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Abstract

Mass deformations of supersymmetric Yang-Mills theories in three spacetime dimen-

sions are considered. The gluons of the theories are made massive by the inclusion of a

non-local gauge and Poincare invariant mass term due to Alexanian and Nair, while the

matter fields are given standard Gaussian mass-terms. It is shown that the dimensional

reduction of such mass deformed gauge theories defined on R3 or R× T 2 produces ma-

trix quantum mechanics with massive spectra. In particular, all known massive matrix

quantum mechanical models obtained by the deformations of dimensional reductions of

minimal super Yang-Mills theories in diverse dimensions are shown also to arise from the

dimensional reductions of appropriate massive Yang-Mills theories in three spacetime

dimensions. Explicit formulae for the gauge theory actions are provided.

http://lanl.arXiv.org/abs/0806.4292v1


1 Introduction and Summary

In this paper we consider mass-deformations of 2 + 1 dimensional supersymmetric Yang-

Mills theories, defined on R3 or R × T 2, and their connections to supermembrane theories.

In particular we show that all known mass-deformed models of supersymmetric matrix

quantum mechanics (SMQM), obtained recently by deforming dimensional reductions of

minimal super Yang-Mills theories in dimensions ten, six, four and three[22], can also be

derived as dimensional reductions of appropriate mass-deformations of super Yang-Mills

theories in three spacetime dimensions. We thus propose a novel connection between a class

of Poincare invariant massive gauge theories in three dimensional flat spacetimes and mass-

deformed SMQM, which are closely related to matrix regularizations of supermembrane

theories in plane wave type backgrounds.

It is, of course, well known that super Yang-Mills theories and matrix models are closely

related. Perhaps the best studied example of this connection is between minimal super Yang-

Mills in ten dimensions and the BFSS matrix model of eleven dimensional supergravity[8].

Recently, a class of supersymmetric matrix models with discrete spectra, which are con-

nected both to Yang-Mills theories as well as to membranes in non-trivial backgrounds have

been intensely studied. For instance, the N = 16 SMQM derived by Berenstein, Maldacena

and Nastase (BMN) realizes the matrix regularization of eleven dimensional supermem-

branes in the maximally supersymmetric pp-wave background[10]. This matrix model has

a number of interesting features. For example, it does not suffer from the usual problem

of the existence of flat directions. The presence of explicit mass terms in the Hamiltonian

renders it’s spectrum discrete, thus lifting the flat directions. It possesses massive BPS

states[9, 11, 12, 13] and it’s non-BPS spectrum can be studied in perturbation theory. Fur-

thermore the large N perturbation theory of the model can be reformulated in the language

of quantum spin chains. To the extent that it has been possible to test so far, the spin

chains that follow from the BMN matrix model turn out to be integrable[14, 15, 16]. The

BMN matrix model is also closely tied to gauge theories in 2 + 1 and 3 + 1 dimensions. As

a matter of fact, it can be derived from both N = 4 SYM on R × S3 and N = 8 SYM

on R × S2 by dimensional reduction[28, 18, 19]. Conversely, it can also be ‘oxidized’, upon

an expansion around it’s fuzzy sphere vacuum to produce the maximally supersymmetric

Yang-Mills theory on R × S2[9]. Furthermore, the quantum spectrum of the matrix model

also appears to be extremely closely related to the perturbative spectra of maximally super-

symmetric Yang-Mill theories on R × S3[20, 14] and R × S2[21]. This chain of connections

hints at a remarkably close connection between higher dimensional gauge theories on curved

backgrounds and mass deformed matrix models that clearly merits further study.

A systematic classification of all the supersymmetry preserving mass-deformations of
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dimensional reductions of minimal Yang-Mills theories in various dimensions (down to D =

0 + 1), was recently carried out in[22]. It is only natural to ask what the gauge theoretic

origins of these matrix models are. A partial answer to that question is already provided by

the connection of the BMN matrix model to super Yang-Mills theories on R×S3 and R×S2

mentioned above. Building on this result it is natural to think that it is necessary to consider

Yang-Mills Hamiltonians on curved compact spaces to connect them to massive SMQM.

Typically one expects the masses for the scalars corresponding to the spacial components of

the gauge fields to be non-vanishing if the spacial manifold for the gauge theory is compact

and curved e.g S3 or S2. In this paper we show that SMQM models can also be derived by

dimensionally reduced massive gauge theories on flat backgrounds such as R3 or R × T 2.

