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Abstract

In this paper, we investigate the properties of gauge-invariant coherent states
for loop quantum gravity, for the gauge group U(1). This is done by projecting
the corresponding complexifier coherent states defined by Thiemann and
Winkler to the gauge-invariant Hilbert space. This being the first step toward
constructing physical coherent states, we arrive at a set of gauge-invariant states
that approximate well the gauge-invariant degrees of freedom of Abelian loop
quantum gravity (LQG). Furthermore, these states turn out to encode explicit
information about the graph topology, and show the same pleasant peakedness
properties known from the gauge-variant complexifier coherent states. In a
companion paper, we will turn to the more sophisticated case of SU(2).

PACS numbers: 02.10.Ox, 02.40.Vh, 04.60.Pp, 11.15.Kc

1. Introduction

Loop quantum gravity (LQG) is a promising candidate for a theory that aims at combining the
principles of quantum mechanics and general relativity (see [1–4] and references therein). The
starting point of LQG is the Hamiltonian formulation of general relativity, choosing Ashtekar
variables as phase-space coordinates, which casts GR into a SU(2) gauge theory, leading to
the Poisson structure{

AI
a(x), AJ

b (y)
} = {

Ea
I (x), Eb

J (y)
} = 0{

AI
a(x), Eb

J (y)
} = 8πGβδa

bδ
I
J δ(x − y).

(1.1)

This system can be canonically quantized with the help of methods well known from algebraic
quantum field theory, which results in a representation of the Poisson algebra on a Hilbert
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space Hkin, which carries the kinematical information of quantum general relativity. In fact
it has been shown that this is the only cyclic, irreducible representation if one demands the
space diffeomorphisms to be unitarily implemented [5].

While the dynamics of classical general relativity is encoded into a set of phase-space
functions GI ,Da,H that are constrained to vanish, these so-called constraints are, in LQG,
promoted to operators that generate gauge transformations on the kinematical Hilbert space
Hkin. The physical Hilbert space Hphys is then to be derived as the set of vectors being invariant
under these gauge transformations [6]:

ĜI |ψ〉 = D̂a|ψ〉 = Ĥ |ψ〉 = 0. (1.2)

Although conceptually clear, the actual computation of Hphys is technically quite difficult.
This is due to the fact that the constraints ĜI , D̂a, Ĥ act quite non-trivially on Hkin. Thus,
while the kinematical setting is understood, the physical content of the theory is still unclear.
It seems that, in its present formulation, LQG is too complicated to be solved analytically.

While this seems to be discouraging at first, complete solvability is not something one
could have expected from the outset. In fact, nearly no theory which realistically describes
a part of nature is completely solvable, neither in the quantum, nor in the classical regime.
Rather, having the basic equations of a theory as a starting point, one has to develop tools
for extracting knowledge about its properties in special cases, reducing the theory to simpler
subsectors, approximate some solutions of the theory, or study its behavior via numerical
methods. Examples for this range from reducing classical GR to symmetry-reduced situations,
which is our main source of understanding the large-scale structure of our cosmos, over particle
physics, where perturbational quantum field theory is our access to predict the behavior of
elementary particles, to numerical simulations in ordinary quantum mechanics, which allow
for computations of atomic and molecular spectra, transition amplitudes or band structures
in solid state physics. Although in all of these fields the fundamental equations are well
known, their solution is elusive, so one has to rely on approximations and numerics in order
to understand the physical processes described by them. In other cases, such as interacting
Wightman fields on 4D Minkowski space, not a single example is known to date. On the other
hand, the perturbation theory for, say, SU(N)-Yang–Mills theory in small couplings is so
effective that many particle physicists even regard the perturbative expansion in the coupling
parameter as the fundamental theory in itself.

With these considerations, it seems quite natural to look for a way to gain knowledge
about the physical content of LQG by approximative methods. One step into this direction
has been done by introducing the complexifier coherent states.

For ordinary quantum mechanics, the well-known harmonic oscillator coherent states
(HOCS)

|z〉 =
∞∑

n=0

zn

√
n!

|n〉 (1.3)

are a major tool for performing analytical calculations and numerical computations. Not only
can they be used to approximate quantum propagators [7], they are also the main tool for
investigating the transition from quantum to classical behavior, as well as quantum chaos
[8, 9]. They also grant access to the numerical treatment of quantum dynamics for various
systems [10, 11], and their generalization to quantum electrodynamics provides a path to the
accurate description of laser light and quantum optics [12].

The complexifier coherent states (CCS), which have been first introduced in [13, 14], are
a natural generalization of the HOCS to quantum mechanics on arbitrary compact Lie groups,
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and the complexifier methods employed to construct these states can also be transferred to
other manifolds as well. Furthermore, for the special cases of quantum mechanics on the real
line R and the circle U(1), these states reduce to what has been used as coherent states for
quite some time [15, 16].

In [17], the complexifier concept has been used to define complexifier coherent states
for LQG. They are states on the kinematical Hilbert space Hkin and their properties have
been exhibited in [18, 19]. It was shown that they mimic the HOCS in their semiclassical
behavior, in the sense that they describe the quantum system to be close to some point in
the corresponding classical phase space of general relativity, minimizing relative fluctuations.
Also, they provide a Bargman–Segal representation of Hkin as holomorphic functions, as well
as approximating well quantum observables that correspond to classical phase-space variables.

This has indicated that these states are a useful tool for examining the semiclassical limit
of LQG. In particular, it has been shown in [20] with the help of the CCS that the constraint
operators for LQG, which are defined on Hkin and generate the dynamics of the theory, have
the correct classical limit. In particular, CCS that are ‘concentrated’ around a classical solution
of GR are annihilated by the constraint operators up to orders of h̄. This indicates that, at least
infinitesimally, LQG has classical GR as a semiclassical limit.

On the other hand, since the complexifier coherent states are only defined on Hkin, none of
them is really physical in the sense of the Dirac quantization programme. That is, while they are
peaked on the classical constraint surface, they are not annihilated by the constraint operators,
only approximately. Thus, while being a good tool for examining kinematical properties of
LQG, it is not clear how well they approximate the dynamical aspects of quantum general
relativity.

To do this, it would be desirable to have coherent states at hand that satisfy at least some
of (1.2). We will pursue the first step on this path in this and the following paper.

Some of the constraints (1.2) are simpler than others. In particular, the easiest ones
are the Gauss constraints ĜI . They are unbounded self-adjoint operators on Hkin and the
gauge transformations generated by them are well understood. The set of vectors being
invariant under the Gauss-gauge transformations (‘gauge-invariant’ in the following) is a
proper subspace of Hkin. This space is well known [21], and a basis for it is provided by the
gauge-invariant spin-network functions, the construction of which involves intertwiners of the
corresponding gauge group SU(2). Thus, the straightforward way to construct gauge-invariant
coherent states would be to project the CCS to the gauge-invariant Hilbert space.

The gauge transformations correspond to gauging the SU(2)-valued Ashtekar connection
AI

a and its canonically conjugate, the electric flux Ea
I . Thus, the gauge group SU(2) is

involved, and in fact this group plays a prominent role in the construction of the whole
kinematical Hilbert space Hkin. It is, however, possible to replace SU(2) in this construction
by any compact gauge group G, arriving at a different kinematical Hilbert space HG

kin, which
would be the arena for the Hamiltonian formulation of a gauge field theory with gauge group
G. Of course, one also has to replace the ĜI by the corresponding gauge generators. The
complexifier method is able to supply corresponding coherent states for each gauge group G.

