
IOP PUBLISHING CLASSICAL AND QUANTUM GRAVITY

Class. Quantum Grav. 26 (2009) 035024 (13pp) doi:10.1088/0264-9381/26/3/035024

Propagation of light in area metric backgrounds

Raffaele Punzi1, Frederic P Schuller2 and Mattias N R Wohlfarth1

1 Zentrum für Mathematische Physik und II. Institut für Theoretische Physik,
Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
2 Max Planck Institut für Gravitationsphysik, Albert Einstein Institut, Am Mühlenberg 1,
14467 Potsdam, Germany

E-mail: raffaele.punzi@desy.de, fps@aei.mpg.de and mattias.wohlfarth@desy.de

Received 9 May 2008, in final form 2 December 2008
Published 19 January 2009
Online at stacks.iop.org/CQG/26/035024

Abstract

The propagation of light in area metric spacetimes, which naturally emerge
as refined backgrounds in quantum electrodynamics and quantum gravity, is
studied from first principles. In the geometric-optical limit, light rays are
found to follow geodesics in a Finslerian geometry, with the Finsler norm being
determined by the area metric tensor. Based on this result, and an understanding
of the nonlinear relation between ray vectors and wave covectors in such refined
backgrounds, we study light deflection in spherically symmetric situations and
obtain experimental bounds on the non-metricity of spacetime in the solar
system.

PACS numbers: 02.40.Hw, 04.50.Kd, 04.60.Bc

1. Introduction

Refinements of metric geometry naturally emerge as effective backgrounds from quantum
electrodynamics [1], quantum gravity [2–5], string theory [6], spin foam models [7], classical
electrodynamics [8–16] and scalar tensor theories of gravity [17]. A very natural and
surprisingly fruitful way to view all of these generalized geometries (or at least salient aspects
in some cases) is in terms of area metric manifolds [18–20], where an area metric is a smooth
covariant tensor field G of fourth rank that assigns a measure to tangent areas in a way similar
to how a metric assigns a measure to tangent vectors. The precise definition is given in
section 2.1.

Due to this emergence of area metric geometry as an effective spacetime structure in a
variety of contexts, it seems worthwhile to study area metrics as a fundamental structure in
their own right, abstracting the discussion from the different technicalities of the fields from
which the structure arises. In this paper, we derive the equation governing light paths in such
refined backgrounds. This question of light propagation is clearly of the utmost importance
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for the interpretation of observational data in the context of any theory in which an area
metric background emerges, since most of what we infer about the large-scale structure of
spacetime, we infer from lensing or redshift data of the light that reaches us. We find that
the geometric-optical limit of Maxwell electrodynamics on area metric backgrounds admits
an effective description of the propagation of light in terms of geodesics in a Finsler geometry
[21]. The relevant Finsler norm is induced from the area metric, and is closely related to the
local null structure of the manifold in terms of the area metric’s Fresnel tensor. While this
local null structure is well known [10], the identification of its role in the differential equation
governing light paths requires the proof of some further non-trivial results, and is the key
technical achievement of this paper.

The rigorous derivation of our new kinematical results from first principles is the central
theme of section 2. We apply these results in section 3 to the study of light deflection in
spherically symmetric area metric spacetimes, and conclude in section 4.

In the light of recent studies of Finsler geometries in connection with the quantization
of deformed general relativity [22, 23], quantum generalizations of the Poincaré algebra [24]
and as phenomenological models [25], it is certainly interesting to note that an area metric
structure of spacetime also leads a particular Finsler geometry when it comes to the description
of the effective motion of light.

2. Propagation of light

The propagation of light rays can be studied from first principles as the geometric-optical
limit of Maxwell theory. In the familiar metric geometry, the metric plays a three-fold role
by providing (i) the background for matter field dynamics, (ii) the local light cone structure
and (iii) the length measure whose stationarity yields the geodesic equation. In the area
metric spacetime, however, we will see that these three conceptually entirely different roles
are indeed played by different structures, namely (i) the area metric itself, (ii) the totally
symmetric fourth-rank Fresnel tensor associated with the area metric and (iii) the Finsler norm
associated with the Fresnel tensor. For area metrics that are induced from a metric, these three
structures coincide, in accordance with the fact that area metric geometry is just a refinement
of metric geometry. In this section, we develop the above insights in detail, starting from what
is known about the local null structure of the area metric spacetimes at a given point, over a
careful analysis of the duality between light ray vectors and wave covectors, the differential
equation describing light propagation and finally the very important special case of bimetric
backgrounds. The propagation equation for light rays is the central result of this section, since
it will enable us to study light deflection in area metric spacetimes in section 3.

2.1. Area metrics and local null structure

A number of facts about the local null structure of area metric manifolds are known [8, 20];
originally they have been derived in the context of pre-metric electrodynamics [9, 12]. We
briefly collect and elaborate on these results, before proving a powerful new theorem on the
duality of ray vectors and wave covectors in section 2.2.

