η̃aE
a
(α))

−1−dα (3.36)

inserted in #(· · · )Mn . As in the A-twisted theory, we set #(η̃a1 · · · η̃ak
)Mn = 0 unless

k = dimMn.

Putting all of this together, we have the conjecture that the A/2-twisted V-model

correlators are given by

〈σa1 · · · σak
〉 =

∑

n∈K∨

#(η̃a1 · · · η̃ak
χn)Mn

r∏

a=1

qna
a . (3.37)

We stress that this conjecture does not compute correlators we could not have com-

puted before, however, if true, it has some intrinsic mathematical interest as a simple

generalization of the usual toric intersection theory, and, practically speaking, it allows a

computation of individual instanton contributions with minimal geometric input.
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3.6 V-model examples

We now give a few examples of computations in the A/2 twisted V-models.

3.6.1 V ≃ P
n

The tangent bundle of P
n is rigid, and these models have no E-deformations. The GLSM

has n + 1 matter fields coupled to one gauge field with charge 1. The D-term constraint

is
∑

i |φi|2 = ρ, so that Kc consists of the ray ρ ≥ 0. To solve the theory, we will use the

Coulomb branch techniques. The effective superpotential is

J̃ = log
[
q−1σn+1

]
, (3.38)

which leads to the quantum cohomology relation σn+1 = q. Using eq. (3.25), we obtain an

expression for the non-zero correlators:

〈σn+k(n+1)〉 = qk. (3.39)

3.6.2 V ≃ P
1 × P

1

The simplest V-model with (0,2) deformations is the P
1 ×P

1 example studied in [8, 10, 11,

13]. This model has four matter fields, two Kähler parameters and charges

Q =

(
1 1 0 0

0 0 1 1

)
. (3.40)

The (0,2) deformations are labelled by six parameters ǫ1,2,3, γ1,2,3 in the M(α). For example,

we may take

M(1) =

(
σ1 + ǫ1σ2 ǫ2σ2

ǫ3σ2 σ1

)
, M(2) =

(
γ1σ1 + σ2 γ2σ1

γ3σ1 σ2

)
. (3.41)

Plugging these into the J̃a yields the quantum cohomology relations

σ2
1 + ǫ1σ1σ2 − ǫ2ǫ3σ

2
2 = q1,

σ2
2 + γ1σ1σ2 − γ2γ3σ

2
1 = q2. (3.42)

The computation of correlators is not much harder than in the previous example. First,

we note that 〈σa
1σ

b
2〉 = 0 unless a + b is even. This implies that the non-zero correlators

may be put in the form 〈σ2a
1 σ2b

2 (σ1σ2)
k〉. The quantum cohomology relations determine

insertions of σ2a
1 and σ2b

2 in terms of (σ1σ2)
k:

(
σ2

1

σ2
2

)
=

1

R3

(
A1 −R1σ1σ2

A2 −R2σ1σ2

)
, (3.43)

where

A1 = q1 + ǫ2ǫ3q2, A2 = q2 + γ2γ3q1, (3.44)

and

R1 = ǫ1 + ǫ2ǫ3γ1, R2 = γ1 + ǫ1γ2γ3, R3 = 1 − ǫ2ǫ3γ2γ3. (3.45)
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Thus, the only non-trivial correlators are 〈yk〉, where y = σ1σ2. To compute these, we use

the quantum cohomology relations to recast eq. (3.25) in terms of y. We find

〈(σ1σ2)
k〉 = 2 ×

∑

y=y±

yk

[
2

R3
(B + 2Dy)

]−1

, (3.46)

where

y± = α± β = − B

2D
±

√
B2 + 4A1A2D

2D
, (3.47)

are the solutions to

y2 = σ2
1σ

2
2 = R−2

3 (A1 −R1y)(A2 −R2y), (3.48)

with

B = A1R2 +A2R1, D = R2
3 −R1R2. (3.49)

The over-all factor of 2 is due to the two solutions to J̃a(σ) = 0 for each y. Simplifying

this a little further, we find

〈(σ1σ2)
k〉 =

R3

D
× (α+ β)k − (α− β)k

2β
. (3.50)

For example, we find

〈σ2
1〉 = −R1

D
, 〈σ1σ2〉 =

R3

D
, 〈σ2

2〉 = −R2

D
. (3.51)

3.6.3 Resolved P
4
1,1,2,2,2

This model will be relevant for the (0,2) quantum restriction formulas discussed below.

The (2,2) GLSM was studied in [12], and its (0,2) deformations were considered in [13]. In

this case the V-model has six matter fields and two gauge fields, with charges

Q =

(
0 0 1 1 1 1

1 1 0 0 0 −2

)
. (3.52)

We consider a (0,2) deformation with

M(1) =

(
σ2 + ǫ1σ1 ǫ2σ1

ǫ3σ1 σ2

)
, M(2) = diag(σ1, σ1, σ1),

M(3) = σ1 − 2σ2. (3.53)

Eqs. (3.24) yield the quantum cohomology relations

σ3
1(σ1 − 2σ2) = q1,

σ2
2 + ǫ1σ1σ2 − ǫ2ǫ3σ

2
1 = q2(σ1 − 2σ2)

2, (3.54)

and the non-zero correlators:

〈σa
1σ

4m−a
2 〉 = 4qm−1

1

∑

z|P (z)=0

z4m−a

(1 − 2z)m−1H(z)
, (3.55)
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where

P (z) = z2 + ǫ1z − ǫ2ǫ3 − q2(1 − 2z)2,

H(z) = 4(ǫ1 − 4ǫ2ǫ3 + 2(1 + ǫ1)z). (3.56)

This example is a simple setting where non-linear E-parameters are allowed. These

yield eighteen additional parameters and take the form




∆E3

∆E4

∆E5


 = Σa [Ka]




(Φ1)2

Φ1Φ2

(Φ2)2


Φ6, (3.57)

where the K1 and K2 are 3 × 3 matrices of parameters.

4. A/2 twist and hypersurfaces: quantum restriction

Having discussed the A/2 twist of the V-model, we now come to our real interest: the (0,2)

deformations of the A/2 twist of the M-model. As in our V-model discussion, we begin

with the (0,2) supersymmetric action.

4.1 Parameters in the M-model

Recall that the field content of the M-model is that of the V-model, plus an additional

(2,2) multiplet Φ0
(2,2) with gauge charges Qa

0 = −∑n
i=1Q

a
i . Like the other matter fields,

Φ0
(2,2) decomposes into a (0,2) chiral multiplet Φ0, and a Fermi multiplet Γ0 with chiral

constraint D+Γ0 = 2iQa
0ΣaΦ

0. The chiral superpotential couplings are written in terms of

a (0,2) superpotential:

LJ =

∫
dθ+

[
Γ0P (Φ1, · · · ,Φn) +

n∑

i=1

ΓiΦ0P,i

]
+ h.c., (4.1)

where P,i = ∂P/∂Φi. LJ will be gauge-invariant if the polynomial P has charges −Qa
0.

Since the Γi are not chiral, it is not obvious that LJ preserves (0,2) supersymmetry. An

explicit computation shows that the general superpotential LJ =
∫
dθ+ΓIJI will be (0,2)

supersymmetric provided that the JI and the chiral constraints EI in D+ΓI =
√

2EI are

chosen to satisfy ∑

I

EIJI = 0. (4.2)

On the (2,2) locus, the constraint reduces to

Φ0Σa

[
Qa

0P +
∑

i

Qa
i P,i

]
= 0, (4.3)

where the equality follows from the quasi-homogeneity properties of P implied by gauge

invariance. Clearly, this is not the only way to satisfy the constraint. Replacing the P,i with
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polynomials Ji of same charge, and choosing more general Ei as we did in the V-model,

we will find a theory with (0,2) supersymmetry if

E0P + Φ0EiJi = 0. (4.4)

We see that the M-model has two types of (0,2) parameters: the E-parameters familiar

from the V-model, and the J-parameters. The two sets are not independent but must satisfy

the (0,2) SUSY constraint. We find it convenient to label the linear E-parameters of the

M-model in terms of the M(α) of the V-model given in eq. (3.20), as well as M(0) in

D+Γ0 = 2iM(0)Φ
0. (4.5)

On the (2,2) locus M(0) = −∑iQ
a
i σa.

The geometric structure encoded by the E and J is a choice of bundle F on the Calabi-

Yau hypersurface M ⊂ V . F is a deformation of TM , whose sections are described as the

cohomology of the sequence

0 // Or|M E
// ⊕iO(Di)|M J

// O(
∑

iDi)|M // 0 , (4.6)

F = ker J/ imE. Physically, this sequence arises in the geometric phase of the GLSM as a

description of the fermions in the low energy NLSM [24, 32].

4.2 Counting (0,2) deformations of the M-model

A naive count of the (0,2) M-model parameters is given by summing the parameters of

the theory modulo the (0,2) SUSY constraint: there are r Kähler parameters; r(1 + D)

E-parameters,3 where D = dim Ãut(V ); there are #(J) monomials in the Ji, and #(P )

monomials in P . The E · J = 0 constraint imposes r#(P ) conditions. Thus,

Nnaive(M) = r(2 +D) + #(J) − (r − 1)#(P ). (4.7)

Clearly, this is a vast over-parametrization, and as on the (2,2) locus, we expect that

field redefinitions will help to cut down on the number of parameters of the low energy

theory. Let us consider the field redefinitions

Φ0 → uΦ0,

Γ0 → vΓ0,

Φi →
∑

µ∈Si

U i
µµ,

Γi →
∑

µ∈Si

V i
µ

∂µ

∂Φk
Γk, (4.8)

depending on (2D+2) parameters u, v, U i
µ, V

i
µ. We recall that Si is the set of monomials

µ of charge Qa
i . Setting U = V and u = v, we find the familiar (2,2) redefinitions from

3The extra 1 comes from E
0.
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eq. (3.11). Since Since we only demand (0,2) SUSY, there is no longer any reason to have

the same set of U i
µ for the Φi and the Γi.4

In addition, since the Σa are no longer tied by supersymmetry to the Υa (the normal-

ization of these is fixed by the periodicity of the θ-angles), we may also perform a GL(r,C)

rotation on the Σa. Thus, there are 2(1 +D) + r2 field redefinitions that may be used to

absorb parameters.

As before, not all of these terms modify the holomorphic couplings and the chirality

constraint, since the transformations include global gauge symmetries, as well as U(1)L ro-

tations. Thus, r+1 transformations leave the holomorphic couplings and chiral constraints

invariant. Taking this into account, we obtain a count of parameters in the (0,2) M-model:

N(M) = r + (r − 2)D + #(J) − (r − 1)#(P ) − (r − 1)2. (4.9)

Of these N (2,2)(M) parametrize motions along the (2,2) locus, while

N (0,2) = N(M) −N (2,2)(M) (4.10)

counts the E- and J-deformations.

Let us check the validity of the expressions in some simple examples. First, we consider

the quintic, where r = 1, D = 25, and #(J) = 350, which yields

N(quintic) = 326 = 1 + 101 + 224. (4.11)

Another simple example is the bi-cubic in P
2 × P

2 already investigated in section 4.8.2.