This change of SU(2) into another gauge group has been used frequently. In [22], it has
been shown that the quantization of linearized gravity leads to the LQG framework with U(1)3

as a gauge group. Furthermore, it has been pointed out [23] that changing SU(2) for U(1)3

does not change the qualitative behavior of the theory in the semiclassical limit, and so the
U(1)3-CCS have been used widely in order to investigate LQG [20].

Before treating the much more complicated case of G = SU(2) in a sequel paper, in
this paper we will, as a warm-up, consider the gauge group G = U(1) and the corresponding
CCS. The case G = U(1)3 is then simply obtained by a triple tensor product: not only the
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kinematical Hilbert space

HU(1)3

kin = HU(1)
kin ⊗ HU(1)

kin ⊗ HU(1)
kin (1.4)

has this simple product structure, but also the respective gauge-invariant subspaces decompose
according to (1.4). Also, U(1)3-CCS are obtained by tensoring three U(1)-CCS. Due to this
simple structure, it is sufficient for our arguments to consider the gauge-invariant coherent
states in the case of G = U(1), since all the properties revealed in this paper can be carried
over straightforwardly to gauge-invariant coherent states for G = U(1)3.

The plan for this paper is as follows: in chapter 2, we will shortly repeat the basics of
LQG. In particular, the kinematical Hilbert space Hkin for arbitrary gauge group G is defined,
the corresponding set of constraints that generate the gauge transformations is described. In
chapter 3, the complexifier coherent states are defined, where the focus lies on the particular
case of G = U(1). A formula for the inner product between two such states is derived, which
depends purely on the geometry of the complexification of the gauge group U(1)C � C\{0}.

In chapter 4, we will apply the projector onto the gauge-invariant subspace of Hkin to
the U(1)-complexifier coherent states. The involved gauge integrals can be carried out by
a special procedure resembling gauge fixing. The resulting gauge-invariant states are then
investigated, and their properties are displayed. In particular, we will show that they describe
semiclassical states peaked at gauge-invariant degrees of freedom.

We will conclude this paper with a summary and an outlook on the following paper.

2. The kinematical setting of LQG

We shortly repeat the kinematical framework of LQG. Detailed expositions can be found in
[1–4] and in the references therein.

The starting point of LQG is the phase space of the Ashtekar-connections AI
a(x) and the

electric field Eb
J (y), both defined on a 3-dim spatial manifold �, which can be thought of as a

Cauchy surface in spacetime. The Poisson structure is given by (1.1). The fields AI
a(x), Eb

J (y)

are not free, but subject to so-called constraints, which are phase-space functions. They encode
the diffeomorphism invariance of the theory, and the Einstein equations. The reduced phase
space consists of all phase space points

(
AI

a, E
b
J

)
where the constraints vanish. On this set,

the constraints act as gauge transformations, and the set of gauge orbits is the physical phase
space.

The set of constraints is divided into the Gauss constraints GI(x), the diffeomorphism
constraints Da(x) and the Hamilton constraints H(x). It is the set of Gauss constraints that is
of particular importance in the rest of this work.

The holonomy-flux algebra generated by holonomies of AI
a(x) along edges and the electric

fields Eb
J (y) smeared over 2-dim surfaces is the starting point of the quantization programme.

There is a unique cyclic representation of this algebra in which the spatial diffeomorphisms,
which are generated by the diffeomorphism constraints Da(x), act unitarily and leave the
vacuum state � invariant [5]. This kinematical Hilbert space Hkin, on which the holonomy-
flux algebra is represented, also carries a representation of the constraint algebra, and is given
by

Hkin =
⊕
γ∈	

Hγ . (2.1)

Here, 	 is the set of all graphs γ in � which consist of embedded, regular, analytic edges.
Each Hilbert space Hγ is separable. If γ is a graph with E edges and V vertices, Hγ is
isomorphic to

Hγ � L2(GE, dμ⊗E
H

)
, (2.2)
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where G is the gauge group acting on the fields
(
AI

a, E
b
J

)
, and dμH is the normalized Haar

measure on G. For LQG one uses G = SU(2), or G = U(1)3 for linearized LQG. In this
paper, we will work with G = U(1), before coming to G = SU(2) in a companion paper.

Each of these Hγ is left invariant by the gauge transformations induced by the Gauss
constraints GI(x). The restriction Gγ of the set of gauge transformations to Hγ is isomorphic
to

Gγ � GV , (2.3)

where V is the number of vertices in the graph γ . The action of an element �k ∈ GV on a
square-integrable function ψ : GE → C in Hγ is given by

α�kψ
(
he1 , . . . , heE

) := ψ
(
kb(e1)he1k

−1
f (e1)

, . . . , kb(eE)heE
k−1
f (eE)

)
, (2.4)

where b(em) and f (em) are the beginning and end points of the edge em. So, the gauge
transformations act only at the vertices of a graph.

In particular, one can write down the projector onto the gauge-invariant Hilbert space for
functions in Hγ :

Pψ
(
he1 , . . . , heE

)
:=
∫

GV

dμH (k1, . . . , kV )αk1,...kV
ψ(he1 . . . , heE

)

=
∫

GV

dμH (k1, . . . , kV )ψ
(
kb(e1)he1k

−1
f (e1)

, . . . , kb(eE)heE
k−1
f (eE)

)
. (2.5)

Since GV is compact, the integral exists and defines a projector

P : Hγ −→ Hγ

onto a sub-Hilbert space of Hγ . In particular, the gauge-invariant functions on a graph form
a subset of all square-integrable functions on a graph. The gauge-invariant Hilbert spaces can
be described using intertwiners between irreducible representations of G, and a basis for the
gauge-invariant Hilbert spaces PHγ can be written down e.g. for G = SU(2) in terms of
gauge-invariant spin-network functions [21].

3. Complexifier coherent states

In the following, we will discuss, in brief, the complexifier method for obtaining coherent
states for quantum mechanics on compact, semi-simple Lie groups G. We will then describe
how to extend this procedure to obtain states for LQG.

3.1. General gauge groups

Consider quantum mechanics on a compact, semi-simple Lie group G, which is associated
with the Hilbert space L2(G, dμH ), where dμH is the normalized Haar measure on G. The
classical configuration space is G, and the corresponding phase space is

T ∗G � GC. (3.1)

Here, GC is the complexification of G, generated by the complexification of the Lie algebra of
G, g ⊗ C. Note that the diffeomorphism (3.1) is not unique, but can e.g. be determined by a
non-negative phase-space function C, which grows more than linearly in the momenta. Such
a function is called a complexifier, since it determines a complex structure on T ∗G via

z(q, p) =
∞∑

n=0

in

n!
{C, . . . , {C, {C︸ ︷︷ ︸

n times

, p} . . .}, (3.2)
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hence a diffeomorphism (3.1). The complexifier coherent states are then defined by

ψ(Ĉ)
g (h) := (e−Ĉδh′(h))|h′→g

. (3.3)

The δh′(h) is the delta distribution on G with respect to dμH , centered around h′ ∈ G, Ĉ is
the quantization of the complexifier function and h′ → g is the analytic continuation from
h′ ∈ G to g ∈ GC as determined by the complex structure (3.2). The fact that the spectrum of
Ĉ grows more than linearly in the momenta makes sure that the expression in the brackets is
in fact a smooth function on G, thus ensuring that ψ(Ĉ)

g ∈ L2(G, dμH ).