Recall that an area metric manifold (M,G) is a smooth differential manifold M equipped
with a smooth covariant rank-four tensor field G with the symmetries Gabcd = Gcdab and
Gabcd = −Gbacd . Moreover, an area metric is required to be invertible in the sense that there
is a smooth inverse Gabcd so that GabpqGpqcd = 2

(
δa
c δ

b
d − δa

d δ
b
c

)
. Geometric information
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about null vectors and null covectors at a given point of an area metric manifold is obtained
by studying the geometrical-optical limit of the electrodynamical field equations [18]

dF = 0, dH = 0, (1)

where the constitutive relation between the field strength F and the induction H
(which on metric manifolds is simply Hodge duality) is now given by Hab =
− 1

4 |Det G|1/6εabmnG
mnpqFpq with ε being the totally antisymmetric tensor density determined

by ε0123 = +1. A wave covector field k is a section of T ∗M satisfying the following two
algebraic conditions:

k ∧ F = 0, k ∧ H = 0. (2)

These can be solved as follows: first we set F = k ∧ q for some polarization covector q �= 0,
then we use the constitutive relation to find Gijmnkikmqn = 0. This equation in particular
implies G−1(F, F ) = 0, which makes F a simple null two-form. Because of the symmetries
of G the polarization covector is determined up to a gauge transformation q → q + λk and up
to a rescaling q → λq. The covariant condition where non-trivial solutions q are admitted is
the Fresnel equation [11]

Gijklkikj kkkl = 0, (3)

where the Fresnel tensor G only depends on the cyclic part Cabcd = Gabcd − G[abcd] of the
inverse area metric [18]. Generically, equation (3) represents a quartic surface. If the area
metric spacetime takes the almost metric form Gabcd = gacgbd − gadgbd + φ|det g|−1/2εabcd

for some axial scalar φ and ε0123 = −1, the Fresnel equation factorizes as (gabkakb)
2 = 0.

For φ = 0 this includes electrodynamics on a metric spacetime, and so gives the usual null
cone structure for wave covectors.

Dual to the wave co-vector fields k are the ray vectors X, defined through the algebraic
conditions

F(X, ·) = 0, H(X, ·) = 0, (4)

where F and H are the actual solution of (2). Ray vectors provide the direction along which
the energy–momentum of the electromagnetic field flows from the point of view of a local
observer; in the particular case of a metric background, the spatial part of a ray vector can
be shown to coincide with the Poynting vector. On an area metric background, the physical
energy–momentum vector is constructed from the effective energy–momentum tensor defined
in [20], and this physical definition can be shown to coincide with the algebraic one above. The
condition for the existence of a solution of the system (4) also reduces to a Fresnel-like equation
for the ray vectors X. Indeed, writing F�mn = GmnpqFpq/2, we may simply set F� = X∧Q for
some vector Q �= 0 and it remains to solve GijmnX

iXmQn = 0. An immediate consequence
of this equation is that G(F �, F �) = 0; in the language of area geometry this shows that F� is
a null area. Non-trivial solutions for Q exist if the dual Fresnel equation

GijklX
iXjXkXl = 0 (5)

is satisfied for the light ray vectors X, where the dual Fresnel tensor depends only on the cyclic
part GC

abcd = Gabcd − G[abcd] of the area metric G and is defined as

Gabcd = − 1
24 |Det GC |−1/3εijklεmnpqGC

ijm(aG
C
b|kn|cG

C
d)lpq . (6)

Thus, the dual Fresnel tensor defines the null structure for vectors on a generic area metric
background. In case the constitutive relation arises from an almost metric area metric, the
dual Fresnel equation factorizes as (gabX

aXb)2 = 0, providing again the standard null cones,
as they would appear on a metric background. None of the preceding results on the local
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null structure of area metric manifolds is fundamentally new. In the context of pre-metric
electrodynamics, this local structure has been studied in more detail in [10]. We now come to
new results.

First, we present a very useful new result on the conformal equivalence of Fresnel tensors
whose local null structures coincide. This generalizes the well-known statement on the
conformal equivalence of two metrics that define the same null cones.

Proposition. Two Fresnel tensors G1 and G2 for which the null condition G1(k, k, k, k) = 0 is
equivalent to G2(k, k, k, k) = 0 are conformally related, i.e., G2 = αG1 for some function α.
An identical statement holds for dual Fresnel tensors.