In particular we connect all the mass deformed SMQM Lagrangians in[22] to dimensional

reductions of mass deformations of super Yang-Mills theories on flat backgrounds in D =

2 + 1.

Mass-deformations of Yang-Mills theories require mass terms for the gluon degrees of

freedom. In the special case of 2 + 1 dimensions a gauge and Poincare invariant mass term

for pure Yang-Mills theory was used by Alexanian and Nair (AN)in[1] to estimate the non-

perturbative mass-gap of the gauge theory. This mass-term was first proposed by Nair as a

magnetic mass-term for high temperature QCD1. It is very closely related to the (electric)

Debye mass term that arise from the re-summation of hard thermal loops in a quark-gluon

plasma[2]. This particular term removes all the massless modes from the theory, and thus

provides a natural IR regulator for the three dimensional gauge theory as well. In what

is to follow later in the paper, we use the action due to Alexanian and Nair to make the

gluonic degrees of freedom of the relevant three dimensional gauge theories massive.

There now exists a very robust and powerful Hamiltonian formalism for Yang-Mills

theory in D = 2 + 1 due to Kim, Karabali and Nair (KKN)[7, 4, 5, 3], that can account for

several non-perturbative features of the gauge theory including the existence of a mass-gap

in its spectrum. Indeed, the term proposed by Alexanian and Nair is closely tied to the

mechanism leading to the non-perturbative mass gap in the spectrum of the gauge theory

in the KKN Hamiltonian formalism. In the gauge invariant Hamiltonian formulation of the

theory, the gap is ultimately related to the volume measure on the configuration space of the

gauge theory, which can be computed and expressed as a hermitian Wess-Zumino-Witten

model[4, 7]. Though it is not completely clear how to pass from the non-local Hamiltonian

formalism due to KKN to a covariant path-integral framework, a prescription for doing

so, based upon the covariantization of the KKN formalism was proposed in[3]. Requiring

manifest Lorentz covariance of the formalism led to two different possibilities for potential

1Recall that at finite temperature the magnetic sector of Yang-Mills theory in D = 3 + 1 is effectively

described by Euclidean D = 2 + 1 Yang-Mills theory
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gauge invariant mass-terms that one may consider in the path integral framework, and one

of these was the term proposed in [2] from finite temperature QCD considerations. Thus,

even though requiring covariantization does not uniquely fix the form of the mass-term that

is dynamically generated in the gauge theory path integral, it does limit the possibilities

down to two. Intriguingly, as we show later in the paper, of these two candidate mass-terms

only one, namely the one used by Alexanian and Nair [1], reduces to standard quadratic

mass term for matrix quantum mechanics upon dimensional reduction. Thus, along with

manifest covariance, requiring that the non-local mass term for the gauge theory reduce

to the standard Gaussian terms for the dimensionally reduced theory, uniquely relates the

non-perturbative mass-gap and the volume measure on the configuration space of the gauge

theory to the non-local Lorentz and gauge invariant mass term due to Alexanian and Nair.

Generating the standard (Gaussian) mass terms for the matrices corresponding to the

gluonic degrees of freedom by dimensionally reducing the AN mass-term opens up the

possibility of relating mass-deformed SMQM to mass-deformations of supersymmetric Yang-

Mills theories in three dimensions via dimensional reduction. One can consider the AN

term to deform the ‘pure-glue’ part of the theory and use standard quadratic mass-terms

for the matter degrees of freedom. As stated in the beginning, we show that all the known

mass-deformations of SMQM Hamiltonians obtained by dimensional reductions of various

minimal super Yang-Mill theories[22], can be derived as dimensional reductions of mass

deformed three dimensional super Yang-Mills theories.

The paper is organized as follows. In the next section, we provide a self-contained

review of the mass-deformation of purely gluonic three dimensional Yang-Mills theory due

to Alexanian and Nair. In particular we focus on how the equations of motion of the

theory can be brought to a form that involve only local variables, even though the AN

mass-term is highly non-local. We also review the Minkowski space continuation of this

mass term as suggested in[3]. In the next section we focus on the dimensional reduction

of the mass-deformed Hamiltonian by Toroidal compactification of the spacial dimensions.