For the case of the Laplacian Ĉ = − t
2� the complexifier coherent states can be expressed

explicitly as

ψt
g(h) =

∑
π

e−λπ
t
2 dπ tr π(gh−1), (3.4)

where the sum runs over all irreducible finite-dimensional representations π of G. All
characters h �→ tr(π(h)) are eigenfunctions of the Laplacian � with eigenvalue −λπ < 0,
and dπ denotes the dimension of the representation π .

In the specific case of G = U(1) and G = SU(2), the states (3.4) have been investigated
[17–19], and their properties are known quite well. In particular, they approximate the quantum
analogs of holonomies and fluxes up to small fluctuations, the width of which is proportional
to

√
t , which identifies t as the parameter measuring the semiclassicality scale.
Since the kinematical Hilbert space Hkin of LQG consists of many copies of Hγ �

(L2(G, dμH ))E , there are obvious candidates for coherent states in Hkin, which are associated
with a graph γ = {e1, . . . , eE}. These are then given by a tensor product over all the edges ek

of complexifier coherent states on G:

ψt
g1,...,gE

(h1, . . . , hE) =
E∏

m=1

ψt
gm

(hm). (3.5)

The states (3.5) can also be obtained more systematically by choosing a complexifier for the
phase space of GR. This choice also attaches a physical meaning of the parameters gm ∈ GC

in terms of AI
a, E

b
J [17]. In particular, t measures the ratio

t = 2
P

a2
, (3.6)

where a is a characteristic length scale of the problem at hand. For kinematical states in LQG
being close to some smooth spacetime, one expects t to be of the order of 2

P

/
(1 cm)2, i.e.

about 10−70.
The choice of the semiclassicality parameter t being equal for all edges em of the graph

γ is by no means a necessity. In particular, a varying choice is probably more realistic, e.g.
if one wants to describe spaces in which a small region exhibits large quantum fluctuations in
the metric, while the rest is close to classical, smooth GR. For simplicity, we choose all tm
equal: tm ≡ t . All qualitative arguments in this paper carry over to the more general case of
edge-dependent t.

The complexified groups GC are diffeomorphic to the tangent bundle of the groups T ∗G
themselves. So, the complexifier coherent states are labeled by elements of the classical
phase space. A state labeled by g1, . . . , gE corresponds to a state being close to the classical
phase-space point corresponding to g1, . . . , gE . This interpretation is supported by the fact
that—as could be shown for the cases G = U(1) and G = SU(2)—the expectation values of
quantizations of holonomies and fluxes coincide—up to corrections in t—with the classical
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holonomies and fluxes determined by the phase-space point corresponding to g1, . . . , gE [19].
Furthermore, the overlap between two complexifier coherent states is sharply peaked∣∣〈ψt

g1,...,gE

∣∣ψt
g′

1,...,g
′
E

〉∣∣2∥∥ψt
g1,...,gE

∥∥2∥∥ψt
g′

1,...,g
′
E

∥∥2 =
⎧⎨
⎩

1 gm = g′
m for all m

decaying exponentially
as t → 0 else.

This shows that the complexifier coherent states (3.4) are suitable to approximate the
kinematical operators of LQG quite well.

3.2. The case of G = U(1)

In the last section, the general definition of complexifier coherent states for arbitrary compact
Lie groups G has been given. In this section, we will shortly review these states for the
simplest case of G = U(1), since we will work with these states in the rest of this paper.

From (3.4), we can immediately deduce the explicit form of the complexifier coherent
states, since all irreducible representations of U(1) are known and one-dimensional

ψt
z(φ) =

∑
n∈Z

e−n2 t
2 e−in(z−φ) (3.7)

for g = eiz and h = eiφ . With the Poisson summation formula, this expression can be rewritten
as

ψt
z(φ) =

√
2π

t

∑
n∈Z

e− (z−φ−2πn)2

2t . (3.8)

The inner product of the two of these states is then〈
ψt

w

∣∣ψt
z

〉 = √
π

t

∑
n∈Z

e− (w̄−z−2πn)2

4t = ψ2t
w̄−z(0). (3.9)

There is a way to interpret (3.9) geometrically. This makes use of the fact that GC = C\{0}
comes with a pseudo-Riemannian metric provided by the Killing form on its Lie algebra. On
arbitrary Lie groups G, this metric is denoted, in components, by

hIJ = − 1

dim G
tr(g−1∂Igg−1∂J g). (3.10)

Choosing the chart z → eiz on C\{0}, the metric (3.10) simply takes the form h = 1. Note
that the geodesics through 1 ∈ C\{0} with respect to this metric are given by

t �−→ eitz (3.11)

for some z ∈ C, which corresponds to the velocity of the geodesic at t = 0. Note also that
geodesics can be transported via group multiplication, since the metric is defined via group
translation. In particular, if γ (t) is a geodesic on C\{0}, then gγ (t) is also one for any
g ∈ C\{0}.

With h one can define the complex length square of a geodesic, or any other regular curve
γ on C\{0}, via

l2(γ ) :=
(∫

dt
√

h(γ (t))γ̇ (t)γ̇ (t)

)2

. (3.12)

Note that this gives a well-defined complex number, since the square root of a complex number
is defined up to a sign, and this sign is chosen continuously on the whole curve, which gives
a unique choice since the curve is regular, i.e. its velocity vector vanishes nowhere. So, the
integral is determined up to a sign, the square of which is then well defined.
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Let g, h ∈ C\{0}, and γ : [0, 1] → C\{0} be a geodesic from g to h. It is straightforward
to compute that such a geodesic is not unique, but, for g = eiw and h = eiz (where z and w

are determined up to 2πn for some n ∈ Z), is given by

γ (t) = eiw eit (z−w−2πn), (3.13)

for any n ∈ Z. By changing n, one ranges through the set of geodesics from g to h. The
complex length square of the (3.13) can easily be computed to be

l(γ )2 = (z − w − 2πn)2. (3.14)

This shows that one can write the inner product between two complexifier coherent states as
sum over complex lengths of geodesics〈

ψt
g

∣∣ψt
h

〉 = √
π

t

∑
γ geodesic

from gc to h

e− l(γ )2

4t , (3.15)

with gc := ḡ−1.
Here one can see that the infinite sum in (3.9) has the interpretation of a sum over geodesics

connecting two elements on phase space U(1)C � C\{0}. As will be shown in the following
paper, the inner product of two complexifier coherent states for G = SU(2) can be written
in an analogous way, which suggests that this is a common feature independent of the gauge
group.

4. Gauge-invariant coherent states with gauge group G = U (1)

4.1. The gauge-invariant sector

In the following, we will describe the Hilbert space invariant under the Gauss gauge
transformation group. Since this gauge transformation group G leaves every graph invariant,
we can restrict ourselves to the case of one graph, in particular

P lim−→ Hγ = lim−→ PHγ .

So, we can consider the gauge-invariant cylindrical functions on each graph separately.
The gauge-invariant cylindrical functions on a graph γ with E edges and V vertices can

be described in terms of singular cohomology classes with values in the gauge group. In
particular, every Hilbert space Hγ is canonically isomorphic to an L2-space

Hγ � L2(GE, dμ⊗E
H

)
, (4.1)

where dμH is the normalized Haar measure on the compact Lie group G. It is known that
the gauge-invariant Hilbert space is then canonically isomorphic to an L2-space over the first
simplicial cohomology group of γ with values in the gauge group G

PHγ � L2(H 1(γ,G), dμ), (4.2)

with a certain measure dμ. For Abelian gauge groups G, the first cohomology group of γ with
values in G is given by

H 1(γ,G) � GE−V +1, (4.3)

and dμ = dμ⊗E−V +1
H is the E − V + 1-fold tensor product of the Haar measure on G. For

non-Abelian gauge groups G a similar result holds, while the definition of the first cohomology
class requires more care. This case will be dealt with in the following paper, and we stay with
Abelian G in this paper.
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4.2. Gauge-invariant coherent states

We now come to the main part of this paper: the computation of the gauge-invariant coherent
states. We will derive a closed form for them, revealing the intimate relationship between the
gauge-invariant degrees of freedom and the graph topology. From the explicit form we will
be able to compute the overlap between two gauge-invariant coherent states, which will allow
for an interpretation as semiclassical states for the gauge-invariant sector of the theory.