Proof. First assume that the ‘diagonal’ values G1(λ, λ, λ, λ) of G1 vanish for all covectors
λ, then the polarization formula, which reconstructs the general symmetric tensor G1 from its
diagonal values, see e.g. [26], tells us that G1 vanishes. Hence also G2 vanishes, and both
Fresnel tensors are conformally related. Now assume that a covector λ with G1(λ, λ, λ, λ) �= 0
exists, then by hypothesis also G2(λ, λ, λ, λ) �= 0. Choose a coframe {θ â} with θ 0̂ = λ. Then
the homogeneous polynomials G1,2(k, k, k, k) are of degree 4 in the variable k0̂. Over the
complex numbers we can decompose them into linear factors so that

G1,2(k, k, k, k) = α1,2

4∏
i=1

(
k0̂ − βi

1,2

)
, (7)

where α1,2 �= 0 are functions on the manifold M, and βi
1,2 also depend on k1̂, k2̂ and k3̂. Since

all Fresnel null covectors of G1 and G2 coincide we must have βi
1 = βi

2. Therefore the diagonal
values of G2 and G1 are proportional to α1/α2. Using again the polarization formula, it follows
that G1 is conformally related to G2. �

We will employ this result in our study of bimetric backgrounds in section 2.4. In the
following section, we will derive the new important theorem that the Fresnel tensor and the dual
Fresnel tensor may be used to map wave covectors to ray vectors and vice versa, independent
of the polarization.

2.2. Duality map

For Abelian gauge theory, the wave covectors k and the light ray vectors X are defined by
the algebraic conditions (2) and (4), respectively. In this section, we will show under which
conditions the area metric background provides a one-to-one map between the directions of the
light ray vectors and the corresponding wave covectors. It will turn out that these are indeed
the Fresnel tensor and the dual Fresnel tensor, which under generic circumstances provide this
relation, independent of the polarization of the gauge field; see theorem 1.

To see this, consider a wave surface with a normal covector k that satisfies the Fresnel
equation (3) everywhere. Since this equation was obtained as a solvability condition, this
ensures the existence of the fields F and H solving (2) for the given k. However, there could
be several solutions for gauge fields depending on different polarization covectors q. For
convenience, we define a frame {eâ} and the dual coframe {θ â} with θ 0̂ = k and θ 1̂ = q. In
this frame we have F = θ 0̂ ∧ θ 1̂. Using FabX

b = 0 from the definition of the light ray vector
X in (4), we find

X = X2̂e2̂ + X3̂e3̂. (8)

Since Gijmnkikmqn = 0, we have G0̂1̂0̂α̂ = 0, which allows us to calculate the only non-
vanishing components of H as H0̂α̂ ∼ (G2̂3̂0̂1̂,−G1̂3̂0̂1̂,G1̂2̂0̂1̂) up to factors that are irrelevant
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for our argument. Note that the case G1̂3̂0̂1̂ = G1̂2̂0̂1̂ = 0 is physically pathological, since
then H ∼ F , so any covector is a wave covector, and hence there is no null structure. We
exclude this case in the remainder of this section. Using the results for the components of H
in HabX

b = 0, we conclude that

G1̂3̂0̂1̂X2̂ = G1̂2̂0̂1̂X3̂. (9)

It is now easy to see that up to rescaling the solution for X is given by X = G1̂2̂0̂1̂e2̂ + G1̂3̂0̂1̂e3̂.
This relation can be rewritten in a frame-independent manner [12] as

X = G−1(·, q, k, q). (10)

This expression is gauge independent: the substitution q → q + λk has no effect because
G−1(·, k, q, k) = 0. A simple contraction shows once more that k(X) = 0, so that the ray
vector field X is everywhere tangent to the wave surface; if one specifies the polarization
vector on this surface, the ray vectors are also unique, up to rescaling. At this point, it would
seem as if the map between the vectors and the covectors depended on polarization. That
this is generically not the case will be shown in the following. For the special case of an
almost metric background, equation (10) yields Xa = −(qdq

d)ka . So, up to an irrelevant
factor, X = g−1(·, k). Note that, in this case, the vector X does not depend on the polarization
covector, in the sense that this dependence can be removed by an appropriate gauge choice.
We will now study under what condition this familiar one-to-one correspondence between the
wave covectors k and the ray vectors X holds for generic area metric backgrounds.

Writing the Fresnel equation again in the form det G0̂α̂0̂β̂ = 0 tells us that the 3×3 matrix
G0̂α̂0̂β̂ does not have full rank. It is then clear that if and only if this matrix has rank 2, the
equation Gijmnkikmqn = 0 admits a unique solution for the polarization covector q, at least up
to a gauge redefinition q → σq + λk for σ, λ ∈ R. In this case we expect X to be determined
by k alone. Indeed, we are able to prove the following result on a one-to-one correspondence
between the wave covectors and the light ray vectors on general area metric spacetimes:

Theorem 1. If G0̂α̂0̂β̂ has rank 2, the directions of the ray vectors X and wave covectors k are
related by the Fresnel tensor as

X = G(k, k, k, ·). (11)

Analogously, if the rank of G0̂α̂0̂β̂ is 2 then we obtain a relation via the dual Fresnel tensor:

k = G(X,X,X, ·). (12)

Proof. We prove the first relation; the frames are chosen as before. From the definition of the
Fresnel tensor, we calculate the components of G(k, k, k, ·) = G 0̂0̂0̂âeâ and find