We also comment on how the dimensional reduction can be used to uniquely connect the

AN mass term to the KKN Hamiltonian analysis. In the section following this, we present

the list of various mass deformations of super Yang-Mills actions in D = 2 + 1 that reduce

to massive SMQM theories derived in[22]. The explicit formulae for the SMQM actions and

dome other relevant details are also presented in the appendix for the sake of completeness.

We end the paper with some concluding remarks.
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2 Massive Yang-Mills in D = 2 + 1

We start with the Euclidean action for pure Yang-Mills theory in 2+1 dimensions with the

gauge invariant mass term (Sm) included.

S =

∫

d3x
1

4g2
F a

µνF a
µν +

1

g2
Sm. (1)

Sm[1] can be written as

Sm = −m2

∫

dx0dΩK(A+, A−) (2)

The vector fields A± are defined as

A+ =
Aµnµ

2
, A− =

Aµn̄µ

2
(3)

where n, n̄ are three dimensional complex null-vectors

~n = (− cos θ cos φ − i sin φ,− cos θ sin φ + i cos φ, sin θ). (4)

dΩ = sin θdθdφ is the volume measure on the two-sphere.

It should be kept in mind that the sphere only provides two auxiliary angular coordinates

which are used to construct two dimensional quantities (e.g. A±) out of their three dimen-

sional counterparts in a somewhat twistorial fashion. These coordinates are integrated over

and are not related to the underlying spacetime coordinates in any way. The kernel K is

given by

K(A+, A−) =
1

π

∫

1
(Tr(A+(1)A−(1)) + iπI(A+(1)) + iπI(A−(1))) (5)

where

I(A(1)) = i
∑

n

(−1)n

n

∫

2···n

Tr(A(1) · · ·A(n))

z̄12z̄23 · · · z̄n1

d2x1

π
· · · d2xn

π
. (6)

The arguments of A refer to the different ‘spacial’ points. The transverse coordinate x0 is

the same for all the A’s in the above expression for I. The complex coordinate

z̄ = nµxµ. (7)

Alternatively, the mass term can also be formally expressed as

K(A+, A−) = Tr

(

A+A−

π
+ ln(D+) + ln(D−)

)

(8)

where D± = ∂± +A±. The trace in the above expression stands for the trace over the color

indices as well as the integration over the transverse coordinates. It is understood that:

D+ =
Dµnµ

2
D− =

Dµn̄µ

2
(9)
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It is worth emphasizing that although in what we do in this paper Sm is simply added in

by hand, it is generated non-perturbatively by the the ‘pure-glue’ theory as well. Indeed,

that is the key result in[1], where Sm was shown to arise by the re-summation of an infinite

class of Feynman diagrams.

2.1 Equations of Motion:

Although the ‘mass-term’ for the gluons is a highly non-local quantity, involving an infinite

number of interaction vertices, its contribution to the equations of motion can be cast in

local form at the expense of introducing an auxiliary field. This is what we summarize next.

The variation of the mass term can be expressed as2:

δSm

δAa
µ

=
m2

4πg2

∫

Ω
(Ja

+nµ + Ja
−n̄µ). (10)

The currents

J± = A± − a± (11)

involve the auxiliary fields a±, which stem from the variation of the non-local ‘Tr ln’ term.

Specifically:

δTr ln(D+) = − 1

π

∫

d3xTr(a−(x)δA+(x)), δTr ln(D−) = − 1

π

∫

d3xTr(a+(x)δA−(x)).

(12)

Clearly, the auxiliary fields involve the greens functions for the D± operators at coincident

points, which require careful regularizations. Different choices of regularizations can change

the numerical value of the mass gap by adding different local counter-terms to the action.

Hence, the choice of regularization should be regarded as part of the definition of the theory.

Formally, we can express

a−(z) =
∑

n

(−1)n−1

∫

d2z1

π

d2z2

π
· · · d2zn

π

A+(1) · · ·A+(n)

(z̄ − z̄1)(z̄1 − z̄2) · · · (z̄n − z̄)
. (13)

There is a similar expression for a+. From these expressions, it is easily shown that:

D+a− = ∂−A+ D−a+ = ∂+A−. (14)

To get to (14) from (13), a specific choice of regularizing the coincident limits of the Green’s

functions
1

π(z̄ − w̄)
and

1

π(z − w)
(15)

2In our convention, Aµ = −itaAa
µ, with Tr(tatb) = 1

2
δab and [ta, tb] = ifabctc.
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has been invoked. However, once the choice is made, we can regard equations (14) as the

equations of motion for the auxiliary fields.