The gauge-invariant coherent states are obtained by applying the gauge projector (2.5) to
the complexifier coherent states on a graph (3.5), (3.7), i.e.

�t
[g1,...,gE ]([h1, . . . hE]) = Pψt

g1,...,gE
(h1, . . . , hE). (4.4)

It is known that the set of gauge-invariant functions can be described in terms of functions on
the first cohomology class of the graph. In particular, if the graph has E edges and V vertices,
i.e. the gauge-variant configuration space is diffeomorphic to U(1)E , then the gauge-invariant
configuration space is diffeomorphic to U(1)E−V +1. This might raise the hope that these states
somehow resemble complexifier coherent states on the gauge-invariant configuration space
U(1)E−V +1. We will see that this is not quite true, but near enough.

The fact that the gauge group is Abelian is a great simplification: it allows us to pull
back all group multiplications to simple addition on the algebra, simply due to the fact that
exp iz exp iw = exp i(z + w). This will allow us to explicitly perform the gauge integrals for
arbitrary graphs, and obtain a formula for the gauge-invariant coherent states that only depends
on gauge-invariant combinations of hk = exp iφk and gk = exp izk , as well as topological
information about the graph, in particular its incidence matrix.

4.3. Basic graph theory

In order to be able to deal with the expressions for all graphs, we start with some basics of
graph theory. All the material, as well as all the proofs, can be found in [24] and the references
therein.

Definition 4.1. Let γ be a directed graph with V vertices and E edges. Let the edges be
labeled by numbers 1, . . . , E and the vertices by numbers 1, . . . , V . Then the incidence matrix
λ ∈ Mat(E × V, Z) is defined by the following rule:

λkl := 1 if the edge k ends at vertex l

λkl := −1 if the edge k starts at vertex l

λkl := 0 else.

Note in particular that, if edge k starts and ends at vertex l, i.e. the edge k is a loop, then λkl = 0
as well. Since either an edge is a loop or starts at one and ends at some other vertex, every
line of the matrix λ is either empty, or contains exactly one 1 and one −1. With the definition

u :=

⎛
⎜⎜⎜⎝

1
1
...

1

⎞
⎟⎟⎟⎠ ∈ R

V , (4.5)

we immediately conclude

λT u = 0. (4.6)
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Definition 4.2. Let γ ′ be a graph. If γ ′ contains no loops, then γ ′ is said to be a tree. If
γ ′ ⊂ γ is a subgraph, then γ ′ is said to be a tree in γ . If γ ′ ⊂ γ is a subgraph that meets
every vertex of γ , then γ ′ is said to be a maximal tree (in γ ).

Lemma 4.1. Every graph γ has a maximal tree as subgraph. Every tree has V = E + 1
vertices.

Maximal trees in graphs are not unique. It is quite easy to show that every function cylindrical
over a graph γ is gauge equivalent to a function cylindrical over γ , which is constant on the
edges corresponding to a maximal tree. This will be used later, and by the preceding lemma we
immediately conclude that the gauge-invariant degree of freedoms on a graph with V vertices
and E edges is E − V + 1 for Abelian gauge theories. This will be seen explicitly at the end
of this section.

The following theorem relates the numbers of different possible maximal trees to the
incidence matrix:

Theorem 4.1 (Kirchhoff). Let γ be a graph and λ its incidence matrix. Then the Kirchoff-
matrix K := λλT has nonnegative eigenvalues

0 = μ1 � μ2 � · · · � μV .

The lowest eigenvalue is μ1 = 0, and the degeneracy of 0 is the number of connected
components of the graph γ . Furthermore, the product of all nonzero eigenvalues

G := 1

V

∏
μk �=0

μk

is the number of different maximal trees in γ .

With this machinery, we will be able to perform the gauge integral for arbitrary graphs.
This will include some kind of gauge-fixing procedure, which will make use of a maximal
tree.

4.4. Gauge-variant coherent states and the gauge integral

The Abelianness of the gauge group allows us to pull back the group multiplication to addition
on the Lie algebra. This is why throughout this chapter we will, instead of elements h ∈ U(1),
deal with φ ∈ R by h = exp iφ, and instead of elements g ∈ C\{0}, we will work with the
corresponding z ∈ C such that g = exp iz, always having in mind that φ and z are only defined
modulo 2πn for n ∈ Z.

We will denote vectors (of any length) as simple letters z, φ, φ̃,m, . . . and their various
components with indices: zk, φk, φ̃k, . . .. The particular range of the indices will be clear
from the context, but we will still repeat it occasionally.

The gauge-variant coherent states on a graph γ with E edges are simply given by the
product

ψt
z(φ) =

E∏
k=1

∑
mk∈Z

e−m2
k

t
2 eimk(zk−φk), (4.7)

where zk = ϕk − ipk, k = 1, . . . , E is labeling the points in phase space where the coherent
states are peaked. With the Poisson summation formula one can rewrite this as

ψt
z(φ) =

√
2π

t

E ∑
m1,...,mE∈Z

exp

(
−

E∑
k=1

(zk − φk − 2πmk)
2

2t

)
. (4.8)

10
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We will now perform the gauge integral

�t
[z](φ) =

∫
U(1)V

dμH (φ̃)ψt
αφ̃z(φ)

=
√

2π

t

E ∫
[0,2π]V

dφ̃1

2π
· . . . · dφ̃V

2π

∑
m1,...,mE∈Z

exp

(
−

E∑
k=1

(Ak + λkaφ̃a − 2πmk)
2

2t

)

(4.9)

with A = z − φ, and where λka are the components of the transpose λT of the incidence
matrix.

In what follows, we will use the symmetries of this expression, together with a gauge-
fixing procedure, to separate the gauge degrees of freedom from the gauge-invariant ones.
The integrals will then be performable analytically, and the resulting expression can then be
interpreted as states being peaked on gauge-invariant quantities.

To simplify the notation, we will assume, without loss of generality, that γ is connected.
Furthermore choose, once and for all, a maximal tree τ ⊂ γ . Choose the numeration of
vertices and edges of γ according to the following scheme:

Start with the maximal tree τ . The tree consists of V vertices and V − 1 edges. Call a
vertex that has only one outgoing edge (in τ , not necessarily in γ ) an outer end of τ . Remove
one outer end and the corresponding edge from τ and obtain a smaller subgraph τ ′ ⊂ γ , which
is also a tree. Label the removed vertex with the number 1, and do so with the removed edge
as well. So this gives you v1 and e1. From τ ′, remove an outer end and the corresponding
edge, and label them v2 and e2, and obtain a yet smaller tree τ ′′ ⊂ τ ′ ⊂ τ ⊂ γ . Repeat this
process until τ has been reduced to τ (V −1 dashes), which is a point. This way, one has obtained
v1, . . . , vV −1 and e1, . . . , eV −1. Call the last remaining vertex vV . Label the edges that do not
belong to τ by eV , eV +1, . . . , eE in any order.