G(k, k, k, ·) ∼ (G0̂2̂0̂2̂G0̂3̂0̂3̂ − (G0̂2̂0̂3̂)2)(G1̂2̂0̂1̂e2̂ + G1̂3̂0̂1̂e3̂) (13)

up to a non-vanishing rescaling factor. Comparing this to our previous result for X in (10), it
only remains to be shown that the first bracket is non-zero. Because of G−1(k, q, k, ·) = 0, the
relevant submatrix of G0̂α̂0̂β̂ is the one for index values α̂, β̂ = 2, 3; the assumption that G0̂α̂0̂β̂

is of rank 2 corresponds to a non-vanishing determinant of the submatrix, but this determinant
is precisely the first bracket above. Note here that G0̂α̂0̂β̂ being of rank 2 is equivalent to
G(k, k, k, ·) �= 0, excluding the pathological situation where G1̂3̂0̂1̂ = G1̂2̂0̂1̂ = 0. This proves
the first relation; the dual relation can be proven in a completely analogous fashion. �

So far we have considered the local properties of wave covectors and light ray vectors
on area metric spacetimes; in particular, we have discussed the corresponding notions of null
structures in any given tangent space and their relation. The following section is devoted to the
analysis of the differential properties of these objects, allowing us to generalize the concept of
null geodesics to area metric spacetimes.
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2.3. Light trajectories

We have seen that the Fresnel tensor and the dual Fresnel tensor determine the local null
structure of the area metric spacetimes considered here. They also determine the relation
between the wave covectors and the light rays. These results show that the Fresnel tensors
play a role analogous to that played by a metric and its inverse in the special situation of a
metric background. But the metric is also responsible for the propagation of light along null
geodesics. This suggests asking whether the Fresnel tensor, or its dual, could also govern the
propagation of light on general area metric backgrounds. Indeed, theorem 2 demonstrates that
light rays propagate along those curves that stationarize a particular length functional defined
in terms of the dual Fresnel tensor, which in four dimensions takes the form∫

dτ H(x, ẋ) =
∫

dτ G(ẋ, ẋ, ẋ, ẋ). (14)

This result identifies Finsler geometry [21] (for the Finsler norm H 1/4) as a useful tool in
area metric geometry. Indeed, variation with respect to the curve produces the stationarity
condition

∂τ (Gaqrs ẋ
q ẋr ẋs) − 1

4∂aGpqrs ẋ
pẋq ẋr ẋs = 0, (15)

and from the following theorem we learn that light rays are indeed described by solutions of
(15) for which H(x, ẋ) = 0 along the curve. Note that the action (14) is not reparametrization
invariant, just like the corresponding action for null geodesics in Lorentzian geometry,
since a reparametrization of the tangent vector ẋ adds a term of the form λGaqrs ẋ

q ẋr ẋs to
equation (15), where λ is an arbitrary function. But since the null condition does not depend
on λ, any choice of parametrization provides Finsler null geodesics. For generic area metric
spacetimes, the familiar result from metric geometry, namely that light rays are described by
null geodesics, generalizes to:

Theorem 2. The integral curves of the light ray vector field X are null geodesics with respect
to the measure defined by H(x, ẋ). This does not hold for points where the one-to-one
correspondence between the wave covector and the light ray breaks down.

Proof. The wave covector k is normal to the wave surface, which we can imagine as the
level set 
(x) = 0 of some function. Then k = d
, which implies k[l∂mkn] = 0; due to the
appearance of the tangential derivative k[l∂m] along the wave surface this expression is well
defined along a single level set of 
. By contraction with the light ray vector Xl and using the
fact that k(X) = 0, we obtain

0 = k[m(Xl∂n]kl − Xl∂|l|kn]). (16)

Consider now points along the integral curve of X for which G(X,X,X, ·) �= 0; as discussed
in the proof of theorem 1, on the correspondence between wave covectors and light rays, we
then have k = G(X,X,X, ·). Substitution into the equation above yields

0 = k[m∂n]GlabcX
aXbXcXl + 3GlabcX

aXbXck[m∂n]X
l − k[mXl∂|l|Gn]abcX

aXbXc. (17)

We now use the fact that G(X,X,X,X) = 0 on the whole wave surface; hence its tangential
derivative along this surface must vanish so that

0 = k[m∂n]GlabcX
aXbXcXl + 4GlabcX

aXbXck[m∂n]X
l. (18)

This relation allows us to replace the second term in (17) to obtain

0 = k[m
(

1
4∂n]GlabcX

aXbXcXl − Xl∂|l|Gn]abcX
aXbXc

)
. (19)
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The quantity in brackets is, up to a sign, the left-hand side of the equation of motion (15) for a
Finsler null geodesic. Since we know this expression to be well defined on the wave surface,
it must have the form −λkn for some function λ. This is precisely the term arising from some
arbitrary reparametrization of the Finsler null geodesic, as discussed before. This completes
the proof. �

In the above theorem, we excluded points where G(X,X,X, ·) = 0. At these points,
equation (15) for Finsler null geodesics does not admit a unique solution. To see this, note
that unique solutions can only exist if this equation can be rewritten in the standard form
ẍ = F(x, ẋ). This requires the invertibility of G(X, ·, X, ·), which gives the coefficients of
ẍ in (15), considered as a 4 × 4 matrix. But since G(X,X,X, ·) = 0, this matrix does not
have full rank. This is not surprising. Possible bifurcation points in the solutions should
be expected, as we have seen that for wave covectors k presenting double solutions of the
Fresnel equation, the associated light ray X usually depends on the polarization. Spacetimes,
or more generally any optical media, with a simple (almost) metric constitutive relation are an
exception to this rule: even though wave covectors k in this case are always double solutions
of the Fresnel equation, the corresponding light rays X are unique. This is the deeper reason
underlying the fact that the integral curves of light ray vectors become standard null geodesics
in an almost metric background.

2.4. Illustration: bimetric backgrounds

Area metric spacetimes whose Fresnel tensor takes the bi-metric form

Gabcd = g
(ab
I g

cd)
II (20)

constitute a special, but very important case of the general approach developed so far. In this
section, we illustrate our general results on the local null structure and light propagation for
this case, which is of direct relevance to our study of light deflection in spherically symmetric
area metric backgrounds in section 3. We will now prove the non-trivial fact that the metrics
gI and gII also define the dual Fresnel tensor. The corresponding theorem further ensures
that the correspondence between the directions of light ray vectors X and wave covectors k
in bi-metric backgrounds is everywhere bijective, in contrast to the existence of degenerate
points in the generic case, see theorem 2.

Theorem 3. If the Fresnel tensor is of the bimetric form (20) in terms of two inverse metrics,
the dual Fresnel tensor is conformally related to the one constructed from the respective
non-inverted metrics, i.e.,

Gabcd ∼ gI (abgIIcd). (21)

Proof. In the first step we show that, if g−1
I (k, k) = 0 holds for a wave covector k, the

corresponding vector g−1
I (k, ·) is a ray vector. For this we distinguish two cases. First,

let g−1
I (k, k) = 0 but g−1

II (k, k) �= 0; then G(k, k, k, ·) = g−1
II (k, k)g−1

I (k, ·) is non-zero.
By the argument used in the proof of theorem 1, this shows that g−1

I (k, ·) is a ray vector.
Second, consider the case g−1

I (k, k) = 0 and g−1
II (k, k) = 0. In this case one can show

that g−1
I (k, ·) ∼ g−1

II (k, ·) and that X = g−1
I (k, ·) is a ray vector. The proof of this fact

involves some algebraic detail and the explicit calculation of relevant components of the
Fresnel tensor. Repeating the argument for the metric gII tells us that every wave covector
yields a corresponding ray vector, null either with respect to gI or gII . Hence gI (X,X) and
gII (X,X), which are homogeneous polynomials of degree 2, both divide the diagonal value
G(X,X,X,X) of the dual Fresnel tensor. Since this polynomial is maximally of degree 4,

7
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we obtain the decomposition G(X,X,X,X) = αgI (X,X)gII (X,X) for some function α.
Thus G(X,X,X,X) = 0 is equivalent to gI (abgIIcd)X

aXbXcXd = 0. By the proposition in
section 2.1 the claimed conformal equivalence follows. �

Now consider the propagation of light on area metric backgrounds with a bimetric null
structure. Theorem 2 of the previous section then admits a simple reformulation, and we
recover as a special case a known result [27]: Finsler null geodesics reduce to null geodesics
of either one of the two metrics gI or gII . Indeed, starting from equation (15) and substituting
the explicit expression Gabcd = gI (abgIIcd) for the dual Fresnel tensor, one obtains

gI (X,X)
[
gII

(∇II
X X, ·) + gII (X, ·)X(ln gI (X,X))

]
+ gII (X,X)

[
gI

(∇I
XX, ·) + gI (X, ·)X(ln gII (X,X))

] = 0, (22)

where ∇I and ∇II are the Levi-Civita covariant derivatives associated with gI and gII ,
respectively. The null condition G(X,X,X,X) = 0 implies that X must be null with
respect to at least one of the two metrics, say gI (X,X) = 0. There are now two cases.
If gII (X,X) �= 0, the equation above implies that ∇I

XX = −X(ln gII (X,X)) X, which shows
that the integral curve X = dx

dt
is a (non-affinely parametrized) null geodesic of gI . However,

if also gII (X,X) = 0, the equation becomes trivial. These are exactly the points where the
unique propagation along the Finsler geodesic breaks down.

On an area metric background with a bimetric null structure there are generically two
different null vectors for a given spatial propagation direction of a light ray. We have seen that
a specific polarization vector corresponds to each of these null vectors X, and is obtained as
the solution of equation GijmnX

iXmQn = 0. Physically speaking, a bimetric background thus
splits a generic electromagnetic wave into two polarized components that propagate along the
geodesics of the two different metrics.