Gathering together everything so far, we see that the equations of motion of the massive

theory can be written as:

− DµF a
µν +

m2

4π

∫

Ω
(Ja

−nν + Ja
+n̄ν) = 0,

D+a− = ∂−A+, D−a+ = ∂+A−. (16)

We also note that the last equation for the auxiliary fields implies that

D+J− + D−J+ = 0 ⇒ DµJµ = 0. (17)

In other words the current J is covariantly conserved.

We thus see that although the mass term that we consider is non-local, the equations of

motion implied by it can be brought to a manifestly local form, at the expense of the

introduction of the auxiliary variables.

We also note an important consequence of the equations of motion of the massive theory;

namely:

D[µJν] = 2Fµν . (18)

This can be derived by contracting the tensor D[µJν] with n, n̄ to get

(D[µJν] − 2Fµν)nµn̄ν = 0 → ǫµνρ(D[µJν] − 2Fµν)xρ = 0 (19)

where xρ ∈ S2. Since this relation is true for arbitrary points on S2, (18) is implied as it’s

consequence.

2.2 Minkowski Continuation

For the purposes of mass-deforming supersymmetric Yang-Mills theories, it is imperative

to consider the analytic continuation of the mass-term to Minkowski space. An elegant

prescription for doing that was proposed in[3]. In this section we provide a brief review of

the analytic continuation suggested in[3].

To continue the results to Minkowski space, one needs to de-compactify one of the angles

(θ) in (4). The ensuing null vectors would then be given by

nµ = (cosh(θ) cos(φ) − i sin(φ), cosh(θ) sin(φ) + i cos(φ), sinh(θ))

n̄µ = (cosh(θ) cos(φ) + i sin(φ), cosh(θ) sin(φ) − i cos(φ), sinh(θ)). (20)
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However, using this naive continuation of the mass term leads to divergent integrals over

the non-compact Lorentz group SO(2, 1). The regularization of these integrals suggested

in [3] involves the introduction of the operators

Sµ = ātµt2āT , S̄µ = aT t2tµa (21)

built out of the oscillators (ai, āi), i = 1, 2, which transform as doublets of SO(2, 1) and

satisfy the commutation relations

[ai, āj ] = δij . (22)

It is also understood that the superscript ‘T ’ in (21) refers to transpose while tµ are the Lie

algebra generators of SO(2, 1).

tµ = (iσ1, iσ2, σ3). (23)

The spin operators provide a finite regularization of the null-vectors in the sense that

SµSµ = S̄µS̄µ = 0 SµS̄µ = 2(Q2 − Q) (24)

where Q = āiai is an SO(2, 1) invariant. A construction that is very reminiscent of fuzzy

spheres was carried out in [3] to regulate the integrals over the Lorentz group. One con-

structs states with a fixed value of Q which we denote by M − 1. Such states are given

by

|r, s >=
1√
r!s!

ār
1ā

s
2|0 > . (25)

In the large M limit, the re-scaled operators S̃µ = Sµ

M
, ˜̄Sµ = S̄µ

M
commute and can be

thought of as ‘classical’ quantities. They remain null, while their dot product is given by

S̃µ ˜̄Sµ = 2. (26)

This construction allows one to define finite regularized integrals over the Lorentz group as

∫

dµSO(2,1)F (n, n̄) ⇒ 1

M
TrF (S̃, ˜̄S)M→∞. (27)

the trace on the r.h.s above refers to
∑M=1

r,s=0 < r, s|F |r, s >, while dµSO(2,1) = d(cosh(θ))dφ.

With the Minkowski continuation of the null-vectors and the associated integration over

the Lorentz group defined as above, we can express the Minkowskian mass-deformed action

of Yang-Mills theory as

SMin = − 1

4g2

∫

d3x(F a)µν(F a)µν +
4πm2

g2

∫

dx0dµSO(2,1)K(A+, A−). (28)

K is the same functional of A± as in the Euclidean case with the Euclidean null vectors

are replaced by their Minkowski counterparts (20). The equations of motion can also be
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readily derived to be:

− Dµ(F a)µν + m2

∫

Ω
(Ja

−nν + Ja
+n̄ν) = 0,

D+a− = ∂−A+, D−a+ = ∂+A−. (29)

Their formal structure remains the same as in the Euclidean case.