Choosing the numeration of the vertices and the edges in the above manner will help us in
rewriting the expression (4.9). First we note that the first V − 1 edges and the first V vertices
constitute the tree, the last E − V + 1 edges constitute what is not the tree in γ . Furthermore,
with this numeration, the edge ek is starting or ending at vertex vk for k = 1, . . . , V − 1.
In particular, the diagonal elements of the incidence matrix are all nonzero: λkk �= 0 for
k = 1, . . . , V − 1.

Definition 4.3. Let γ be a graph, with vertices v1, . . . vV and edges e1, . . . , eE . Between two
vertices vk and vl there is a unique path in τ , since a tree contains no loops. Call vk being
before vl , if this path includes ek , otherwise call vk being after vl .

Note that a vertex cannot be both before and after another vertex, but two vertices can both be
before or both be after each other.

The numeration we have chosen has the following consequence: for each vertex vk one
has that for all vl such that vk is after vl , that l � k. The converse need not be true. Note
further that every vertex is before itself, by this definition. Also, since eV is not an edge of
the graph, it does not even have to be touching vV . So, the question of whether vV is before
or after any other vertex makes no sense in this definition (but note that it does make sense to
ask whether any vertex is before or after vV ).

We now rewrite formula (4.9), by replacing the integrals over [0, 2π ] by integrals over R.
We do this inductively over the vertices from v1 to vV −1.

Consider the E terms constituting the sum in the exponent in (4.9). In some of them
φ̃1 appears, in some of them it does not, precisely if either λk1 �= 0 or λk1 = 0. Note that
φ̃1 definitely appears in the first term, by the above considerations. If φ̃1 appears in the kth

11
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term other that k = 1, shift the infinite sum over mk by mk + λ11λk1m1. The result of this is
that, since λ2

k1 = λ2
11 = 1 for these k, after this shift φ̃1 appears always in the combination

λ11φ̃1 − 2πm1 in all the factors. Now we can employ the formula∫
[0,2π]

dφ̃

2π

∑
m∈Z

f (φ̃ ± 2πm) = 1

2π

∫
R

dφ̃f (φ̃) (4.10)

and, regardless of whether λ11 = +1 or λll = −1, have

(4.9) =
√

2π

t

E ∫
R

dφ̃1

2π

∫
[0,2π]V −1

dφ̃2

2π
· . . . · dφ̃V

2π

×
∑

m2,...,mE∈Z

exp

(
− (A1 + λ1aφ̃a)

2

2t
−

E∑
k=2

(Ak + λkaφ̃a − 2πmk)
2

2t

)
.

This being the beginning of the induction, we now describe the induction step from l to l + 1
by the following technical lemma. By this we will be able to extend all integration ranges
over all of R, instead of finite intervals, which will turn out to be very useful.

Lemma 4.2. Let γ be a graph with V vertices, E edges and λ be its incidence matrix. Let
A ∈ C

E and t > 0, then we have, for 1 � l � V − 1:√
2π

t

E ∫
R

l−1

dφ̃1

2π
· . . . · dφ̃l−1

2π

∫
[0,2π]V −l+1

dφ̃l

2π
· . . . · dφ̃V

2π

×
∑

ml,...,mE∈Z

exp

(
−

l−1∑
k=1

(Ak + λkaφ̃a)
2

2t
−

E∑
k=l

(Ak + λkaφ̃a − 2πmk)
2

2t

)

=
√

2π

t

E ∫
R

l

dφ̃1

2π
· . . . · dφ̃l

2π

∫
[0,2π]V −l

dφ̃l+1

2π
· . . . · dφ̃V

2π

×
∑

ml+1,...,mE∈Z

exp

(
−

l∑
k=1

(Ak + λkaφ̃a)
2

2t
−

E∑
k=l+1

(Ak + λkaφ̃a − 2πmk)
2

2t

)
.

(4.11)

Proof. Note that we just proved the formula for l = 1. In the proof for arbitrary 1 � l � V −1
we will use the notion of vertices being before and after one another.

Consider all vertices vk such that vl is after vk . By construction, for all such k, we have
k < l, so by the induction hypothesis, the integration over all these vk runs over all of R, not
over just the interval [0, 2π ] any more. Consequently, the sum over these mk is not appearing
any longer. So we can shift the integration range by +2πλllml .

This will affect the terms in the first sum in

exp

(
−

l−1∑
k=1

(Ak + λkaφ̃a)
2

2t
−

E∑
k=l

(Ak + λkaφ̃a − 2πmk)
2

2t

)
(4.12)

the following way: Let k < l. The edge ek then belongs to the tree τ , and thus vl is either
after both vertices ek touches, or before both vertices. If vl is before both, the term does not
change at all, since the two φ̃a in it are not shifted. If vl is after both and is not itself one of
the two vertices, then the term gets changed by

(Ak + λkaφ̃a)
2 −→ (Ak + λkaφ̃a ± 2πλllml ∓ 2πλllml)

2 = (Ak + λkaφ̃a)
2,

12
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since the two φ̃a in a term always appear with opposite sign. So these terms do not change,
too. If vl is after both vertices that touch ek and is itself one of it (i.e. ek is an edge adjacent to
el , linked by vl), then the corresponding term changes by

(Ak + λkaφ̃a)
2 = (Ak + λklφ̃l + λkkφ̃k)

2 = (Ak + λkk(φ̃k − φ̃l))
2

−→ (Ak + λkk(φ̃k − φ̃l + 2πλllml))
2,

where λkl = −λll and λ2
ll = 1 have been used.

So, after this shift, in all terms in the first sum in (4.12) φ̃l has been replaced by
φ̃l − 2πλllml . The first term of the second sum reads

(Al + λll(φ̃l − φ̃a) − 2πml)
2 = (Al − λllφ̃a + λll(φ̃l − 2πλllml))

2,

where va is the other vertex touching el , apart from vl . So also in this term φ̃l and ml appear
in the combination φ̃l − 2πλllml .

The terms k = l + 1 till k = E − V + 1 remain unchanged, since they all correspond to
edges that lie between vertices va such that vl is before both va , and these φ̃a are hence not
shifted.

The terms k = E − V + 2 till k = E in (4.12), on the other hand, correspond to edges
that lie between two vertices such that vl could be before the one and after the other. This
is due to the fact that these edges do not belong to the maximal tree τ any longer. So in
these terms, a shift by ±2πλllml could have occurred by the shift of the integration range.
But in all these terms, there is still a term −2πmk present, and the sum over these mk is still
performed. So, by appropriate shift of these summations, similar to those performed in the
induction start, one can subsequently produce or erase terms of the form ±2πλllml in all of
the terms corresponding to k = E − V + 2 till k = E. Since there are enough summations
left, one has enough freedom to produce a ±2πλllml , where φ̃l is present, or erase all terms
with ml , where φ̃l is not present.

Thus, in the end, we again have a function only depending on φ̃l − 2πλllml , and thus we
can again apply formula (4.10), and, regardless of the sign of λll , erase the infinite sum over
ml , obtaining an integration range of φ̃l over all of R, which results in (4.11). This proves the
assertion of the lemma. �

An immediate corollary of lemma 4.2 is that√
2π

t

E ∫
[0,2π]V

dφ̃1

2π
· . . . · dφ̃V

2π

∑
m1,...,mE∈Z

exp

(
−

E∑
k=1

(Ak + λkaφ̃a − 2πmk)
2

2t

)

=
√

2π

t

E ∫
R

V −1

dφ̃1

2π
· . . . · dφ̃V −1

2π

∫ 2π

0

dφ̃V

2π

×
∑

mV ,...,mE∈Z

exp

(
−

V −1∑
k=1

(Ak + λkaφ̃a)
2

2t
−

E∑
k=V

(Ak + λkaφ̃a − 2πmk)
2

2t

)
.