3. Gravitational lensing

In this section, we study an application of our general results on light propagation on area
metric backgrounds. We focus on the case of stationary spherically symmetric spacetimes,
which is phenomenologically important in the solar system. After a discussion of the particular
geometric structure of this class of spacetimes, we investigate observable physical effects such
as birefringence and light deflection.

3.1. Spherical symmetry

The purpose of this section is to present the generic form of a stationary, spherically symmetric
area metric spacetime. We also calculate the form of the associated Fresnel tensor which is
the relevant structure for light propagation.

In order to implement symmetry conditions on an area metric, we recall from [18] that
an area metric isometry is a diffeomorphism h : M → M that preserves the area metric
in the sense that for all smooth vector fields U,V,A,B on M and all p ∈ M , we have
Gh(p)(h∗U, h∗V, h∗A, h∗B) = Gp(U, V,A,B), where h∗ denotes the push-forward with
respect to h. As in the metric case, it is useful to consider the generators of isometries. A
vector field X is a generator of a one-parameter family of isometries of an area metric manifold
(M,G) if and only if the Killing condition LXG = 0 holds. The Killing vectors of a given
area metric manifold, together with the standard commutator, constitute a Lie algebra. We
may now define spherical symmetry and stationarity for an area metric manifold, which is
what we need to discuss area metric phenomenology at the solar system level. In analogy

8
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with the standard definition given in Lorentzian geometry, we call a four-dimensional area
metric manifold spherically symmetric around a point p if the isotropy group of p is SO(3),
and the relative orbit of any other point q �= p around p is topologically equivalent to a two
sphere. Further, we call a spherically symmetric area metric manifold stationary if it admits a
Killing vector field that commutes with the generators of SO(3). Employing standard spherical
coordinates (t, r, θ, φ) these conditions amount to requiring that

X0 = ∂t , X1 = sin φ∂θ + cot θ cos φ∂φ,
(23)

X2 = − cos φ∂θ + cot θ sin φ∂φ, X3 = ∂φ,

are Killing vectors of the area metric manifold. With some calculation one thus obtains the
general form of a stationary spherically symmetric area metric spacetime. We display the area
metric as a symmetric 6 × 6 matrix GMN , by considering Petrov indices M,N that run over
the antisymmetric index pairs ([tr], [tθ ], [tφ], [rθ ], [rφ], [θφ]):

GMN =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−ABξ 0 0 0 0 (T + 2S)r2 sin θ

−Ar2 0 0 (S − T )r2 sin θ 0

−Ar2 sin2 θ (T − S)r2 sin θ 0 0

Br2 0 0

Br2 sin2 θ 0

r4 sin2 θ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(24)

The empty slots are filled by symmetry, and A,B, ξ , S, T all are functions of r. Note that this
is just a convenient form to display all components of the four-dimensional area metric.

A general spherically symmetric area metric background is not metric induced; this is only
the case for ξ = 1, S = T = 0 when the inducing metric is the general stationary spherically
symmetric metric gab = diag(−A,B, r2, r2 sin2 θ)ab. Another important remark concerns the
signs of the area metric components. We require sections of the constant t to be spacelike, i.e.
the restriction of the area metric on these three-dimensional sections must be positive definite,
and we require any area containing the vector ∂t to be timelike, i.e., G(∂t , ·, ∂t , ·) should be
negative definite if restricted to the three-dimensional complement of the span of ∂t in T M . It
is indeed easy to show that the latter condition constitutes the appropriate generalization of the
definition of a timelike vector in Lorentzian geometry, to which it reduces in the metric-induced
case. These two conditions together require A > 0, B > 0, ξ > 0.

The easiest way to calculate the Fresnel tensor and to understand how a stationary
spherically symmetric area metric background locally affects light propagation is to rewrite
the area metric in the coframe θ 0̂ = √

A dt, θ 1̂ = √
B dr, θ 2̂ = r dθ, θ 3̂ = r sin θ dφ and

to define τ = T/
√

AB and σ = S/
√

AB. In the metric-induced case, this is the frame in
which the inducing metric takes the Minkowski form. The dual Fresnel tensor is now easily
calculated. One finds

Gâb̂ĉd̂ = C(r)g+
(âb̂

g−
ĉd̂)

, (25)

for the function C(r) = [(1 + σ 2)2(ξ + 4σ 2)]1/3, and the two metrics

g±
âb̂

= diag(−ζ±, ζ±, 1, 1)âb̂, ζ± = 1
2

(
1 + ξ + 9σ 2 ±

√
(1 + ξ + 9σ 2)2 − 4ξ

)
. (26)

It is easy to prove that because of ξ > 0 the two quantities ζ± are always real and positive.
This means that the spherically symmetric area metric is actually bimetric, see section 2.4,
because the two metrics g± are Lorentzian. Moreover, ζ + = ζ− if and only if σ = 0 and

9
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ξ = 1, i.e., when the area metric is of the almost-metric form. Therefore, the phenomenon
of birefringence in spherically symmetric area metric spacetimes is equivalent to a deviation
from almost metricity.