Here we have r = 2, D = 18, #(J) = 260, and #(P ) = 100. Putting all this together,

we find N(bi-cubic) = 261. A geometric analysis counting the parameters in this theory

was performed in [33, 34] (see [35] for a pedagogical discussion), where it was found that

there are: h1,1(M) = 2 Kähler parameters; h1,2(M) = 83 complex structure deformations,

all of which are known to be polynomial; and, finally, dimH1(M,EndTM ) = 176 bundle

deformations. These indeed add up to 261. We list in table 2 the counts for a few other

models.

The formulas that count the deformations become less cluttered if we use dim Ãut(V ) =

dim Aut(V ) + r.5 Making the substitution, we find that eqs. (3.12), (2.27), (4.9) become

N(V ) = r + (r − 1) dim Aut(V ),

N (2,2)(M) = r + #(P ) − dim Aut(V ) − 1,

N(M) = r + (r − 2) dim Aut(V ) + #(J) − (r − 1)#(P ) − 1. (4.12)

4The reader should note that the same argument would naively apply to the V-model as well, but

that would not match the answer expected on geometric grounds. A clue to the difference in the sets of

redefinitions is provided by the anomalous U(1)R symmetry of the V-model, but we do not have a fully

satisfactory argument for the difference.
5We thank B. Nill for suggesting this.
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V N(V ) h1,1
toric(M) h2,1

poly(M) N(M) N (0,2)(M)

P4 1 1 101 326 224

P
2 × P

2 18 2 83 261 176

P
4
1,1,2,2,2 23 2 83 276 191

P
4
1,1,2,2,6 46 2 126 494 366

P
4
1,2,2,3,4 20 2 70 232 160

P
4
1,2,2,2,7 35 2 107 372 263

P
4
1,1,1,6,9 105 2 272 1158 884

Table 2: Linear deformations of the M-model, listed by the associated V-model. The last column

is a counting of “polynomial” bundle deformations. In favorable circumstances this should be

dimH1(M,EndTM ). More generally, it yields a subset of the unobstructed deformations of the

tangent bundle.

θ+ Φi Γi Φ0 Γ0 Σa Υa

U(1)R 1 0 0 1 1 1 1

U(1)L 0 0 −1 1 0 −1 0

Table 3: The U(1)R and U(1)L symmetry charges for the M-model in the geometric phase.

4.3 The A/2 twist

By construction, the E- and J-deformations preserve not only the (0,2) supersymmetry, but

also the U(1)R R-symmetry and a global symmetry U(1)L. The latter becomes the left-

moving R-symmetry on the (2,2) locus. On the (2,2) locus these symmetries are believed to

be the R-symmetries of the IR fixed point [24, 36, 32]. Even off the (2,2) locus the U(1)L
plays a distinguished role in the heterotic compactification: it provides a non-linearly

realized component of the space-time gauge symmetry, and it includes a Z2 symmetry

that may be used to construct a chiral GSO projection [32]. In our conventions these

symmetries act on the field-content with charges given in table 3. These U(1) symmetries

lead to the existence of two distinct half-twists of the theory. To explain this structure,

we must perform an analytic continuation to Euclidean space, and carefully consider the

charges of the fields under the Lorentz group and under the U(1)R ×U(1)L symmetry. We

label the generator of the former as JT , and we consider the linear combinations

JA =
1

2
(JR + JL), JB =

1

2
(JR − JL) (4.13)

of the U(1)R × U(1)L generators. To twist, we redefine the Lorentz charge by

JT ′ = JT − JA (A/2-twist), JT ′′ = JT − JB (B/2-twist). (4.14)

The details of the half-twists are given in appendix A. We find that under the A/2-twist

the spins of the fields are shifted as follows: the spins of the fields in the Σa,Υa multiplets
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are now taken to be

σa → σa [∈ Γ(O)] ,

λa,+ → λa,z

[
∈ Γ(K)

]
,

λa,+ → λa

[
∈ Γ(O)

]
,

σa → σa

[
∈ Γ(O)

]
,

λa,− → λa,z [∈ Γ(K)] ,

λa,− → χa [∈ Γ(O)] ,

(4.15)

where K is the canonical bundle of the world-sheet (we always work on P
1). The zero

modes of the kinetic operator for each of the fields are in one to one correspondence with

(anti)holomorphic sections of the given bundle.

In the background of a gauge field with instanton number na, the twisted matter fields

and their zero modes are as follows:

φi → φi [∈ Γ(O(di))] ,

ψi
+ → ψi

z

[
∈ Γ(K ⊗O(−di))

]
,

ψ
i
+ → ψ

i [∈ Γ(O(di))
]
,

φ0 → φ0
z [∈ Γ(K ⊗O(d0))] ,

ψ0
+ → ψ0

[
∈ Γ(O(−d0)

]
,

ψ
0
+ → ψ

0
z

[
∈ Γ(K ⊗O(d0))

]
,

φ
i → φ

i [∈ Γ(O(di))
]
,

γi
− → γi [∈ Γ(O(di))] ,

γi
− → γi

z [∈ Γ(K ⊗O(−di))] ,

φ
0 → φ

0
z

[
∈ Γ(K ⊗O(d0))

]
,

γ0
− → γ0

z [∈ Γ(K ⊗O(d0))] ,

γ0
− → γ0 [∈ Γ(O(−d0))] .

(4.16)

Recall that the degrees are given by

di = Qa
i na, i = 0, . . . , n. (4.17)

As in [10, 28] a Hermitian metric on O(di) → P
1 has been used in some of the definitions,

so that the sections of the bundles in braces count zero modes of the kinetic operator in a

fixed instanton background.

Under this twist the supercharge Q+ becomes the nilpotent world-sheet scalar operator

QT . The action of QT , as well as the decomposition of the action for the theory into QT -

closed and QT -exact components are described in appendix A. The details most important

to our analysis are that:

1. σa represent non-trivial elements in the QT cohomology;

2. the anti-holomorphic couplings τa and the couplings in P ,E
i
and J i only appear in

QT -exact terms.

By arguments familiar from BRST gauge-fixing or cohomological topological field theories,

it follows that correlators of the σa depend holomorphically on the parameters of the theory.

To determine this dependence, we now turn to localization.

4.4 Localization and quantum restriction

The A/2-twisted Lagrangian and action of QT are described in appendix A.3.1. An exami-

nation of the action of QT in a geometric phase of theM -model reveals that the A/2-twisted

path-integral localizes onto the same configurations as the A-twisted M-model on the (2,2)

locus. That is, the fixed-point set is described by Mn;P ⊂ Mn, where Mn is the familiar

compact and toric moduli space of instantons in the V-model.
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Thus, to compute 〈〈σa1 · · · σad−1
〉〉, we need to expand the action around the configu-

rations in Mn;P and use this as a measure on Mn;P . This is not simple, and at first one

might think it will be much harder than in the A-twisted theory. There, the couplings

split up into chiral and twisted chiral superpotentials, and the former couplings were easily

shown to be QT -exact. In the A/2-twisted M-model there is only one sort of superpoten-

tial, and it is not at all obvious why the correlators of the σa should be independent of the

parameters in P (φ) or J(φ).

Nevertheless, we will now show that a few conservative assumptions about the half-

twisted theory lead to a quantum restriction formula off the (2,2) locus. We assume that

1. The path-integral reduces to a finite integral over Mn.

2. The semi-classical expansion about points in Mn is exact.

3. The non-zero modes of the kinetic operators cancel in the one-loop determinants, so

we can restrict attention to the zero modes.

4. The correlators do not depend on anti-holomorphic couplings.

With those assumptions in mind, we work in a geometric phase of the M-model with

a Kähler cone K. Recall that throughout this work we assume that V is Fano, which

implies that
∑

iQ
a
i ∈ K. Fixing an instanton number na ∈ K∨ and thus the degrees

d0 = −∑i,aQ
a
i na, di =

∑
aQ

a
i na, it is evident that in the geometric phase we have d0 ≤ 0.

Let us write the action for the M-model as SM = SV + S0, where S0 contains all

the terms involving fields from the Φ0,Γ0 multiplets, while SV contains the rest. A quick

look at the action reveals that SV is just the action for the V-model. The next step is to

localize onto the QT -invariant configurations. Instead of localizing directly to Mn;P , we

do a partial localization to the larger moduli space Mn, leaving P and P in the action.

The zero modes of the fields in the Φi,Γi multiplets are the same as they are in the

V-model, while among the fields in the Φ0,Γ0 multiplets only the fermions ψ0 and γ0 have

zero modes when d0 ≤ 0. In fact, each of them has 1 − d0 zero modes, so that the zero

mode integral in the na-instanton sector may be written as

〈〈σa1 · · · σad−1
〉〉n =

∫
D[fields]V ;Mne

−SV σa1 · · · σad

∫
D[ψ0γ0]e−S′

0 , (4.18)

where

S′
0 = [PP ]0 −

1−d0∑

α=1

(
i
√

2γ0
α(−M(0))ψ

0
α − γ0

α[ψ
i
P ,i]α + [γiJi]αψ

0
α

)
, (4.19)

and [· · · ]α denotes projection onto the α-th zero mode. Let us suppose the measure may

be chosen so that

D[ψ0γ0] = −
1−d0∏

α=1

dγ0
αdψ

0
α

i
√

2
. (4.20)
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In that case, we have essentially reduced the correlator in the M-model to a computation

in the V-model, since we have

〈〈σa1 · · · σad−1
〉〉n = −

∫
D[fields]V ;Mne

−SV e−[PP ]0(M1−d0

(0) + g(M(0), J, P ))σa1 · · · σad−1
,

(4.21)

where g(M(0), J, P ) is a polynomial where each monomial contains at least one power of P .

We now come to our last assumption, namely that the correlators of the A/2-twisted

M-model do not depend on anti-holomorphic parameters. Thus, formally, the limit P → 0

should not change the correlators. Such limits of QT -exact parameters should generally be

considered with caution. If the limit changes the large field asymptotics and, for example,

leads to non-compact directions in the moduli space, then the correlators may well jump

in the limit. The crucial point is that in the situation at hand there are no signs of such

difficulties. The integral in eq. (4.21) remains perfectly well-behaved, and we expect the

correlators to be invariant as P is sent to zero. Thus, we obtain

〈〈σa1 · · · σad−1
〉〉n = −〈σa1 · · · σad−1

M1−d0

(0) 〉n. (4.22)

In fact, we can do a little bit better by recalling the selection rule in the A-twisted

V-model:

〈σa1 · · · σak
〉n = 0 unless k = d+

∑

i

Qa
i na. (4.23)

This rule remains unmodified by any (0,2) deformations, since these do not break the

classical ghost number symmetry. Thus,

〈〈σa1 · · · σad−1
〉〉n = 〈σa1 · · · σad−1

(−M(0))

∞∑

m=1

Mm
(0)〉n, (4.24)

since only one term in the sum (namely, m = −d0) contributes. Finally, exchanging the

sums on n and m, we arrive at our (0,2) quantum restriction formula:

〈〈σa1 · · · σad−1
〉〉 = 〈σa1 · · · σad−1

−M(0)

1 −M(0)
〉. (4.25)

On the (2,2) locus M(0) = K = −∑i,aQ
a
i σa, and our result reduces to that obtained

in [12] and given in eq. (2.22). This agreement provides a basic justification of our assump-

tion on the choice of measure. Off the (2,2) locus, we find that the A/2-twisted correlators

are independent of P and Ji and depend holomorphically on the Kähler parameters qa
and the E-parameters contained in M(0) and M(α). In fact, by using some of the field

redefinitions, we may always set M(0) = K. We always make this choice in what follows.