(4.13)

Note that one cannot perform the induction step with the integration over φ̃V as well. The
reason for this is that for the induction step it is crucial that it does not make sense to define
whether vV is before or after any other vertex, since eV does not belong to the maximal tree τ ,
in fact it does not even need to touch vV . In particular, the integrand in (4.13) does not depend
on φ̃V at all! To see this, one only needs to shift all integrations φ̃1, . . . , φ̃V −1 by +φ̃V . In
all terms, the integration variables appear in the combination φ̃a − φ̃b for any two different
a, b = 1, . . . , V . So either we have the case that neither a nor b are equal to V, then nothing

13
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changes by this shift of integration, or one of a or b is equal to V . In this case the shift of the
other one cancels the φ̃V , since both φ̃a and φ̃b appear with opposite sign. So, after this shift,
φ̃V occurs nowhere in the formula any more. Thus, we can perform the integration over φ̃V

trivially and obtain

(4.9) =
√

2π

t

E ∫
R

V −1

dφ̃1

2π
· . . . · dφ̃V −1

2π

∑
mV ,...,mE∈Z

exp

(
−

E∑
k=1

(Ãk + λkaφ̃a)
2

2t

)∣∣∣∣
φ̃V =0

,

(4.14)

where

Ãk :=
{
Ak 1 � k � V − 1
Ak − 2πmk V � k � E

. (4.15)

To proceed, note that, since in every term in (4.14) the φ̃a appear as pairs with opposite sign,
the integrand is invariant under a simultaneous shift of all variables: φ̃a → φ̃a + c. We use
this fact to rewrite (4.14), by using the following technical lemma:

Lemma 4.3. Let f : R
n → C be a function with the symmetry

f (x1 + c, . . . , xn + c) = f (x1, . . . , xn) for all c ∈ R

such that x1, . . . , xn−1 → f (x1, . . . , xn−1, 0) is integrable. Then∫
R

n−1
dx1 · · · dxn−1f (x1, x2, . . . , xn−1, 0) = n

∫
R

n

dx1 · · · dxnδ(x1 + · · · + xn)f (x1, . . . , xn).

(4.16)

Proof. The proof is elementary. Write∫
R

n−1
dx1, . . . dxn−1f (x1, . . . , xn−1, 0)

=
∫

R
n−1

dx1, . . . dxn−1f

(
x1 −

∑n−1
k=1 xk

n
, . . . , xn−1 −

∑n−1
k=1 xk

n
,−

∑n−1
k=1 xk

n

)

=
∫

R
n

dx1, . . . dxnf

(
x1 −

∑n−1
k=1 xk

n
, . . . , xn−1 −

∑n−1
k=1 xk

n
, xn

)
δ

(
xn +

∑n−1
k=1 xk

n

)
.

Now perform a coordinate transformation

x̃k := xk −
∑n−1

k=1 xk

n
, for k = 1, . . . , n − 1

x̃n := xn.

We have
n−1∑
n=1

x̃k =
∑n−1

k=1 xk

n

and get∫
R

n−1
dx1, . . . dxn−1f (x1, . . . , xn−1, 0) = 1

J

∫
R

n

dnx̃f (x̃1, . . . , x̃n−1, x̃n) δ(x̃1 + . . . + x̃n).

(4.17)
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Here J = det (∂x̃k/∂xl) is the Jacobian matrix of the coordinate transform. It is given by

J = det

⎡
⎢⎢⎢⎢⎢⎣1n − 1

n

⎛
⎜⎜⎜⎜⎜⎝

1 1 · · · 1 0
1 1 · · · 1 0
...

...
. . .

...
...

1 1 · · · 1 0
0 0 · · · 0 0

⎞
⎟⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎦ ,

the determinant of which can easily computed to be J = 1
n

. Thus, with (4.17), the statement
is proven. �

We continue our analysis of the gauge-invariant overlap by using lemma (4.3) to rewrite (4.14)
to obtain

(4.9) = V

√
2π

t

E ∫
R

V

dφ̃1 . . . dφ̃V

(2π)V −1
δ

(
V∑

a=1

φ̃a

) ∑
mV ,...,mE∈Z

exp

(
−

E∑
k=1

(Ãk + λkaφ̃a)
2

2t

)
.

Now we split the integrations over the φ̃a from the Ãk , in order to perform the integration.
Because we are integrating over R

V and the integrand is holomorphic, we can now shift the φ̃a

also by complex amounts. This is necessary, since the Ãk are generically complex. A generic
shift of the φ̃a by complex numbers za looks like

(4.9) = V

√
2π

t

E ∫
R

V

dφ̃1 . . . dφ̃V

(2π)V −1
δ

(
V∑

a=1

(φ̃a + za)

)

×
∑

mV ,...,mE∈Z

exp

(
−

E∑
k=1

(Ãk + λkaφ̃a + λkaza)
2

2t

)

= V

√
2π

t

E ∫
R

V

dφ̃1 . . . dφ̃V

(2π)V −1
δ

(
V∑

a=1

(φ̃a + za)

)

×
∑

mV ,...,mE∈Z

exp

[
−

E∑
k=1

(
(λkaφ̃a)

2

2t
+

λkaφ̃a(λkaza + Ãk)

t
+

(λkaza + Ãk)
2

2t

)]

= V

√
2π

t

E ∫
R

V

dφ̃1 . . . dφ̃V

(2π)V −1
δ(uT φ̃ + uT z)

×
∑

mV ,...,mE∈Z

exp

(
− φ̃T λλT φ̃

2t
− φ̃T λ(λT z + Ã)

t
− (λT z + Ã)T (λT z + Ã)

2t

)
.

(4.18)

In (4.18), we have expressed all variables in terms of vectors and matrices, since this will
simplify the handling of the expressions a lot. The vectors u, φ̃, z have length V , the vector
Ã has length E and λ is the V × E incidence matrix. The vector u is given by (4.5). The
T means transpose.

The following lemma will help us to simplify this formula:

Lemma 4.4. Let λ be the V × E incidence matrix of a connected graph γ with E edges and
V vertices, and u = (11 · · · 1)T the vector of length V containing only ones. For any vector

15



Class. Quantum Grav. 26 (2009) 045011 B Bahr and T Thiemann

Ã ∈ C
E the set of equations

λ(λT z + Ã) = 0

uT z = 0

has exactly one solution in C
V .

Proof. Rewrite the first of these equations as

λλT z = −λÃ.

Because of (4.6), −λÃ lies in the orthogonal complement of u: −λÃ ∈ {u}⊥. Since the graph
γ is connected, by Kirchhoff’s theorem (4.1) the Kirchhoff-matrix λλT is positive definite on
{u}⊥, hence invertible on this (V − 1)-dimensional subspace of C

V . Define the V × V matrix
σ to be the inverse of λλT on {u}⊥, and zero on u:

σ(λλT )v = (λλT )σv = v for all uT v = 0

σu = 0.

So, the set of solutions of λλT z = −λÃ is given by

z = −σλÃ + αu α ∈ C. (4.19)

By the definition of σ , this means that

z = −σλÃ (4.20)

is the unique solution of both equations, which proves the lemma. �

Lemma 4.5. With the conditions of lemma 4.4, let z be the unique solution of λ(λT z + Ã) = 0
and uT z = 0, i.e. z = −σλÃ. Then

−λT σλ + 1E = Pker λ, (4.21)

where 1E is the E × E unit-matrix and Pker λ is the orthogonal projector onto the subspace
ker λ ⊂ C

E . In particular

λT z + Ã = Pker λÃ. (4.22)

Proof. Since

ker λ ⊕ img λT = 1E. (4.23)

The statement (4.21) can be rephrased as follows:

λT σλ = Pimg λT , (4.24)

which is the projector onto the image of λT . Let v ∈ img λT , so v = λT w for some w ∈ C
V .