3 Compactification on T 2

We shall now consider the reduction of the massive Yang-Mills theory to 0+1 dimensions by

compactifying the spacial directions on a T 2. As is well known, the dimensional reduction

of pure 3D Yang-Mills reduces to matrix quantum mechanics of two matrices; the matrices

being the zero modes of A1 and A2. The dimensional reduction of the non-local mass term is

much more involved. In principle it contains an infinite number of interaction vertices, which

can lead to a complicated contributions to the action of the reduced quantum mechanical

system. It is thus instructive to look at the first few interaction vertices generated by the

mass term. We shall adhere to the Euclidean version of the mass term in the following

analysis. A straightforward, but lengthy computation allows one to write:

−
∫

dx0dΩK(A+, A−) = K2 + K3 + K4 + · · · (30)

K2 =
1

2

∫

k

Aa
µ(k)

[

δµν − kµkν

k2

]

Aa
ν(−k) (31)

K3 =

∫

ki,Ω

i

12π
Tr (A(k1).n[A(k2).n,A(k3).n])

(

1

k1.n

(

k2.n̄

k2.n
− k3.n̄

k3.n

))

. (32)

while

K4 = − 1

8π

∫

ki,Ω

Tr(A.n(k1) · · ·A.n(k4))

k3.n + k4.n

(

1

k2.n

(

k3.n̄

k3.n
− k4.n̄

k4.n

)

− 1

k1.n

(

k3.n̄

k3.n
− k4.n̄

k4.n

))

(33)

Conservation of momenta is implied in the above formulae.

If we restrict all the momenta in the integrands to the form (k, 0, 0) which amounts to a

dimensional reduction, we see that K3,K4 vanish. Moreover, K2 reduces to an ordinary

quadratic mass term commensurate with the mass deformation of a gauged matrix quantum

mechanical model. The fifth and higher point vertices will similarly vanish upon dimensional

reduction if linear combinations of the structure

Vij =

(

ki.n̄

ki.n
− kj .n̄

kj .n

)

(34)
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can be factored out of their integrands. The natural question that arises is whether this

does indeed happen. The simplest way to see that is does is by considering the variation of

the mass term. In particular, if we consider the variation of the holomorphic determinant,

we see, from the very definition of a−:

δTr ln(∂+ + A+) = − 1

π
Tr(a−δA+). (35)

However, the equations of motion for a− (16) D+a− = ∂−A+, and its conjugate, can be

readily solved when A+ and A− depend on only one of the three spacial coordinates, which

we denote by the ‘0’ direction. A particularly simple solution is given by

a+ =
n0

n̄0
A−, a− =

n̄0

n0
A+. (36)

This allows us to integrate (35) (and its conjugate) and express the dimensional reduction

of the determinants in closed form as:

Tr ln(∂+ + A+)0+1 = − 1

2π

k.n̄

k.n
Tr(A+A+), Tr ln(∂− + A−)0+1 = − 1

2π

k.n

k.n̄
Tr(A−A−). (37)

where the ‘momentum’ k = (1, 0, 0). Hence we can express the dimensional reduction of

the mass term as

(Sm)0+1 = −m2

∫

d3xdΩTr

[

A+A−

π
− 1

2π

k.n̄

k.n
Tr(A+A+) − 1

2π

k.n

k.n̄
Tr(A−A−)

]

. (38)

After evaluating the angular integrals, we have

(Sm)0+1 = −m2VM2

2

∫

dx0Tr

[

Aj

(

δjl −
kjkl

k2

)

Al

]

. (39)

In other words,

(Sm)0+1 = −m2VM2

2

∫

dx0Tr





∑

l=1,2

AlAl



 , (40)

where VM2/2 is the volume of T 2.

Gathering together the results for the dimensional reduction of the Euclidean case, we

have
∫

d3x
1

4g2
F a

µνF a
µν +

1

g2
Sm

0+1→
∫

dx0
1

g2
M

Tr

(

1

2
(DtΦiDtΦi + m2ΦiΦi) −

1

4
[Φi,Φj ]

2

)

. (41)

The matrix model coupling

g2
M =

g2

VM2

(42)

while the hermitian matrices

Φl = iAl, l=1,2. (43)
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Thus the dimensional reduction of the mass-deformed gauge theory is nothing but the mass

deformation of a gauged matrix quantum mechanics of two Hermitian matrices.