We emphasize that, just as on the (2,2) locus, we expect a non-trivial map between the

(0,2) parameters of the NLSM and these linear model coordinates. It may well be that this

map actually depends on q,E and also J-parameters. Even so, it is likely that the linear

coordinates will still be useful in unravelling the structure of (0,2) theories.
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4.5 The singular locus of the A/2 twisted M-model

The quantum restriction formula gives a simple way to compute the A/2-twisted M-model

correlators. From these we may extract the quantum cohomology relations and determine

the locus in the qa,M(α) parameter space where the correlators have poles. As on the

(2,2) locus, these singularities should signal a singularity in the (0,2) SCFT. As in type

II theories, we expect that here world-sheet perturbation theory breaks down and non-

perturbative effects are necessary to resolve the SCFT singularity. These effects are not

well understood in the heterotic string, and a parametrization of the singular locus in

parameter space is an important step in studying this phenomenon.

In (2,2) theories it is well-known that the singular locus of the GLSM may be deter-

mined without computing a single correlator. The basic tool used is the effective potential

governing the Σa multiplets at large σa VeVs. This potential is easily obtained by integrat-

ing out the Φi multiplets at one loop. We have already discussed how a similar potential

may be computed off the (2,2) locus, and we will now use it to study the singular locus of the

theory. As a by-product, we will obtain another check on the quantum restriction formula.

We begin by discussing the effective potential in the V-model. It is convenient to work

in a special basis for the gauge charges, where
∑

iQ
a
i = 0 for a > 1, and

∑
iQ

1
i = ∆ > 0.

A moment’s thought will convince the reader that any Qa
i may be brought to this form

by an SL(r,Z) transformation. So, let us return to the potential in eq. (3.22), and study

the solutions to J̃a(σ) = 0. Working in the special basis, it is useful to define the ratios

za = σa/σ1, and write the J̃a = 0 equations in terms of kα×kα matrices M(α)(z) defined via

M(α)(σ1, . . . , σr) = σkα

1 M(α)(1, z2, . . . , zr). (4.26)

The result is

σ∆
1

∏

α

detM(α)(z)
Q1

α = q1,

∏

α

detM(α)(z)
Qa

α = qa for a > 1. (4.27)

These are r equations for r variables, so that for generic qa there is a zero-dimensional

solution set. While these isolated σ vacua are important in computations of correlators in

non-geometric phases, they do not give rise to non-compact directions in field space, and

therefore do not lead to a singularity in the theory.

For certain special values of the qa, a > 1 and the E-parameters singularities may

arise when some of the vacua run off to infinity, or when the mass matrix for the matter

fields becomes degenerate. These components of the singular locus are easy to identify in

particular models [13], and on the (2,2) locus there is an algorithmic procedure for finding

them [12]. These singularities are independent of q1, and, aside from the trivial singularity

at q1 = ∞, the singular locus of the V-model is q1-independent.

Now let us consider the singular locus of the M-model. Adding in the Φ0,Γ0 multiplets

with charges Q1
0 = −∆, Qa

0 = 0 for a > 1, and integrating out the matter fields, we find

that the J̃a, a > 1 are identical to those of the V-model, while J̃1 is modified. Thus,
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eq. (4.27) is modified to
∏

α

detM(α)(z)
Q1

α = (−∆)∆q1,

∏

α

detM(α)(z)
Qa

α = qa for a > 1. (4.28)

These are now r equations for r − 1 variables za, a > 1. On the one hand the equations

do not have solutions for generic parameters, but on the other hand, a common solution

to these algebraic equations signals a singularity in the theory, since the σa are only fixed

up to an over-all scale. This non-compact direction in field space will lead to a divergence

in the σ correlators.

On the (2,2) locus the (complex) co-dimension one subvariety in the qa parameter space

where eqs. (4.28) have a solution is known as the principal component of the singular locus.

We will use this same terminology off the (2,2) locus as well. The principal component of

the singular locus is then given by a multi-variate resultant of a polynomial system in r−1

variables. Combining this component with the singularities from the V-model, we obtain

the complete singular locus of the A/2-twisted M-model.

4.6 The singular locus and quantum restriction

Since the J̃a for a > 1 are identical in the M- and V-models, there is a simple relation

between the discrete σ vacua of the V-model and the principal component of the singular

locus of the M-model. Let us fix to some generic values of the qa, a > 1 and theM(α), α > 0.

In this case the V-model is non-singular, while the M-model is on the principal component

of the singular locus if and only if the discrete σ vacua of the V-model satisfy K∆ = 1.

This should be compared with the quantum restriction formula of eq. (4.25). Using

our special basis of gauge charges, the restriction formula is equivalently written as

〈〈σa1 · · · σad−1
〉〉 = 〈σa1 · · · σad−1

−K
1 −K∆

〉. (4.29)

For generic values of q2, . . . , qr and the E-parameters, the V-model correlators on the right-

hand side are non-singular, and the only way for the left-hand side to develop a singularity

is if the sum over the V-model correlators diverges. This only takes place when K∆ = 1,

which implies that the M-model is on the principal component of the discriminant locus.

Thus, the restriction formula correctly predicts the q1-dependent singularities of the M-

model. The observation that this holds in the example of a hypersurface in P
4
1,1,2,2,2 was

an important motivation in our search for the (0,2) quantum restriction formula.

4.7 Quantum restriction for complete intersections

The (0,2) quantum restriction formula may be easily generalized to linear sigma models for

Calabi-Yau complete intersections in toric varieties. On the (2,2) locus quantum restriction

for complete intersections was considered in [37]. We will give a compact expression valid

off the (2,2) locus.

The models we now study are a simple generalization of the M-model. We again begin

with a V-model for some Fano toric variety, but instead of adding a single Φ0,Γ0 multiplet,
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we add multiplets ΦI ,ΓI , I = 0, . . . , N , with charges obeying
∑

I Q
a
I = −∑iQ

a
i , and

superpotential couplings

LJ =
∑

I

∫
dθ



ΓIPI +

∑

j

ΓjΦIJIj



+ h.c., (4.30)

where the PI are polynomials of multi-degree −Qa
I , and JIj are polynomials of multi-degree

−(Qa
I +Qa

i ).

To completely specify the theory, we also need to describe the EI in D+ΓI =
√

2EI .

For simplicity, we assume that we can se the EI to their (2,2) values by field redefinitions.

The generalization is obvious, but requires a more cumbersome notation. The theory will

be (0,2) supersymmetric provided that

PIQ
a
IΣa + JIiE

i = 0 for all I. (4.31)

Under appropriate combinatorial conditions [38, 39] and for generic coefficients in the

polynomials PI , the gauge theory in a geometric phase flows to an NLSM with target space

a dimension k = d−1−N (quasi-smooth) Calabi-Yau complete intersection ∩I{PI = 0} in

V . We assume these conditions are satisfied, and study the linear model in the geometric

phase.

The twisting and counting of zero modes proceeds exactly as in the hypersurface case.

As might be expected, the selection rule for the σ correlators implies that the non-vanishing

correlators have precisely k insertions. Furthermore, an analysis of the combinatorial con-

ditions shows that dI ≤ 0. Once we replace γ0, ψ
0 → γI , ψ

I
, the localization argument goes

through verbatim. Making a similar assumption for the normalization of the zero mode

measure, we arrive at the following result for the n-th instanton sector:

〈〈σa1 · · · σak
〉〉n = 〈σa1 · · · σad−1−N

N∏

J=0

(−KJ)

[
N∏

I=0

K
−Qb

Inb

I

]
〉n, (4.32)

where we have defined KJ =
∑

aQ
a
Jσa.

To write a compact expression for the summed correlators, it is helpful to define

T =
∏

J(−KJ) and δb =
∏

I K
−Qb

I

I . In terms of these, we may write

〈〈σa1 · · · σak
〉〉 =

∑

n∈K∨

〈σa1 · · · σad−1−N
T
∏

b

δnb

b 〉n
∏

a

qna
a ,

=
∑

m∈K∨

∏

a

{∮

C(0)

dua

2πiua

}
∑

n∈K∨

〈σa1 · · · σak
T
∏

b

(
δb
ub

)mb

〉n
∏

c

(qcuc)
nc ,

(4.33)

where the first line follows by summing the result of eq. (4.32), and in the second line we

have introduced a sum and a simple contour integral to pick out the relevant summand.

The contours are simply around ua = 0. Exchanging the sums on n and m, we get a

restriction formula for the complete intersections:

〈〈σa1 · · · σak
〉〉 =

∏

a

{∮

C(0)

dua

2πiua

}
〈σa1 · · · σak

∆〉(qcuc), (4.34)
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where

∆(u) = T
∑

m∈K∨

∏

b

(
δb
ub

)mb

. (4.35)

This formula is a bit more complicated than the hypersurface case, and we have not

found an argument showing that it reproduces the principal discriminant locus of the

theory. Nevertheless, it seems like a compact and potentially useful way to express the

correlators. As a simple check of its veracity, we note that it reduces to our previous result

in the case of a single hypersurface.

A slightly more involved check is to compare the results obtained here to known ex-

amples. Perhaps the simplest of these is a (2,2) CICY in P
5 of a quadratic polynomial P1

and a quartic polynomial P2. The charges for the linear sigma model are

Q = (−4,−2, 1, 1, 1, 1, 1, 1), (4.36)

so that K1 = −2σ, and K2 = −4σ, and T = 8σ2. The singular locus is easily determined

by finding the zeroes of the effective potential J̃(σ), which leads to the locus 1 − 45q = 0.

We expect a single non-vanishing correlator, 〈〈σ3〉〉, and according to our formula,

〈〈σ3〉〉 =

∮

C(0)

du

2πiu
〈σ3 × 8σ2

1 − 45σ6u−1
〉(qu). (4.37)

Using our result for the correlators of the P
n V-model (eq. (3.39)), we have σ6 = qu, leading

to

〈〈σ3〉〉 =
8

1 − 45q
. (4.38)

This correlator has the right singular locus and the right classical (q → 0) limit.

4.8 Examples of quantum restriction

To illustrate our results, we will now apply the (0,2) restriction formula to two examples.

4.8.1 Hypersurface in resolved P
4
1,1,2,2,2

The V-model was already discussed in section 3.6.3. To construct the M-model, we intro-

duce the fields (Φ0,Γ0) with charges

Qa
0 =

∑

i

Qa
i =

(
−4

0

)
. (4.39)

Next, we specify polynomials P and Ji with charges −Qa
0 and −Qa

0 − Qa
i , respectively.