In the remainder of this section, we are interested in observable effects in the solar system
which can be considered as a weakly gravitating system. Independent of the area metric
gravity theory at hand the maximally symmetric vacuum is almost metric, and is determined
by the Minkowski metric and constant φ = φ0. Keeping only the lowest-order terms for every
metric function, the expansion around the vacuum is

A 
 1 + δA, B 
 1 + δB, ξ = ζ +ζ− 
 1 + δξ,
(27)

σ 
 δσ, τ 
 φ0 + δτ, ζ± 
 1 + δζ±.

3.2. Local effects of birefringence

We now present the first analysis of the effects of deviations from metricity in spherically
symmetric area metric spacetimes. In this section, we study local effects on the propagation
of light rays, which however are hard to measure. A more detailed study of global effects on
light deflection, which are more easily accessible to experimental tests, will be presented in
the following section.

From the structure of the two metrics g± appearing in the Fresnel tensor (25) it is
evident that the null condition G(X,X,X,X) = 0 for radial light rays, which are of the form
X = X0̂e0̂ + X1̂e1̂, is the same for each metric, so that light traveling radially is not affected
by birefringence, as one could expect by a simple symmetry argument. On the other hand,
light rays propagating in non-radial directions can be null with respect to only one of the
two metrics g±. Without loss of generality, consider a future pointing ray vector X± in the
θ = π/2 plane. It must be of the form

X± = (√
(X1̂)2 + (X3̂)2/ζ±, X1̂, 0, X3̂). (28)

To each of the null vectors X± corresponds a polarization vector Q± that can be deduced from
the relation GabcdX

bXcQd = 0, up to a change of gauge Q �→ Q + λX which leaves the
electromagnetic fields invariant. As an example consider the purely tangential case X1̂ = 0,
where this relation simply reads√

ζ±Q±0̂ − Q±3̂ = 0, 3σ
√

ζ±Q±1̂ + (1 − ζ±)Q±2̂ = 0. (29)

The first equation tells us that we can arrange for Q0̂ = Q3̂ = 0 by a gauge transformation
Q �→ Q + λX. The second relation then fixes the two different polarization directions for
Q±. A general electromagnetic wave F #âb̂ = Gâb̂ĉd̂Fĉd̂/2 with a given spatial direction of
propagation will always be decomposable as F # = αX+ ∧ Q+ + βX− ∧ Q−; as discussed in
section 2.4, the two components propagate along the geodesics of g+ or g−, respectively.

For a given spatial direction of propagation, in terms of X1̂ and X3̂, two different coordinate
velocities are obtained, related to the polarization of the wave. In principle, this effect can be
used to perform a laboratory test of area metric gravity by simply measuring the coordinate
velocities of light rays of different polarization. The effect is most prominent for light traveling
in the tangential direction. Then X1̂ = 0 and c± = X±3̂/X±0̂ = √

ζ±. Writing �c = c+ − c−

and c = (c+ + c−)/2 and expanding around the area metric vacuum as in (27), we obtain

�c

c
= δζ + − δζ−

2
. (30)

Note that this quantity agrees, in our approximation, with that measured by a laboratory
observer at rest in the solar system [28]. This effect clearly presents a violation of the Einstein
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equivalence principle in the form in which it states that gravitational effects can be cancelled
locally by an appropriate choice of the local frame. Experimental bounds on �c/c thus directly
translate into a consistency requirement on spherically symmetric solutions of a theory of area
metric gravity.

3.3. Light deflection

As we saw in the previous section, purely local effects of the non-metricity of an area metric
background mainly manifest themselves as a dependence of the velocity of light on the
propagation direction and polarization. These effects are much harder to detect than global
ones, arising from the accumulation of small effects along the path of a light ray. In this
section, we investigate light deflection as an important example of such a global effect and
discuss the consequences for the viability of area metric gravity at the solar system level, by
using the fundamental theorems on null geodesics derived in section 2.

Recall that, according to theorems 2 and 3 proven in sections 2.3 and 2.4, light rays in
birefringent area metric backgrounds with the Fresnel tensor (25) follow null geodesics of
either metric g+ or g−, compare equation (22). Starting from expression (26) for these two
metrics, we derive their form in the usual coordinate frame (t, r, θ, φ):

g±
ab = diag(−Aζ±, Bζ±, r2, r2 sin2 θ)ab. (31)

Since area metric dynamics as discussed in [18] admits as maximally symmetric vacuum only
a Minkowskian, almost-metric background, we can assume the area metric, and consequently
the two metrics (31), to be asymptotically flat. Now standard machinery may be used
to calculate the deflection angle of light by the spherically symmetric gravitational field
[29]. As usual, the null geodesic light trajectories of a metric g can be deduced as the
Euler–Lagrange equations from the Lagrangian L = 1