In the above formula, the relative sign between the kinetic and the potential energy terms is

consistent with the Euclidean action for matrix quantum mechanics. To get the Minkowski

version of the action we need to dimensionally reduce (28). The steps involved are exactly

the same as the Euclidean case only the angular integrals need to be evaluated with the

regularization prescription discussed earlier. We quote the final result below:

SMin
0+1→

∫

dx0
1

g2
M

Tr

(

1

2
(DtΦiDtΦi − m2ΦiΦi) +

1

4
[Φi,Φj ]

2

)

. (44)

3.1 Uniqueness of the Mass-Term:

As alluded to in the Introduction, the mass-term Sm we use in this paper is by no means

unique, if gauge and Lorentz invariance are the only criteria. One can use the gauge

invariant Hamiltonian (KKN) formalism, which does offer a ‘first-principles’ derivation of

the mass-gap in the purely gluonic theory, to study the potential mass terms that one can

employ in a path integral formalism. A covariantization of the KKN framework[3], led to

two different possibilities for potential mass-terms. One of these terms is the one that we

have discussed above. The second term S2
m found in [3], differs from the one at hand by

terms that have the schematic form

S2
m = O(A3) + O(A4) + · · · (45)

These extra terms prevent the reduction of the second mass-term to the standard Gaussian

ones relevant for gauged matrix models. Thus, the apparently simple extra condition that

the massive gauge theory reduce to matrix quantum mechanics with quadratic mass terms

uniquely picks out the term due to Alexanian and Nair as the convariant completion of the

volume measure on configuration space of Yang-Mills theory in three dimensions.

Sm Vs Chern-Simons:

The spectrum for three dimensional gauge theories can also be rendered massive by the

addition of Chern-Simons terms. However the physical implications and origins of the

mass-term we use are very different from Chern-Simons terms. Sm used in this paper is

dynamically generated by pure Yang-Mills theory, as was shown in [1, 3]. In other words,

Sm provides a potential explanation for the short-ranged nature of the strong force in three

dimensions without changing the confining behavior of the theory. On the other hand, the

addition of a Chern-Simons term, drastically changes the physical behavior of the theory,

from confinement to screening[6]. However, there is close relation between the two mass

terms, as the functional I used in the definition of Sm is nothing but the eikonal of a Chern-

10



Simons action. This has been elaborated at length in the context of finite temperature QCD

in [24, 25, 2, 26, 27].

4 Dimensional Reduction of SUSY Gauge Theories

In this section we present the details of the mass deformations of super Yang-Mills theories

N = 8, 4, 2and1 supersymmetries that reduce to matrix model Hamiltonians of [22] upon

dimensional reduction. We shall adhere to the conventions of [22] in the following. It is

shown in [22] that MSQM models with N = 4 and 8 supersymmetries admit two different

classes of mass-deformations, types I and II. The so called type I deformations allow for

SO(3) symmetric Myers terms in the matrix model Lagrangians, while type II deformations

do not. This would imply two different types of mass deformations for the N = 4 and 2

Yang-Mills theories as well. In the case of N = 16 matrix mechanics, there is a unique

deformation that corresponds to the BMN matrix model. However, as we shall see, there

are two different gauge theory Lagrangians (depending on whether the theory is defined

on R3 or R × T 2) that reduce to it. Similarly, we find two distinct gauge theory actions

corresponding to the type I mass deformation of the N = 8 SMQM as well. For N = 1

super-Yang-Mills, we shall have a unique choice of mass deformation both at the gauge

theory as well as at the matrix model level.