These must be chosen to satisfy the
∑n

i=0E
iJi = 0 constraint. With the E deformations

given in eq. (3.53), a choice for the P and Ji is to take

P = P0 + ∆P, Ji =
∂P0

∂φi
, (4.40)

with

P0 = (φ8
1 + φ8

2)φ
4
6 + φ4

3 + φ4
4 + φ4

5,

∆P = 2(ǫ1φ
8
1 + ǫ2φ

7
1φ2 + ǫ3φ1φ

7
2)φ

4
6. (4.41)
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Using the quantum restriction formula (eq. (4.25) ) and the Coulomb branch solution

to the V-model (eq. (3.55)), we obtain

〈〈σ3−a
1 σa

2〉〉 = −
{

Res
z=

1−44q1
2

+ Res
z=

4ǫ2ǫ3−ǫ1
2(1+ǫ1)

+ Resz=∞

}
G(z)P ′(z)

P (z)
, (4.42)

where

G(z) =
16za(1 − 2z)

H(z)(1 − 2z − 44q1)
, (4.43)

and P (z) and G(z) are given in eq. (3.55)).

We find that the three-point functions are given by

〈〈σ3
1〉〉 =

8

D
,

〈〈σ2
1σ2〉〉 =

4(1 − 28q1)

D
,

〈〈σ1σ
2
2〉〉 =

4(210q1q2 − 2q2 + 28ǫ1q1 + 2ǫ2ǫ3 − ǫ1)

(1 − 4q2)D
,

〈〈σ3
2〉〉 = 4

[
q2(1 + 4q2 − 28q1 − 3072q1q2) + ǫ21(1 − 28q1)

+ 2ǫ1(−210q1q2 + 3q2 − ǫ2ǫ3)

+ǫ2ǫ3(−28q1 + 210q2q1 + 1 − 12q2)
]
/(1 − 4q2)

2D, (4.44)

where

D = (1 − 28q1)
2 − 218q21q2 + 2ǫ1(1 − 28q1) − 4ǫ2ǫ3 (4.45)

is the principal component of the singular locus, in agreement with the computation based

on the effective potential for the σa.

4.8.2 Hypersurface in P
2 × P

2

Here we study (0,2) deformations of the A/2 twisted example of a bi-cubic hypersurface in

P
2 × P

2. The charges are given by

Q =

(
−3 1 1 1 0 0 0

−3 0 0 0 1 1 1

)
, (4.46)

with the anticanonical divisor represented by −K =
∑

iQ
a
i σa = 3(σ1 + σ2). If we ignore

the E · J = 0 constraint, then the E-parameters are given by two 3 × 3 matrices — a

simple generalization of the P
1 × P

1 example analyzed above, as well as a rescaling of the

(Φ0,Γ0) multiplets. The E ·J = 0 constraint and the field redefinitions we discussed above

eliminate many of these possibilities. Let us fix the J-parameters so that the following

E-deformations are allowed by the constraint:

M(1) =



σ1 ǫ2σ2 0

ǫ3σ2 σ1 + ǫ1σ2 0

0 0 σ1


 , M(2) =




σ2 γ2σ1 0

γ3σ1 σ2 + γ1σ1 0

0 0 σ2


 . (4.47)
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Applying the quantum restriction formula, we have

〈〈σa
1σ

3−a
2 〉〉 = 〈σa

1σ
3−a
2

3(σ1 + σ2)

1 + 3(σ1 + σ2)
〉 = 3〈σa

1σ
3−a
2

(σ1 + σ2)

1 + 33(σ1 + σ2)3
〉, (4.48)

where on the right-hand side the correlators are computed in the (0,2)-deformed linear

sigma model for P
2 ×P

2. The quantum cohomology of this V-model is quite similar to the

P
1 × P

1 theory. We have

detM(1) = σ3
1 + ǫ1σ

2
1σ2 − ǫ0σ1σ

2
2 = q1,

detM(2) = σ3
2 + γ1σ

2
2σ1 − γ0σ2σ

2
1 = q2, (4.49)

where ǫ0 = ǫ2ǫ3, and γ0 = γ2γ3. Finally, using the Coulomb branch analysis, we have

〈〈σa
1σ

3−a
2 〉〉 = 3

∑

σ=σ∗

σa
1σ

3−a
2

(σ1 + σ2)

H(1 + 33(σ1 + σ2)3)
, (4.50)

where

H = 3
[
−ǫ0σ4

2 + 2ǫ1σ1σ
3
2 + (3 + ǫ1γ1 − ǫ0γ0)σ

2
1σ

2
2 + 2γ1σ

3
1σ2 − γ0σ

4
1

]
, (4.51)

and σ∗ are solutions to eq. (4.49). From this form we immediately see that the four

correlators are not independent but rather satisfy

q2〈〈σ3
1〉〉 + (γ0q1 + ǫ1q2)〈〈σ2

1σ2〉〉 − (γ1q1 + ǫ0q2)〈〈σ1σ
2
2〉〉 − q1〈〈σ3

2〉〉 = 0. (4.52)

This is a very pretty property, as it has some simple consequences for normalized Yukawa

couplings: for example, it shows that if we tune parameters to set three of these couplings

to zero, the fourth will also be zero.

To obtain the actual correlators, it is useful to introduce z = σ2/σ1, as well as

H̃(z) = σ−4
1 H, S(z) = σ−3

1 detM(1). (4.53)

The equations satisfied by σ1 and z are

σ3
1 = S−1q1, (4.54)

P (z) = q2S − q1(z
3 + γ1z

2 − γ0z) = 0, (4.55)

so that the correlators may be written as

〈〈σa
1σ

3−a
2 〉〉 = 3

∑

z|P (z)=0

z3−a(1 + z)S

H̃(S + 33(1 + z)3)
. (4.56)

Repeated application of P = 0 to eliminate zn for n ≥ 3 allows us to recast the correlators

into a simpler form:

〈〈σa
1σ

3−a
2 〉〉 = 3

∑

w|P (w)=0

∮

C(w)

dz

2πi

P ′(z)

P (z)

A1z
2 +A2z +A3

A4z2 +A5z +A6
, (4.57)
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where A1, . . . , A6 are easily computable but complicated rational functions of q, ǫ, γ, and

C(w) denotes a small contour in the z plane around z = w. Pulling the contour off the

roots of P (z) onto the roots of the denominator and the point at infinity, we see that the

correlators may be computed by completely elementary methods. The resulting expressions

are, however, quite complicated. To give a flavor of the results without having to introduce

a lot of new notation, we set ǫ0 = γ0 = ǫ1 = 0. We find it convenient to set q̃1 = 33q1 and

q̃2 = 33q2. We obtain the following results:

〈〈σ3
1〉〉 = 3q̃1

[
3q̃1 + 3q̃2 − 6 + (4 − 5q̃1 − 2q̃2)γ1 + (2q̃1 − 1)γ2

1

]
D−1,

〈〈σ2
1σ2〉〉 = 3

[
(1 + q̃2)

2 − q̃1(1 + q̃2 + 2q̃1) + 3q̃1(1 + q̃)γ1 − (q̃1 + q̃21)γ
2
1

]
D−1,

〈〈σ1σ
2
2〉〉 = 3

[
(1 + q̃1)

2 − q̃2(1 + q̃1 + 2q̃2) − ((1 + q̃1)
2 + q̃2(1 − 2q̃1))γ1

]
D−1,

〈〈σ3
2〉〉 = 3q̃2

[
3q̃1 + 3q̃2 − 6 + (1 + 2q̃1 − 5q̃2 + 4q̃1q̃2 + q̃21)γ1 + (1 + q̃1)

2γ2
1

]
D−1,

(4.58)

where

D = D0 +D1γ
2
1 +D2γ

2
1 +D3γ

3
1 , (4.59)

and
D0 = −1 + (1 + q̃1)

3 + (1 + q̃2)
3 − 3q̃1q̃2(q̃1 + q̃2 − 7),

D1 = −3q̃1
[
1 + 2q̃1 − 7q̃2 + (q̃1 + q̃2)

2
]
,

D2 = 3q̃1
[
(1 + q̃1)

2 − 2q̃2 + q̃1q̃2
]
,

D3 = −q̃1(1 + q̃1)
2.

(4.60)

The correlators satisfy a number of checks: they match the expected classical (2,2)

limit; on the (2,2) locus the correlators have a symmetry that exchanges σ1, σ2 and q1, q2;

they diverge on the correct discriminant locus; and, they satisfy the relation in eq. (4.52).

In this example, the complete dependence on the E-parameters may be determined with

current techniques, since all the E-deformations are linear. While in general the expres-

sions are quite complicated, there are also simple lessons to be learned. In particular, the

discriminant locus is easy to compute, and the relation among amplitudes in eq. (4.52) is

easy to generalize to include all the other E-parameters.

5. B/2 twist and Hypersurfaces

We now turn to the B/2-twist of the M-Model. The natural guess based on the (2,2) locus

results and the simplicity of the A/2-twisted theory is that the B/2-twisted theory should

be independent of the qa and E-parameters. We have not been able to prove this in full

generality, but we have found a large class of models where the result holds.

In what follows, we will first tackle the dependence on Kähler parameters, and we will

derive sufficient conditions for independence. A closely related problem was investigated

in [40], and we will compare that work and our results in section 5.3. Next, we will restrict

to models that satisfy the sufficient conditions and turn to examine E-dependence. We

will argue that the E-deformations should decouple from Kähler-independent B/2-twisted

M-models with a Landau-Ginzburg phase. We will work with an explicit example and find
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that our expectations are borne out: the only dependence on E-parameters is absorbable

into the field redefinitions. These are promising results for a (0,2)-mirror map between

A/2-twisted and B/2-twisted theories, and we hope to prove they hold more generally in

the near future.

5.1 Field content and action

We have already alluded to the B/2-twist in eq. (4.14). Under the twist, the spins of the

fields are shifted as follows:

σa → σa,z [∈ Γ(K)] ,

λa,+ → λa [∈ Γ(O)] ,

λa,+ → λa,z

[
∈ Γ(K)

]
,

σa → σa,z

[
∈ Γ(K)

]
,

λa,− → λa,z [∈ Γ(K)] ,

λa,− → λa

[
∈ Γ(O)

]
,

(5.1)

φi → φi [∈ Γ(O(di))] ,

ψi
+ → ψi

z

[
∈ Γ(K ⊗O(−di))

]
,

ψ
i
+ → ψ

i
[∈ Γ(O(di))] ,

φ
i → φ

i [∈ Γ(O(di))
]
,

γi
− → γi

z [∈ Γ(K ⊗O(di))] ,

γi
− → γi [∈ Γ(O(−di))] .

(5.2)

As in our discussion of the A/2 twist, the holomorphic/anti-holomorphic sections of the

bundle in the brackets correspond to the zero modes of the kinetic operator for the particu-

lar field, and the di are the degrees in a background with fixed instanton number. Unlike the

A/2 twist, the B/2 twist of the Φ0,Γ0 multiplets is identical to the other matter multiplets,

and their twisted constituent fields are obtained by setting i = 0 in the expressions.