2gabẋ
aẋb, imposing the null condition

gabẋ
aẋb = 0, where the dot denotes differentiation with respect to an affine parameter

along the curve. We assume the general form of a stationary spherically symmetric metric
gab = diag(−F(r),G(r), r2, r2 sin2 θ)ab and restrict (without loss of generality) to the case
θ = π/2. The null geodesics of g (below we will replace the functions F and G by the
expressions required for g±) satisfy

ṫ = − E

F(r)
, φ̇ = L

r2
, ṙ = ±

√
1

G(r)

(
E2

F(r)
− L2

r2

)
, (32)

where E and L are integration constants. Eliminating the affine parameter from the previous
expressions for ṙ and φ̇, we may solve for dφ/dr . The total gravitational deflection angle
of a light ray emitted and received at spatial infinity is now obtained by integration as
α(r0) = 2

∫ ∞
r0

|dφ/dr| dr − π , where r0 is the radius of the closest approach to the gravitating

source. Defining the impact parameter b as b = |L/E| we have b2 = r2
0

/
F(r0).

Since we are interested in solar system experiments, we can now assume slight deviations
from a Minkowskian almost metric background so that F(r) 
 1 + δF (r) and G(r) 

1 + δG(r). Performing an expansion to first order and using x = r0/r , we find

α(r0) =
∫ 1

0

dx√
1 − x2

[
δG(x) +

δF (x) − δF (1)

1 − x2

]
. (33)

It is clear that a birefringent area metric background with two metrics g± will produce two
different deflection angles for light rays of different polarization. In the example of a distant
star, which can be considered as an unpolarized pointlike source, light deflection will hence
produce a pair of differently polarized stellar images with a certain angular separation. This
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effect can be directly calculated from (33), since the functions F and G are different for the two
optical metrics g+ and g−; for their deviations from the vacuum value, according to (27), we
have δF± = δA + δζ± and δG± = δB + δζ±. The relevant quantity for the angular separation
between the two polarized images then is

�α(r0) =
∫ 1

0

dx√
1 − x2

[
�δζ(x) +

�δζ(x) − �δζ(1)

1 − x2

]
, (34)

where �δζ = δζ + − δζ−. In terms of the first-order expansion of the area metric functions
we find �δζ 


√
δξ 2 + 36δσ 2. Therefore, this effect is first order in the deviation of the

non-metric degrees of freedom from their background value.
To provide a specific example, it is reasonable to assume a power law radial dependence

for the leading-order term �δζ , i.e., �δζ = (lζ /r)γ with γ > 0. The quantity lζ would
appear as a non-metric charge of the source, related to its energy–momentum tensor through
the gravitational field equations. With this assumption, we find

�α(r0) = √
π

(
lζ

r0

)γ
γ − 1

γ

�
( 1+γ

2

)
�

(
γ

2

) , (35)

where �(x) is the Euler gamma function. In the special case γ = 1, the effects of birefringence
cancel at leading order. For any other γ , the maximal attainable value of α(r0) is obtained
for minimal r0 = r
, i.e., for light rays grazing the solar surface. Birefringence is not
observed in experiment; therefore, a consistent spherically symmetric area metric background
must be such that the two differently polarized images of a given source cannot be resolved.
Thus, experiment gives an upper bound on the value of lζ , which can be compared with the
predictions from solutions of any given theory of area metric gravity. Assuming a best angular
resolution of 0.001 arc seconds for infrared interferometry (with the Very Large Telescope
Interferometer VLTI, see [30]), we are led to bounds on lζ /r
, as summarized in the following
table for various values of γ :

γ 1 2 3 4

lζ
max/r
 — 0.7910−4 0.1510−3 0.7210−2 .

Even better bounds are obtained from the study of depolarization effects. However, this
requires statistical analysis and numerical modeling beyond the scope of this paper; compare,
for instance, [31] where the case γ = 4 leads to a bound of the order of magnitude 10−4.

4. Conclusions

In this paper, we derived the equation governing light paths on area metric manifolds,
independent of any of the various mechanisms [1–17] that give rise to such backgrounds
as refinements of metric geometry. Although an area metric presents a tensorial structure,
light rays perceive those backgrounds as a Finslerian geometry. In contrast to Riemannian
geometry, Finsler geometry provides a norm on each tangent space, rather than an inner
product. Based on new results concerning area metric geometry, we calculated the Finsler
norm seen by light rays in terms of the area metric and found that light paths are curves which
are null and stationary with respect to this Finsler norm, i.e., Finsler null geodesics.

We learn most of what we infer about the large-scale structure of the universe from the
propagation of light. So the result that light propagates along Finsler null geodesics on area
metric backgrounds plays an important role in confronting any theory that effectively gives rise
to such refined non-metric geometries with experimental data. Our analysis of light deflection
illustrates the derivation of experimental bounds, which must be obeyed independent of the
stipulated origin of the refined spacetime structure.
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