Even more, since λT u = 0, we even can choose w to be orthogonal to u: w ∈ {u}⊥. Then

λT σλv = λT σ(λλT )w = λT w = v,

since by definition σ is the inverse of λλT on {u}⊥.
Let, on the other hand, v ∈ {img λT }⊥ = ker λ. Then

λT σλv = 0

trivially. Thus, λT σλ leaves vectors in img λT invariant and annihilates vectors from the
orthogonal complement of img λT . Hence λT σλ = Pimg λT , from which it follows that

−λT σλ + 1E = Pker λ.
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This was the first claim, the second one

λT z + Ã = Pker λÃ

follows immediately. �

Lemmas 4.4 and 4.5 enable us to rewrite (4.18) as

(4.9) = V

√
2π

t

E ∫
R

V

dφ̃1 . . . dφ̃V

(2π)V −1
δ(uT φ̃) ×

∑
mV ,...,mE∈Z

exp

(
− φ̃T λλT φ̃

2t
− ÃT Pker λÃ

2t

)
.

(4.25)

We can now finally evaluate the gauge integrals in (4.25) with the help of Kirchhoff’s theorem.
Since the delta-function in the integrand of (4.25) assures that we only integrate over the
orthogonal complement of u, instead of R

V , and Kirchhoff’s theorem 4.1 assures that the
Kirchhoff-matrix λλT is positive definite there, we can immediately evaluate the integral∫

R
V

dφ̃1 · · · dφ̃V

(2π)V −1
δ(uT φ̃) exp

(
− φ̃T λλT φ̃

2t

)
=
√

t

2π

V −1
1√∏V
a=2 μa

= 1√
GV

√
t

2π

V −1

, (4.26)

where μ2, . . . , μV are the nonzero eigenvalues of the Kirchhoff-matrix, and G is the number
of different possible maximal trees in the graph γ . With this, the gauge-invariant coherent
state can be written as

(4.9) =
√

V

G

√
2π

t

E−V +1 ∑
mV ,...,mE∈Z

exp

(
− (A − 2πm)T Pker λ(A − 2πm)

2t

)
,

where A = z − φ is the vector containing Ak = zk − φk in its kth component, and m being
the vector containing 0 in the first V − 1 components and mV , . . . , mE in the last E − V + 1
components.

As already stated, the kernel of λ is E − V + 1 dimensional. Let l1, . . . , lE−V +1 be an
orthonormal basis of ker λ ⊂ R

E . Define

zgi
ν := lTν z, φgi

ν := lTν φ, mgi
ν := lTν m. (4.27)

With this and Pker λ = ∑E−V +1
ν=1 lν l

T
ν , we get our final formula

�t
[z](φ) =

√
V

G

√
2π

t

E−V +1 ∑
mV ,...,mE∈Z

exp

(
−

E−V +1∑
ν=1

(
z
gi
ν − φ

gi
ν − 2πm

gi
ν

)2

2t

)
. (4.28)

The gauge-invariant coherent state only depends on the z
gi
ν and φ

gi
ν , which are gauge-invariant

combinations of the zk and φk . That the linear combinations (4.27) are gauge-invariant, is
clear from the construction, but one can immediately see this from the following: perform a
gauge-transformation, which shifts the φk by λkaφ̃a . So, in matrices, one has φ → φ + λT φ̃.
Thus,

φgi
ν = lTν φ −→ lTν (φ + λT φ̃) = lTν φ + lTν λT φ̃ = lTν φ = φgi

ν ,

where lν ∈ ker λ has been used, from which it follows that λlν = 0, so lTν λT = 0. Thus,
the linear combinations of φ in φ

gi
ν are all gauge invariant. The same holds true, of course,

for the z
gi
ν and m

gi
ν . So, the coherent states depend only on gauge-invariant combinations of

φ, which was clear from the beginning, but can now be seen explicitly. Note that the basis
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{lν}N−V +1
ν=1 is, of course, not unique, but can be replaced by any other basis l′ν = Rνμlμ with

R ∈ O(E − V + 1).
Compare the formula for the gauge-invariant coherent state (4.28) with the formula for

the gauge-variant coherent states on E edges (4.8). Up to a factor of (V/G)1/2, the similarity
is striking. One could be led to the conclusion that gauge-invariant coherent states are nothing
but gauge-variant coherent states, only depending on gauge-invariant quantities. The fact that
the gauge-invariant configuration space is diffeomorphic to U(1)E−V +1, supports this guess.

However, this is not true. The reason is that the summation variables mV , . . . , mE are
placed in wrong linear combinations in the formula. In particular, a gauge-invariant state is
not

�t
[z](φ) �=

√
V

G

√
2π

t

E−V +1 ∑
m

gi

1 ,...,m
gi

E−V +1∈Z

exp

(
−

E−V +1∑
ν=1

(
z
gi
ν − φ

gi
ν − 2πm

gi
ν

)2

2t

)

=
√

V

G
ψt

zgi (φ
gi). (4.29)

Of course, from the form (4.28) one cannot deduce a priori that the m
gi
ν could not, probably, be

reordered in a way, maybe by an intelligent choice of lν and/or suitable shifting of summations,
such that a form like (4.29), possibly with different t for different variables, could be possible.
But already simple examples like the 3-bridge graph show that this cannot be done. It could
be, if one is lucky (in particular, on the 2-bridge graph), but generically a gauge-invariant
coherent state is no complexifier coherent state depending on gauge-invariant variables.

4.5. Peakedness of gauge-invariant coherent states

In this chapter, we will shortly investigate the peakedness properties of the gauge-invariant
coherent states. In particular, we will show that they are peaked on gauge-invariant quantities.
Let γ be a graph with E edges. Then, a complexifier coherent state is then labeled by E
complex numbers z1, . . . , zE and a semiclassicality parameter t > 0. Such a state is given by
(4.8). The corresponding gauge-invariant coherent states, obtained by applying the projector
onto the gauge-invariant sub-Hilbert space, has, in the last section, been shown to be (4.28).

Using
〈
ψt

w|ψt
z

〉 = ψ2t
z−w̄(0), the inner product between two gauge-invariant coherent states

�t
[w] and �t

[z] is given by

〈
�t

[w]

∣∣�t
[z]

〉 = √
V

G

√
π

t

E−V +1 ∑
mV ,...,mE∈Z

exp

(
−

E−V +1∑
ν=1

(
w̄

gi
ν − z

gi
ν − 2πm

gi
ν

)2

4t

)
. (4.30)

With zk = ϕk − ipk , i.e. by splitting the phase-space points into configuration and momentum
variables, one immediately gets a formula for the norm of a gauge-invariant coherent state

∥∥�t
[z]

∥∥2 =
√

V

G

√
π

t

E−V +1 ∑
mV ,...,mE∈Z

exp

(
E−V +1∑

ν=1

(
p

gi
ν − π imgi

ν

)2

t

)
. (4.31)

Note that there is, apart from m = 0, no combination of mV , . . . , mE such that the
corresponding m

gi
ν = 0 for all ν = 1, . . . , E − V + 1. If there is one such combination,

there are infinitely many of these combinations, hence infinitely many equally large terms.
So, if there were, then the sum in (4.30) would not exist at all. But we know that the sum in
(4.30) is absolutely convergent, so there is no such combination.
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What we just said is equivalent to saying that

Pker λ

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...