After dropping gauge multiplet fields without zero modes (e.g. σz), the twisted action

takes the form6

L = Lkin + Lφ + PP + φ0JiJ iφ
0
+ LYuk, (5.3)

with

LYuk = Qa
0λaψ

0
φ0 +Qa

i λaψ
i
φi + γi

∑

µ∈Si

Eai(φ)λa + γ0Qa
0φ

0λa

−γ0
zP,iψ

i
z − γi

zJiψ
0
z − γi

zφ
0Ji,jψ

j
z − ψ

0
J iγ

i − ψ
i
P ,iγ

0 − ψ
j
φ

0
J i,jγ

i. (5.4)

Note, we have used field re-definitions to fix E0 to its (2,2) value, but we have allowed for

non-linear E-parameters.

The B/2 twist leads to the same QT as in the A/2 twisted theory: namely, Q+ becomes

the scalar nilpotent operator. It is then not too surprising that this half-twisted theory

localizes onto Mn;P —the same field configurations as its A/2 twisted cousin. In addition,

we expect the massive modes to cancel in determinants, leaving a finite dimensional integral

over the zero modes. The similarities end at this point, since the difference in the twisting

leads to a different set of local observables and different non-vanishing correlators.

Taking our cue from the usual results on the (2,2) locus, we would like to compute

correlators of local, gauge-invariant operators Oα = φ0fα(φ), where fα(φ) is polynomial in

the φi. On the (2,2) locus these operators are just the monomials in the superpotential. In

6Details of the B/2 twist are given in appendix A.4.
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the (0,2) theory they remain perfectly well-defined operators in the B/2 theory. The usual

selection rule of the B-model is unmodified by the (0,2) deformations, and we expect

〈O1 · · ·Os〉 = 0 (5.5)

unless s = d− 1.

5.2 Vanishing conditions

To study these correlators in more detail, we work in a geometric phase with Kähler cone

K, and fix an instanton number na ∈ K∨. We find it convenient to adopt the following

splitting of the matter fields: we treat separately the fields in the Φ0,Γ0 multiplets and

split up the n multiplets according to the degrees di:

I = {1, . . . , n} = I− ∪ I0 ∪ I+, (5.6)

where

I− = {i ∈ I|di < 0} ,
I0 = {i ∈ I|di = 0} ,
I+ = {i ∈ I|di > 0} . (5.7)

We will also have use for the subsets I>1 and I<−1 defined in the same fashion.

The first simplification comes from working in a geometric phase, where d0 ≤ 0. Since

the path integral localizes to φ0 = 0, as long as d0 < 0, the correlator 〈O1 · · ·Os〉n must

vanish due to a lack of φ0 zero modes. Thus, without loss of generality, we may restrict

attention to instantons satisfying

d0 =

n∑

i=1

Qa
i na = 0. (5.8)

This suffices to show the B/2 twisted models for Calabi-Yau hypersurfaces in products

of projective spaces localize to constant maps, since for these examples d0 = 0 implies

na = 0. Since the correlators have a holomorphic dependence on the couplings and are not

perturbatively renormalized, we conclude that these B/2-twisted theories are independent

of the Kähler parameters.

There are plenty of examples where d0 = 0 does not imply na = 0. Perhaps the

simplest of these is the B/2 twist of the two-parameter model we discussed in section 4.8.1.

The charges for this M-model are given by
(
−4 0 0 1 1 1 1

0 1 1 0 0 0 −2

)
, (5.9)

and the dual cone for the smooth geometric phase is just the first quadrant. Since d0 = 4n1,

the contributions from instantons with n1 = 0, n2 ≥ 0 are allowed.

Another condition on contributing instantons may be obtained by examining the term

γi
zφ

0Ji,jψ
j
z in the action. Recall that γi

z has no zero modes if i 6∈ I>1 and otherwise has
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di − 1 zero modes, while ψi
z has no zero modes if i 6∈ I<−1 and otherwise has −di − 1

zero modes. Since these zero modes may only be soaked up in pairs by bringing down the

aforementioned term in the action, the instanton contribution will vanish unless
∑

i∈I<−1

(−di − 1) =
∑

i∈I>1

(di − 1). (5.10)

Since d0 = 0, it follows that

|I+| = |I−|. (5.11)

This additional condition is sufficient to show that the B/2-twisted correlators in the two

parameter example only receive contributions from constant maps. In fact, this readily

extends to a number of other two-parameter examples, such as those based on hypersurfaces

in P
4
1,1,2,2,6, P

4
1,2,2,3,4, P

4
1,2,2,2,7, and P

4
1,1,1,6,9.

7

A third condition on the instanton numbers follows by considering the r zero modes

of λa. One of these may be soaked up by bringing down the term γ0Qa
0φ

0λa, but to absorb

the remaining r − 1 requires bringing down powers of γiEaiλa. However, not all of these

can contribute: γi has no zero modes when di > 0, while the Eai have no zero modes when

di < 0; hence, the only contributions to this coupling can come from fields with i ∈ I0. It

follows then that

|I0| ≥ r − 1. (5.12)

In the examples we have examined this has always turned out to be a weaker condition

than the other two, but for larger gauge groups it may begin to play an important role.

Unfortunately, these elegant conditions are not sufficient to rule out non-trivial instan-

ton contributions in all generality. Consider the two-parameter V-model with charges

Q =

(
1 1 0 0 1 1

0 0 1 1 −1 −1

)
. (5.13)

The classical cone Kc has r1 > 0 and r1 + r2 > 0. It is divided into two phases, K1 with

r2 > 0 and K2 with r2 < 0. The first of these has the exceptional set

F = {φ3 = φ4 = 0} ∪ {φ1 = φ2 = φ5 = φ6 = 0}, (5.14)

while the second has

F = {φ1 = φ2 = φ3 = φ4 = 0} ∪ {φ5 = φ6 = 0}. (5.15)

It is not hard to show that VK1 and VK2 are isomorphic smooth toric varieties. We can

construct the M-model in the usual way, by taking φ0 with charges
(−4

0

)
, and using the

hypersurface

P = φ4
1 + φ4

2 + (φ4
3 + φ4

4 + φ2
3φ

2
4)φ

4
5 + (φ4

3 + φ4
4)φ

4
6. (5.16)

It is easy to see that the common solutions to P = dP = 0 are in the exceptional set, so

that P = 0 is a smooth hypersurface in V . That will persist for small deformations of P ,

and obviously for small (0,2) deformations away from Ji = P,i.

7These examples were studied in some detail in the early days of mirror symmetry. See, for example, [18].
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5.3 B/2-twisted theories and Kähler parameters

We have seen that in a number of models simple restrictions on the instanton numbers

rule out contributions to B/2-twisted amplitudes from non-trivial instantons. Thus, in

these theories the correlators are independent of the Kähler parameters. Unfortunately,

as the example in the last section indicates, there are also models where the zero-mode

counting arguments are not sufficient to rule out instanton contributions. What is one to

make of this?

An interesting perspective on this question was found in [40]. In that work the following

puzzle was pointed out: the B topological sector of a (2,2) SUSY NLSM with Calabi-Yau

target-space may be alternatively described by a standard B-twist or a B/2-twist; in the

former case it is trivial to see that the theory localizes onto constant maps, but in the

latter case this is not at all obvious, and it seems that there is a possibility of non-trivial

holomorphic maps contributing to the correlators.

In a number of models simple index theory arguments, analogous to the fermion zero

mode counting discussed in section 5.2, are sufficient to rule out contributions from non-

trivial maps. However, there are also examples where these arguments are not sufficient. It

was argued in [40] that on the (2,2) locus the resolution is as follows: precisely in the case

where the index theory permits a non-trivial contribution, one can show that the resulting

top-form on the instanton moduli space is exact. Thus, the contribution from a non-trivial

instanton reduces to terms coming from the boundary of the instanton moduli space. If one

works with a nice compactification of the instanton moduli space, such as that provided

by the GLSM, the contribution vanishes!

The last assumption of a “nice” compactification of the instanton moduli space is nat-

ural in the case of the GLSM, and although the examples considered in [40] were restricted

to non-compact toric Calabi-Yaus, it is natural to expect that the arguments should be

generalizable to the hypersurface case as well. Furthermore, we believe it should be pos-

sible to generalize those results to (0,2) deformations, but we have not been able to show

this is the case. It would be extremely interesting to show this in full generality for B/2-

twisted M-Models.

Instead of pursuing this general result further, we will now take a more detailed look

at some (0,2) examples where the index theory is sufficient to rule out contributions from

non-trivial instantons. A look at the B/2-twisted action in eq. (5.3) shows that even in

these models there remains an interesting complication: as expected, the theory depends

holomorphically on the parameters in the Ji and P ; however, there also seems to be a

non-trivial dependence on the E-parameters contained in Eai(φ). Is this dependence really

there? If so, how do we compute it? In what follows, we will argue that there do exist B/2-

twisted M-models that are independent of both Kähler parameters and E-deformations.

5.4 Models with a Landau-Ginzburg phase

The Calabi-Yau/Landau-Ginzburg (LG) correspondence was one of the first successes of the

GLSM approach to compactifications [24]. The basic point is simple: since the singular

locus in the GLSM moduli space is complex co-dimension one, the various phases are
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connected by paths in the moduli space consisting of smooth theories. If the phases of an

M-model include a phase where the low energy theory is described by a Landau-Ginzburg

orbifold, then the geometric and LG theories are simply different points in the moduli space.

Strictly speaking, the Landau-Ginzburg orbifold description only applies in the limit

where the Kähler parameters are taken to be arbitrarily deep in the corresponding phase.

For points away from this limit the low-energy theory is a finite deformation of the Landau-

Ginzburg orbifold by twist-field operators. The complementary statement from the point

of view of the geometric phase is that the theory receives world-sheet instanton corrections.

In the twisted GLSM, these effects are both represented by the gauge theory instantons

and may be computed by the same techniques in any phase. For each phase, the sum

converges when the qa are taken to be deep in the corresponding Kähler cone, and the

resulting rational function may be trivially continued around the complex co-dimension

one singularities to other phases [24, 12].

The CY/LG relation becomes much simpler if one considers the B-twist of the theory.

The amplitudes in the B-model are independent of the Kähler parameters, so that algebro-

geometric computations in the geometric phase are precisely reproduced by computations

at the LG orbifold point.

Let us now consider the B/2-twisted theories that have an LG phase and are indepen-

dent of the Kähler parameters.8 The CY/LG correspondence exists both on and off the

(2,2) locus [24], and as long as the Ei are close to the (2,2) values, by taking the F-I terms

deep into the LG phase, the Σa and Φ0 multiplets both acquire arbitrarily large masses

and should decouple from the low energy theory, being just set to their VeVs. Thus, the

low energy theory is described by matter multiplets with (0,2) superpotential ΓiJi(Φ) and

chiral constraint D+Γi = 0. Thus, if the B/2-twisted theory is independent of the Kähler

moduli, we expect it to be independent of small variations in the E-parameters as well;

moreover, it should just reduce to a B/2-twisted LG orbifold.

It is interesting to see how this independence works out in detail, and we will now

turn to two examples of B/2 twisted theories that are independent of Kähler moduli and

study them in the LG phase. First we will work with the M-model for the quintic, and

then turn to the M-model for a hypersurface in P
4
1,1,2,2,2. The first example is merely a

warm-up meant to illustrate how the LG description emerges in the half-twisted model.

The second case, while not much more complicated than the quintic, will also illustrate

how the E-parameters (both linear and non-linear) decouple from the correlators.

5.4.1 The quintic

The M-model for the quintic has charges

Q = (−5, 1, 1, 1, 1, 1), (5.17)

8These include all the models in table 2 except for the bi-cubic in P
2
× P

2, which does not have an LG

phase.
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θ+ Φi Γi Φ0 Γ0 Σa Υa

U(1)R 1 1
5

1
5 0 0 1 1

U(1)L 0 1
5 −4

5 0 −1 −1 0

Table 4: The U(1)R and U(1)L symmetry charges for the quintic in the LG phase.

and consequently the D-term

−5|φ0|2 +

5∑

i=1

|φi|2 = ρ. (5.18)

In addition, there is a matter superpotential as in eq. (4.1), obeying the (0,2) SUSY con-

straint ∑

i

φiJi = 5P, (5.19)

with P a homogeneous degree 5 polynomial in the φi, and Ji being homogeneous of degree

4. The model has no E-deformations, so we have set the E-parameters to their (2,2) values.

When ρ > 0, the low energy theory is a NLSM with target space a hypersurface P = 0

in P
4, with bundle structure encoded in the Ji. For generic parameters, one finds φ0 = 0.

When ρ < 0, the low energy field configurations have |φ0|2 = −ρ/5 and φi = 0, i = 1, . . . , 5.

Thus, φ0 acquires a large VeV and mass, in turn giving a mass to the σ field as well as

the gauge field. The resulting low energy theory is a LG orbifold, since since the vacuum

φ0 6= 0, φi = 0 preserves a Z5 gauge symmetry, whose generator acts on the φi via

φi 7→ e2πi/5φi. (5.20)

To study the correlators in more detail, we must construct the B/2 twisted theory. We

observe that in the LG phase, the U(1)L × U(1)R charges given in table 3 are slightly

awkward, as they assign charges to φ0 — a field with a vacuum expectation value. The

resolution is simple: since the U(1)L × U(1)R symmetries are only defined up to global

gauge transformations, we may use the latter to make a judicious choice for the charges

of the former. A convenient choice is given in table 4. Since the B/2 twist involves the

difference of these charges, the twisting of the various fields remains unmodified from the

geometric phase.

Since this theory is independent of the Kähler moduli, we may restrict to constant

maps, in which case the zero mode action takes a simple form:

L = −5λψ
0
φ0 + λψ

i
φi + γiφiλ− 5γ0φ0λ

+PP + γiJ iψ
0
+ γ0P ,iψ

i
+ |φ0|2JiJ i + γiφ

0
J i,jψ

j
. (5.21)

Here φ0 is fixed to its vacuum value, i.e. |φ0|2 = −ρ/5.
Examining this action we see that, aside from the factors of φ0, the last line is precisely

the zero mode action for a (0,2) Landau-Ginzburg model with (0,2) potential given by ΓiJi.

However, the remaining terms may look puzzling for a moment. The resolution is simple:
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since the correlators must be independent of ρ, we may take ρ → −∞ without affecting

the results. In this limit the terms in the first line should simply soak up the λ, λ, γ0, ψ
0

zero modes, the terms in the second line should not contribute, and the φ0 dependence in

the last line should cancel the φ0 factors in the operator insertions.

To see this explicitly, we perform the following change of variables:

φi = (φ0)−1/4φ′i, λ = (φ0)−1λ
′
,

γi = (φ0)−1/4γ ′i, λ = (φ0)−1λ′.
(5.22)

This leads to a change of the measure:

D[fields] = (φ0)−3/4D[fields′]. (5.23)

Gauge invariance and the consequent quasi-homogeneity properties of the couplings imply

that under this rescaling the action becomes

L = −5λ
′
ψ

0 − 5γ0λ′ + (φ0)−5/4λ
′
ψ

i
φ′i + (φ0)−3/2γiφiλ

+ |φ0φ
0|−5PP + (φ

0
)−1/2γ′iJ iψ

0
+ (φ

0
)−1γ0P ,iψ

i
+ JiJ i + γ′iJ i,jψ

j
, (5.24)

where P, Ji, and Ji,j are all functions of φ′i. The correlators we wish to compute are

〈φ0f1(φ
i)φ0f2(φ

i)φ0f3(φ
i)〉GLSM, (5.25)

where the fα are degree 5 polynomials in the φi. Applying the change of coordinates, we

see that the powers of φ0 from the measure cancel those from the insertions, and thus, up

to terms that vanish as ρ→ −∞,

〈φ0f1(φ
i)φ0f2(φ

i)φ0f3(φ
i)〉GLSM ∝ 〈f1(φ

′)f2(φ
′)f3(φ

′)〉LG-Orb, (5.26)

where the (0, 2) potential is indeed given by Ji(Φ
′), and the orbifold action is given in

eq. (5.20). At this point, the correlator may be evaluated by simple LG techniques [41, 42,

30].

5.4.2 Hypersurface in resolved P
4
1,1,2,2,2

Now we return to the example already studied in section 4.8.1. Here the LG phase is the

cone defined by ρ2 < 0 and 2ρ1 + ρ2 < 0. The classical gauge theory moduli space in this

phase has φi = 0 for i = 1, . . . , 5, and

−8|φ0|2 = 2ρ1 + ρ2, − 2|φ6|2 = ρ2. (5.27)

A finite Z8 subgroup of the gauge group is left unfixed by the VeVs of φ0 and φ6. The

action of its generator on the fields is given by

(φ0, φ1, φ2, φ3, φ4, φ5, φ6) → (φ0, ζ8φ
1, ζ8φ

2, ζ2
8φ

3, ζ2
8φ

4, ζ2
8φ

5, φ6), (5.28)

where ζ8 is an eighth root of unity. This finite gauge group is a subgroup of the R-symmetry

action with charges

Ri =

(
0,

1

8
,
1

8
,
1

4
,
1

4
,
1

4
, 0

)
. (5.29)
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In this two-parameter example it is not immediately clear how to define the LG limit

point. A limit that suits our purposes and lies deep in the Kähler cone is to take

ρ2 ∼ −M2

2ρ1 + ρ2 ∼ −M2 , M → ∞. (5.30)

The only contributions to the B/2-twisted correlators in this theory come from the

zero instanton sector, and the zero mode action is given by

L = −4λ1ψ
0
φ0 + λ

1
ψ

6
φ6 − 2λ2ψ

6
φ6 +Qa

i λaψ
i
φi

−4γ0λ1φ
0 + γ6λ1φ

6 − 2γ6λ2φ
6 + γiEaiλa

+PP + |φ0|2J6J6 + γ0P ,iψ
i
+ γ0P ,6ψ

6

+φ
0
γ6J6,jψ

j
+ φ

0
γiJ i,6ψ

6
+ φ

0
γ6J6,6ψ

6
+ γiJ iψ

0
+ γ6J6ψ

0

+|φ0|2JiJ i + φ
0
γiJ i,jψ

j
. (5.31)

Note that we have allowed for non-linear E-deformations, and we have also used the fact

that parameters in E0 and E6 may be fixed to their (2,2) values by field redefinitions of

σa, φ
0 and φ6.

The next step is to scale out φ0 and φ6 out of the action to the extent possible. To do

this, we start with some simple field redefinitions:

φi = t
Q1

i

1 t
Q2

i

2 sRiφ′i, γi = t
Q1

i

1 t
Q2

i

2 sRiγ′i, (5.32)

and we choose

t1 = (φ0)−1/4, t2 = (φ0)−1/8(φ6)−1/2. (5.33)

Then, gauge invariance and the R-symmetry imply

P (φ, φ6) = t41sP (φ′, 1),

Ji(φ, φ
6) = t41t

−1
2 s7/8Ji(φ

′, 1) for i = 1, 2,

Ji(φ, φ
6) = t31s

3/4Ji(φ
′, 1) for i = 3, 4, 5,

J6(φ, φ
6) = t31t

2
2sJ6(φ

′, 1). (5.34)

Next, we choose s to scale the Ji uniformly for all i. This is achieved by setting s = t−8
1 t82.

In this case, the field redefinition simplifies to

φi = (φ6)−1φ′i, γi = (φ
6
)−1γ′i, (5.35)

and we have

P (φ, φ6) = (φ6)−4P (φ′, 1),

Ji(φ, φ
6) = (φ6)−3Ji(φ

′, 1),

J6(φ, φ
6) = (φ6)−5J6(φ

′, 1). (5.36)

Recalling that φ6 scales as M , it is easy to see from the action that the terms involv-

ing Eai are suppressed by M−3 relative to the other Yukawa couplings involving the λa
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fermions. Applying this field redefinition to a three-point function of Oα = φ0fα(φ, φ6), we

find that as M → ∞,

〈O1O2O3〉 ∝ (φ0(φ6)−3)5
∫
d2φ′idγ′idψ

i
f1(φ

′, 1)f2(φ
′, 1)f3(φ

′, 1)e−L′
+O(M−1), (5.37)

with

L′ = |φ0(φ6)−3|2Ji(φ
′, 1)J i(φ

′
, 1) + φ

0
(φ

6
)−3γ′iJ i,jψ

j
. (5.38)

Aside from the factors of φ0(φ6)−3, we recognize the zero mode integral of a (0,2) Landau-

Ginzburg theory with potential given by the Ji(φ
′, 1). Solving this by the usual saddle-

point techniques, we find that the bosonic and fermionic determinants produce just the

right factor of (φ0(φ6)−3)−5 to cancel the contribution from the λ, λ integration, change in

the measure, and the insertions. Thus, we conclude that

〈O1O2O3〉GLSM ∝ 〈f1f2f3〉LG-Orb. (5.39)

As expected, these B/2-twisted amplitudes are independent of the E-deformations.

6. Conclusions

We have obtained a number of results in half-twisted (0,2) linear sigma models for Calabi-

Yau hypersurfaces in toric varieties. First, we obtained a count of linear model parameters

and described field redefinitions that render some of these redundant. Second, we showed

that a quantum restriction formula relates the genus zero A/2-twisted amplitudes to the

(0,2) quantum cohomology of the ambient toric variety. Finally, we derived a set of sufficient

conditions for the B/2-twisted theories to be independent of the Kähler parameters, and

we argued that for models that satisfy the conditions and have a Landau-Ginzburg phase,

the B/2-twisted correlators are also independent of the bundle deformations associated to

the ambient toric variety.

There are two important loose ends that require attention. First, the solution of the

A/2-twisted model must be extended to non-linear E-deformations. Second, it is important

to look for a general proof that B/2-twisted M-models are independent of Kähler parameters

and E-deformations. These results will be useful for a general formulation of (0,2) mirror

symmetry in the types of theories we have considered.