0
mV

...

mE

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�= 0 for all mV , . . . mE ∈ Z,

which is, of course, due to the fact that the last E − V + 1 components correspond, by
construction, to the gauge-invariant directions on U(1)E .

These considerations just show that, in the limit t → 0, one can neglect all terms with
m

gi
ν �= 0 in (4.31). In particular, we have∣∣∣∣∣∥∥�t

[z]

∥∥2 −
√

V

G

√
π

t

E−V +1

exp

(
E−V +1∑

ν=1

(
p

gi
ν

)2

t

)∣∣∣∣∣
�
√

V

G

√
π

t

E−V +1 ∑
mV ,...,mE∈Z\{0,...,0}

exp

(
E−V +1∑

ν=1

(
p

gi
ν

)2 − π2
(
m

gi
ν

)2

t

)

=
√

V

G

√
π

t

E−V +1

exp

(
E−V +1∑

ν=1

(
p

gi
ν

)2

t

)⎡⎣ ∑
�m∈ZE\{0,...,0}

exp

(
−

E−V +1∑
ν=1

π2
(
m

gi
ν

)2

t

)⎤⎦

=
√

V

G

√
π

t

E−V +1

exp

(
E−V +1∑

ν=1

(
p

gi
ν

)2

t

)⎡⎣ ∑
�m∈ZE\{0,...,0}

exp

(
−π2mT Pker λm

t

)⎤⎦ .

(4.32)

Define

K := min
‖m‖=1

‖Pkerm‖ > 0.

With this, mT Pkerm � K2‖m‖2, so we get

∑
mV ,...,mE∈Z

exp

(
−π2 mT Pker λm

t

)
�

∑
mV ,...,mE∈Z

exp

(
−π2K2 ‖m‖2

t

)

=
[∑

n∈Z

exp

(−π2K2

t
n2

)]E−V +1

= 1 + O(t∞), (4.33)

where the 1 comes from the �m = �0 ∈ Z
E term. Thus, we can estimate (4.32) from the above

by∣∣∣∣∣∥∥�t
[z]

∥∥2 −
√

V

G

√
π

t

E−V +1

exp

(
E−V +1∑

ν=1

(
p

gi
ν

)2

t

)∣∣∣∣∣
�
√

V

G

√
π

t

E−V +1

exp

(
E−V +1∑

ν=1

(
p

gi
ν

)2

t

)
O(t∞). (4.34)
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So the norm of a gauge-invariant coherent state is, as t → 0, given by

∥∥�t
[z]

∥∥2 =
√

V

G

√
π

t

E−V +1

exp

(
E−V +1∑

ν=1

(
p

gi
ν

)2

t

)
(1 + O(t∞)).

In a similar way, one can estimate the inner product of two gauge-invariant coherent states
�t

[w] and �t
[z]. It is given by (4.30), and if the labels z

gi
ν = ϕ

gi
ν + ip

gi
ν and w

gi
ν = χ

gi
ν + iqgi

ν are

nearly equal, then ϕ
gi
ν − χ

gi
ν ≈ 0, and again, only the �m = �0 ∈ Z

E-term dominates (4.30) in
the limit t → 0. We can then, along similar lines as in the computation of (4.31), estimate the
inner product (4.30) in the limit t → 0 to be

〈
�t

[w]

∣∣�t
[z]

〉 = √
V

G

√
π

t

E−V +1

exp

(
−

E−V +1∑
ν=1

(
ϕ

gi
ν − χ

gi
ν

)2

4t

+ i
E−V +1∑

ν=1

(
ϕ

gi
ν − χ

gi
ν

)(
p

gi
ν + q

gi
ν

)
2t

+
E−V +1∑

ν=1

(
p

gi
ν + q

gi
ν

)2

4t

)
(1 + O(t∞)). (4.35)

For the overlap of two gauge-invariant coherent states �t
[w] and �t

[z] one has then, with (4.31)

I t ([w], [z]) =
〈
�t

[w]

∣∣�t
[z]

〉∥∥�t
[w]

∥∥∥∥�t
[z]

∥∥ = exp

(
−

E−V +1∑
ν=1

(
ϕ

gi
ν − χ

gi
ν

)2
+
(
p

gi
ν − q

gi
ν

)2

4t

− i

(
ϕ

gi
ν − χ

gi
ν

)(
p

gi
ν + q

gi
ν

)
2t

)
(1 + O(t∞)). (4.36)

So the peakedness property can be read off immediately

|I t ([w], [z])|2 = exp

(
−‖Pker λ(z − w)‖2

2t

)
(1 + O(t∞)). (4.37)

This approaches 1 if the gauge-invariant quantities [z] ≈ [w] are close to each other, but as
soon as Pker λ(z − w) goes away from zero, the expression becomes tiny, due to the tiny t. It
follows that the overlap is peaked at coinciding gauge-invariant labels.

Due to the strong similarity of the gauge-invariant coherent states �t
[z] to the complexifier

coherent states ψt
z , it is quite easy to show that they satisfy the Ehrenfest property for gauge-

invariant observables. For this one can, up to terms of order O(t∞), copy the corresponding
proof for the complexifier coherent states [19]. However, the Ehrenfest property even follows
generally from the peakedness property for any compact, semi-simple gauge group G, as will
be shown in the following paper.

5. Summary and conclusion

This is the first of two papers concerning the gauge-invariant coherent states for loop quantum
gravity. In this one, we have replaced the gauge group G = SU(2) of LQG by the much simpler
G = U(1), the case G = U(1)3, which is also of interest for LQG, follows immediately. We
have investigated the gauge-invariant coherent states, in particular we have computed their
explicit form and their overlap. The results found are very encouraging: while the complexifier
coherent states are peaked on points in the kinematical phase space, which contains gauge
information, the gauge-invariant coherent states, which are labeled by gauge-equivalence
classes, are also sharply peaked on these. In particular, the overlap between two gauge-
invariant coherent states labeled with different gauge orbits tends to zero exponentially fast as
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the semiclassicality parameter t tends to zero. Even more, it could be shown that the overlap
is actually a Gaussian in the gauge-invariant variables.

This shows the good semiclassical properties of these states: as t tends to zero, different
states become approximately orthogonal very quickly, suppressing the quantum fluctuations
between them. Also, the expectation values of operators corresponding to gauge-invariant
kinematical observables (such as volume or area) are approximated well, which immediately
follows from the corresponding properties of the gauge-variant CCS states.

This shows that the gauge-invariant coherent states are in fact useful for the semiclassical
analysis of the gauge-invariant sector of LQG, and is the first step on the road to physical
coherent states.

Apart from the nice semiclassical properties, the computation has revealed a deep
connection of the gauge-invariant sector and the graph topology. In particular, the formula
for the gauge-invariant coherent states on a graph γ contains the incidence matrix λ of γ . In
contrast, the CCS are simply a product of states on each edge of the graph, hence have no
notion of which edges are connected to each other and which are not, while the gauge-invariant
coherent states explicitly contain information about the graph topology. This is simply due to
the fact that the set of gauge-invariant degrees of freedom depend on the graph topology and
can be computed by graph-theoretic methods.

While the results for G = U(1) are quite encouraging, the case of ultimate interest for
LQG is G = SU(2), which is much more complicated. We will address this topic in the
following paper, which will deal with this issue and try to establish as much results as possible
from U(1), where the problem could be solved completely and analytically, also for SU(2).
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