Even without these general results in hand, it seems worthwhile to examine the theories

we have already identified as having the requisite properties in the B/2 sector. A natural

interpretation of our results is that the A/2-twisted M-model depends on the N(V ) “toric”

deformations associated to the ambient variety, while the B/2-twisted theory depends on

the N(M) − N(V ) “polynomial” deformations. Since the models we examined all have

well-known (2,2) mirrors, it is natural to ask whether the (0,2) deformations of the mirror

theories respect the splitting we advocate.

Supposing that those matters are settled in favor of (0,2) mirror symmetry for linear

sigma models, to make contact with physical observables, we will still have match the linear

model deformations to moduli of the SCFT, and determine the Kähler potential. These are
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not easy tasks, but our success gives us hope that perhaps even in questions regarding the

Kähler potential progress may be made by considering additional structure beyond (0,2)

supersymmetry in these vacua. Perhaps these additional structures (such as the U(1)L
current algebra) may enable us to extend some of the results of [43] off the (2,2) locus.

Finally, one should attempt to extend our techniques to theories without a (2,2) locus.

The techniques we have developed should apply to a number of phenomenologically inter-

esting models simply at the price of additional book-keeping. How to proceed to search for

mirror pairs, non-renormalization theorems and make contact with the SCFT coordinates

is much less clear, but the exactly soluble (0,2) models studied in [7] may provide some

clues. Still, it seems that applying our techniques will be a valuable step in unraveling the

quantum effects in these theories.
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A. Linear model conventions

In this section we describe some of the details in analyzing the half-twisted (0, 2)-GLSM

models in this paper. We first describe the (0, 2)-GLSM field content, supersymmetry

transformations and action. We then describe the A/2- and B/2-twisted theories. Unless

otherwise specified, we follow the conventions in [24]. We parameterize (0, 2) superspace

by coordinates x±, θ+, θ
+

and work in Wess-Zumino gauge. Denoting the gauge-covariant

derivative by ∇, we write the superspace derivatives as

D+ = ∂θ+ − iθ
+∇+, D+ = −∂

θ
+ + iθ+∇+. (A.1)

The field content of the (0,2) GLSMs considered in this paper splits into gauge field

multiplets, chiral matter multiplets, and fermioninc matter multiplets. The superspace

expansions of these in Wess-Zumino gauge is given by

Va,− = va,− − 2iθ+λa,− − 2iθ
+
λa,− + 2θ+θ

+
Da,

Υa = iD+Va,− + θ+∂−va,+

= −2(λa,− − iθ+(Da − ifa,01) − iθ+θ
+
∂+λ−,a),

Φi = φi +
√

2θ+ψi
+ − iθ+θ

+∇+φ
i,

Σa = σa +
√

2θ+λa,+ − iθ+θ
+
∂+σa,

Γi = γi
− −

√
2θ+Gi − iθ+θ

+∇+γ
i
− −

√
2θ

+
Ei(Φ,Σ)

= γi
− −

√
2θ+Gi −

√
2θ

+
Ei(φ, σ) − iθ+θ

+
[
∇+γ

i
− + 2iEi

,jψ
j
+ + 2iEi

,aλa,+

]
. (A.2)
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The supercharges are

Q+ = ∂θ+ + iθ
+∇+, Q+ = −∂

θ
+ − iθ+∇+. (A.3)

A.1 (0, 2)-GLSM

In order to study twisting and localization, it will behoove us to determine the supersym-

metry transformations of the component fields. These are generated by

δǫ = ǫ+Q+ − ǫ+Q+, (A.4)

and in Wess-Zumino gauge the action is as follows:

1. Vector multiplets:

δv− = −2i(ǫ+λ− + ǫ+λ−), δv+ = 0,

δλ− = −iǫ+(D − if01), δλ− = +iǫ+(D + if01),

δf01 = iǫ+∂+λ− + iǫ+∂+λ−, δD = ǫ+∂+λ− − ǫ+∂+λ−.

(A.5)

2. Bosonic chiral multiplets (including Σ):

δφ = +
√

2ǫ+ψ+, δψ+ = −i
√

2ǫ+∇+φ,

δφ = −
√

2ǫ+ψ+, δψ+ = +i
√

2ǫ+∇+φ.
(A.6)

3. Fermionic matter multiplets:

δγ− = −
√

2ǫ+G−
√

2ǫ+E, δG = i
√

2ǫ+
(
∇+γ− + i

∂E

∂φ
ψ+ + i

∂E

∂σ
λ+

)
,

δγ− = −
√

2ǫ+G−
√

2ǫ+E, δG = i
√

2ǫ+
(
∇+γ− − i

∂E

∂φ
ψ+ − i

∂E

∂σ
λ+

)
.

(A.7)

A.1.1 The (0, 2)-GLSM action

The Lagrangian is of the form

L = LΥ,KE + LΣ,KE + LΦ,KE + LJ + LFI, (A.8)

where the first four terms are the kinetic terms for the gauge multiplet, Σ-multiplet, the

Φ-multiplet and the Γ-multiplet respectively. The last two terms are the matter potential

and the Fayet-Ilioupoulos and theta-angle term. Working first in Minkowski space, with

signature (−,+) and ∂± = ∂0 ± ∂1, the terms are:

1. Gauge kinetic term:

LΥ,KE =
1

8e20

∫
dθ+dθ

+
ΥaΥa =

1

2e20

[
2λa,−i∂+λa,− +D2

a + f2
a,01

]
.

2. Σ kinetic term:

LΣ,KE =
i

2e20

∫
dθ+dθ

+
ΣA∂−ΣA =

1

e20
[∂+σA∂−σA + λA,+i∂−λA,+]. (A.9)
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3. Φ kinetic term:

LΦ,KE =
i

2

∫
dθ+dθ

+
Φ

i
(∂− + iQa

i Va,−)Φi,

=
1

2
∇+φ

i∇−φ
i +

1

2
∇−φ

i∇+φ
i + ψ

i
+i∇−ψ

i
+,

+Qa
iDaφ

i
φi − i

√
2Qa

i λa,−ψ
i
+φ

i − i
√

2Qa
i λa,−ψ

i
+φ

i
. (A.10)

4. Γ kinetic term:

LΓ, KE =
1

2

∫
dθ+dθ

+
Γ

I
ΓI = γI

−i∇+γ
I
− +GIG

I − EIE
I
,

− γI
−(EI

,jψ
j
+ + EI

,AλA,+) − (E
I
,jψ

j
+ + E

I
,AλA,+)γI

−. (A.11)

5. The F-I term:

LF-I =
1

4

∫
dθ+ Υa(ir

a + θa/2π)|
θ
+

=0
+ h.c. = −Daρ

a +
θa

2π
fa,01. (A.12)

6. The matter potential:

LJ = − 1√
2

∫
dθ+ ΓIJI(Φ)|

θ
+

=0
+ h.c.

= GIJI(φ) +G
IJ I(φ) + γI

−JI,jψ
j
+ + ψ

j
+J I,jγ

I
−

= G0P +G
0
P +Giφ0Ji +G

i
φ

0
J i

+ γ0
−P,iψ

i
+ + γi

−Jiψ
0
+ + γi

−φ
0Ji,jψ

j
+

+ ψ
i
+P ,iγ

0
− + ψ

0
+J iγ

i
− + ψ

j
+J i,jφ

0
γi
−. (A.13)

In the last few lines we have assumed that there are as many ΓI as there are Φi, and

we used the form of J relevant to the hypersurface example:

J0 = P, Ji = φ0Ji. (A.14)

The first five terms are individually supersymmetric. The matter potential is supersym-

metric provided the constraint EIJI = 0 is satisfied.

For our purposes it is more useful to have the action in Euclidean space. This is easily

achieved by substituting

∂+ → 2i∂z, ∂− → 2i∂z , f01 → −if12. (A.15)

into the Minkowski expressions and flipping the sign of the action.

A.2 The half-twist

Motivated by the GLSMs with (2, 2) supersymmetry, we demand that our model has the

symmetries given in table 5. It is easy to verify explicitly that the classical action respects

these symmetries, provided that the JI and EI can be assigned the requisite charges.
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θ+ Φi ΓI JI EI Σa ΥA

U(1)R 1 qi qI 1 − qI 1 + qI 1 1

U(1)L 0 qi qI − 1 1 − qI qI − 1 −1 0

Table 5: The U(1)R and U(1)L symmetry charges.

θ+ Φi ΓI JI EI Σa ΥA

U(1)A
1
2 qi qI − 1

2 1 − qI qI 0 1
2

U(1)B
1
2 0 1

2 0 1 1 1
2

Table 6: The U(1)A and U(1)B charges relevant for the half-twists

These chiral symmetries are, in general, anomalous in the presence of non-trivial gauge

fields, with anomaly functions proportional to (
∑

left qQ
a −∑right qQ

a)na, where q is the

global symmetry charge, Qa the gauge charge, and na the instanton number. In the case

at hand we have

U(1)R :
∑

I

qIQ
a
I −

∑

i

(qi − 1)Qa
i ,

U(1)L :
∑

I

(qI − 1)Qa
I −

∑

i

qiQ
a
i . (A.16)

On the (2,2) locus the familiar result holds: the vectorial combination is always non-

anomalous, while the axial combination has an anomaly proportional to
∑

iQ
a
i .

To work out the twist, we need charges for the generators

JA =
1

2
(JR + JL), JB =

1

2
(JR − JL). (A.17)

The two symmetries are important in each twist: one is used for the twist, and the other

becomes the ghost number of the twisted theory. We list both symmetries in table 6.

To twist, we redefine the Lorentz charges as in eq. (4.14). Note that our sign convention

in (4.14) differs to that in [24, 16]. Both A/2- and B/2-twists result in Q+ becoming a

world-sheet scalar. Thus, in the half-twisted models, the supercharge Q+ becomes the

BRST-charge QT . We will restrict attention to the case I = i and A = a—necessary

conditions for the theory to have a (2,2) locus. In these theories we may take the charges

to be qi = 0 for i > 0 and q0 = 1. These charges are a bit ambiguous in the presence

of the gauge symmetry. Our choice makes the symmetries transparent in the geometric

phase of a CY hypersurface GLSM, where φ0 = 0 and the φi are constrained to lie on the

hypersurface. In other phases a different assignment is more suitable.

A.3 The A/2-twist

It is useful to relabel the twisted fields in accordance with the modified Lorentz charges.

This is carried out in tables 7 , 8. The functions E and J become:

E0
z = i

√
2Baσaφ

0
z, J0 = P (φ1, . . . , φn),

Ei = i
√

2Eai(φ)σa, Ji,z = φ0
zJi(φ

1, . . . , φn). (A.18)
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Old Name σa σa λa,+ λa,+ λa,− λa,−

Lorentz Charge 0 0 1 0 −1 0

New Name σa σa λa,z λa λa,z χa

Table 7: The A/2-twisted Lorentz charges and labels for gauge field multiplets

Old Name φ0 φ
0

ψ0
+ ψ

0
+ γ0

− γ0
− G0 G

0

Lorentz Charge −1 +1 0 +1 −1 0 0 0

New Name φ0
z φ

0
z ψ0 ψ

0
z γ0

z γ0 G0 G
0

Old Name φi φ
i

ψi
+ ψ

i
+ γi

− γi
− Gi G

i

Lorentz Charge 0 0 1 0 0 −1 1 −1

New Name φi φ
i

ψi
z ψ

i
γi γi

z Gi
z G

i
z

Table 8: The A/2-twisted Lorentz charges and labels for chiral matter multiplets

Note that on the (2, 2)-locus we have:

E0
z = i

√
2Qa

0σaφ
0
z, Ei = i

√
2Qa

i σaφ
i, Ji =

∂P

∂φi
. (A.19)

A.3.1 QT -transformations

We give the action of BRST charge QT = Q+ in Euclidean space in terms of the new fields.

1. Gauge field multiplet:

(va,z, va,z) → (λa,z, 0), σa → 0,

λa,z → 0, σa →
√

2λa,

χa → −i(Da + fa), λa,z → −2
√

2∂zσa,

(Da, fa) → −2i∂zλa,z(1,−1), λa → 0.

(A.20)

We have written fa,12 as fa.

2. Bosonic chiral multiplets:

φ0
z → 0, φi → 0,

φ
0
z →

√
2 ψ

0
z, φ

i →
√

2 ψ
i
,

ψ0 → −2
√

2∇zφ
0
z, ψi

z → −2
√

2∇zφ
i,

ψ
0
z → 0, ψ

i → 0.

(A.21)

3. Fermionic matter multiplets:

γ0
z →

√
2E0

z , γi →
√

2Ei,

γ0 →
√

2 G
0
, γi

z →
√

2 G
i
z,

G0 →
√

2(2∇zγ
0
z + ∂E0

z

∂φ0
z
ψ0 + ∂E0

z

∂σa
λa,z), Gi

z →
√

2(2∇zγ
i + ∂Ei

∂φj ψ
j
z + ∂Ei

∂σa
λa,z),

G
0 → 0, G

i
z → 0.

(A.22)
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A.3.2 The A/2-twisted action

We end the section by giving the A/2-twisted action using eq. (A.8) and tables 7, 8. For

convenience, we separate out the QT -exact terms.

1. Gauge kinetic term:

LΥ,KE =
1

e20

[
2λa,z∂zχa +

1

2
f2

a − 1

2
D2

a

]
. (A.23)

This is QT exact with L = {QT , V } and

V =
i

2e20
χ̄a(fa −Da). (A.24)

2. Σ kinetic term:

LΣ,KE =
1

e20

[
4∂zσa∂zσa + 2λa,z∂zλa

]
. (A.25)

This is QT exact with L = {QT , V } and

V = −
√

2

e20
λa,z̄∂zσ̄a (A.26)

3. Φ0 kinetic term:

LΦ0, KE = 2∇zφ
0
z∇zφ

0
z + 2∇zφ

0
z∇zφ

0
z + 2ψ

0
z∇zψ

0

−Qa
0Daφ

0
zφ

0
z + i

√
2Qa

0χaψ
0
zφ

0
z + i

√
2Qa

0λa,zψ
0φ

0
z. (A.27)

This is QT exact with L = {QT , V } and

V = −
√

2ψ0∇zφ̄
0
z̄ − iQa

0χ̄aφ̄
0
z̄φ

0
z. (A.28)

4. Φi kinetic term:

LΦi,KE = 2∇zφ
i∇zφ

i + 2∇zφ
i∇zφ

i + 2ψi
z∇zψ

i

−Qa
iDaφ

i
φi + i

√
2Qa

i χaψ
i
φi + i

√
2Qa

i λa,zψ
i
zφ

i
. (A.29)

This is QT exact with L = {QT , V } and

V = −
√

2ψi
z̄∇zφ̄

i − iQa
i χ̄aφ̄

iφi. (A.30)

5. Γ0 kinetic term:

LΓ0,KE = 2γ0
z∇zγ

0 −G0G
0
+ E0

zE
0
z

+ γ0

(
∂E0

z

∂φ0
z

ψ0 +
∂E0

z

∂σa
λa,z

)
− γ0

z

(
∂E

0
z

∂φ
0
z

ψ
0
z +

∂E
0
z

∂σa
λa

)
. (A.31)

This is QT exact with L = {QT , V } and

V =
1√
2

(
−γ̄0G0 + γ0

z Ē
0
z̄

)
. (A.32)
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Old Name σa σa λa,+ λa,+ λa,− λa,−

Lorentz Charge −1 1 0 1 −1 0

New Name σa,z σa,z λa λa,z λa,z λa

Table 9: The B/2-twisted Lorentz charges and labels for gauge field multiplets

6. Γi kinetic term:

LΓi,KE = 2γi
z∇zγ

i + EiE
i −Gi

zG
i
z

+ γi
z

(
∂Ei

∂φj
ψj

z +
∂Ei

∂σa
λa,z

)
− γi

(
∂E

i

∂φ
j
ψ

j
+
∂E

i

∂σa
λa

)
. (A.33)

This is QT exact with L = {QT , V } and

V =
1√
2

(
−γ̄i

zG
i
z̄ + γiĒi

)
. (A.34)

7. F-I term:

L = Daρ
a + i

θa

2π
fa. (A.35)

This can be written as the sum of a QT -closed and QT -exact term:

L =
1

2
(Da − fa)

(
ρa − iθa

2π

)
+ {QT , V } , (A.36)

with

V =
i

2
χ̄a

(
ρa +

iθa

2π

)
. (A.37)

8. Matter potential:

LJ = −G0P −G
0
P −Gi

zφ
0
zJi −G

i
zφ

0
zJ i

− γ0
zP,iψ

i
z − ψ

i
P ,iγ

0 − γiJiψ
0 − ψ

0
zJ iγ

i
z

− γiJi,jφ
0
zψ

j
z − ψ

j
J i,jφ

0
zγ

i
z, (A.38)

where we used our explicit form of the Ji.

All anti-holomorphic pieces are QT -exact, while the remainder are QT -closed:

L = −G0P −Gi
z̄φ

0
zJi − γ0

zP,iψ
i
z̄ − γiJiψ

0 − γiJi,jφ
0
zψ

j
z̄ + {QT , V }, (A.39)

where

V =
−1√

2

(
P̄ γ̄0 + γ̄i

zJ iφ̄
0
z̄

)
. (A.40)
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Old Name φi φ
i

ψi
+ ψ

i
+ γi

− γi
− Gi G

i

Lorentz Charge 0 0 1 0 −1 0 0 0

New Name φi φ
i

ψi
z ψ

i
γi

z γi Gi G
i

Table 10: The B/2-twisted Lorentz charges and labels for chiral matter multiplets. As opposed

to the A/2-twist here i = 0, . . . , n.

A.4 The B/2-twist

We proceed analogously for the B/2-twisted model. The B/2-twisted field content is given

in tables 9, 10. The E and J get re-written as

E0
z = i

√
2Baσa,zφ

0, J0 = P (φ1, . . . , φn),

Ei
z = i

√
2Eai(φ)σa,z, Ji = φ0Ji(φ

1, . . . , φn). (A.41)

The (2, 2) locus amounts to setting

E0
z = i

√
2Qa

0σa,zφ
0, Ei

z = i
√

2Qa
i σa,zφ

i, Ji =
∂P

∂φi
. (A.42)

A.4.1 QT -transformations

The action of BRST charge QT = Q+ is again easy to write down.

1. Gauge field multiplets:

σa,z → 0, (va,z, va,z) → (λa,z, 0),

σa,z →
√

2 λa,z, (Da, fa) → −2i∂zλa,z(1,−1)

λa → −2
√

2∂zσa,z, λa,z → 0

λa,z → 0, λa → −i(Da + fa).

(A.43)

2. Matter multiplets:

φi → 0, γi
z →

√
2 Ei

z,

φ
i →

√
2 ψ

i
, γi →

√
2G

i

ψi
z → −2

√
2∇zφ

i, Gi →
√

2

(
2∇zγ

i
z +

∂Ei
z

∂φj
ψi

z +
∂Ei

z

∂σa,z
λa

)
,

ψ
i → 0, G

i → 0.

(A.44)

A.4.2 The B/2-twisted action

We give the twisted action as well as the QT -closed and QT -exact pieces.

1. Gauge kinetic term

L =
1

e20

[
2λa,z∂z λ̄a +

1

2
f2

a − 1

2
D2

a

]
. (A.45)

This is QT exact with L = {QT , V } and

V =
i

2e20
λ̄a(fa −Da). (A.46)
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2. Σ kinetic term

L =
1

e20

[
2∂zσa,z∂zσa,z + 2∂zσa,z∂zσa,z + 2λa,z∂zλa

]
. (A.47)

This is QT exact with L = {QT , V } and

V = −
√

2

e20
λa∂zσ̄a z̄. (A.48)

3. Φi kinetic term

L = 2∇zφ
i∇zφ

i + 2∇zφ
i∇zφ

i + 2ψi
z∇zψ

i

−Qa
iDaφ

i
φi + i

√
2Qa

i λaψ
i
φi + i

√
2Qa

i λa,zψ
i
zφ

i
. (A.49)

This is QT exact with L = {QT , V } and

V = −
√

2ψi
z̄∇zφ̄

i − iQa
i λ̄aφ

iφ̄i. (A.50)

4. Γi kinetic term

L = 2γi
z∇zγ

i + Ei
zE

i
z −GiG

i

+ γi

(
∂Ei

z

∂φj
ψj

z +
∂Ei

z

∂σa,z
λa

)
− γi

z

(
∂E

i
z

∂φ
j ψ

j
+

∂E
i
z

∂σa,z
λa,z

)
. (A.51)

This is QT exact with L = {QT , V } and

V =
1√
2

(
−γ̄iGi + γi

zĒ
i
z̄

)
. (A.52)

5. F-I term

L = Daρ
a + i

θa

2π
fa. (A.53)

This can be written as the sum of a QT -closed and QT -exact term:

L =
1

2
(Da − fa)

(
ρa − iθa

2π

)
+ {QT , V } , (A.54)

with

V =
i

2
λ̄a

(
ρa +

iθa

2π

)
. (A.55)

6. Matter potential

L = −G0P −G
0
P −Giφ0Ji −G

i
φ

0
J i

−γ0
zP,iψ

i
z − γi

zJiψ
0
z − γi

zφ
0Ji,jψ

j
z

−ψ0
J iγ

i − ψ
i
P ,iγ

0 − ψ
j
φ

0
J i,jγ

i. (A.56)

Again, the explicit form of the J was used. All anti-holomorphic pieces are QT -exact,

while the remainder are QT -closed:

L = −G0P −Giφ0Ji − γ0
zP,iψ

i
z − γi

zJiψ
0
z − γi

zφ
0Ji,jψ

j
z + {QT , V }, (A.57)

where

V =
−1√

2

(
P̄ γ̄0 + γ̄iJ̄iφ̄

0
)
. (A.58)
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