4.1 The 16 Supercharge Theory

The un-deformed action is given by

S0 =

∫

d3x

g2
(−1

4
(Fµν)a(Fµν)a − 1

2
(DµΦI)

a(DµΦI)
a − i

2
Ψ†aΓµ(DµΨ)a

− i

2
fabcΨ†aΓIΦb

IΨ
c − 1

4
famnfapqΦm

I Φn
JΦp

IΦ
q
J). (46)

The massless theory has seven scalars with a manifest SO(7) R symmetry. To relate it to

the plane wave matrix model with an SO(3) × SO(6) R-charge symmetry, we can choose

three of the scalars of the gauge theory to transform under an SO(3) with masses µ
3 . The

two scalar fields that arise from the dimensional reduction of the gauge potential can then

be chosen to combine with the remaining scalars to transform under an SO(6) with their

mass equal to µ
6 . The complete action of the mass deformed theory can be expressed as

S = S0 + Sµ. (47)

11



S0 is given by (46) while

Sµ = S
(µ

6

)

min

−
∫

d3x

g2

(

1

2

(µ

6

)2
6
∑

I=3

Φa
IΦ

a
I +

1

2

(

2µ

6

)2 9
∑

I′=7

Φa
I′Φ

a
I′ −

iµ

8
Ψ†aΓ789Ψa − µ

6
fabcǫI′J ′K ′Φa

I′Φ
b
J ′Φc

K ′

)

.(48)

It is understood that the dashed indices take on the values 7, 8, 9. S(m)min is the mass

term corresponding to the deformation of Minkowskian pure Yang-Mills theory given in

(28). Namely

S(m)min =
4πm2

g2

∫

dx0dµSO(2,1)K(A+, A−). (49)

Reduction from R × T 2:

The mass deformation given above is the unique Poincare invariant theory defined on R3

that reduces to the BMN matrix model. However, if one defines the theory on R × T 2,

then it is interesting to note that there is yet another mass deformation (particular to the

spacial manifold being a T 2) that reproduces the maximally supersymmetric massive matrix

mechanics as well. This particular mass deformation corresponds to identifying the scalar

fields due to the spacial components of the gauge potential as two of the three fields that

transform under the SO(3). For this purpose it is instructive to identify the 0, 8 and 9

directions in (46) as associated with R and T 2 respectively, while the index I runs from

1 · · · 7. The mass relevant term S̃µ can be expressed as:

S̃µ = S
(µ

3

)

min
−
∫

R×T 2

1

g2

(

1

2

(µ

6

)2
6
∑

I=1

Φa
IΦ

a
I +

1

2

(

2µ

6

)2

Φa
7Φ

a
7 −

iµ

8
Ψ†aΓ789Ψa − µF a

89Φ
a
7

)

.(50)

The only decompactification of the theory from R × T 2 to R3 that produces a maximally

supersymmetric theory while preserving Poincare invariance involves scaling the masses as
1
L
, L being the size of the T 2. In this case, one will simple get back the massless gauge

theory upon decompactification, while the restriction to the zero modes on T 2 would result

in the plane wave matrix model. One could alternatively consider scaling the coefficient

of the FΦ interaction term as 1
L

and not the masses of the scalars. In this case, the

decompactified theory would recover Poincare invariance but would no longer be maximally

supersymmetric. Both the mass deformations reduce to the BMN matrix model (A3) upon

dimensional reduction.

4.2 The Case of N = 4, 2 and 1 SYM

For super-Yang-Mills theories with less supersymmetries, one can carry out analogous con-

structions and relate them to mass-deformed matrix models with N = 8, 4 and 2 super-

symmetries.

12



N = 4SY M :

The un-deformed N = 4SY M action in D = 2 + 1 is given by

S0 =

∫

d3x

g2
(−1

4
(Fµν)a(Fµν)a − 1

2
(DµΦI)

a(DµΦI)
a − i

2
Ψ̄aΓµ(DµΨ)a

− i

2
fabcΨ̄aΓIΦb

IΨ
c − 1

4
famnfapqΦm

I Φn
JΦp

IΦ
q
J). (51)

This is nothing but the dimensional reduction of N = 6 SYM from D = 6 to D = 3. The

theory has three scalars. We can denote the directions associated with the scalars as 3, 4

and 5.

Type I Mass Deformation:

As in the case of the sixteen supercharge theory, there are two distinct mass terms, depend-

ing on whether the theory is defined on R3 or on R × T 2, that reduce to the appropriate

mass terms for the matrix model. In the later case, it is useful to identify 0, 4 and 5 as the

R and T 2 directions to avoid changing the form of the Fermion mass term. We present the

explicit forms of the mass-terms, that relate the deformed theory to (A4), below.

Sµ = S
(µ

6

)

min
−
∫

d3x

g2

(

1

2

(

2µ

6

)2 5
∑

I=3

Φa
IΦ

a
I −

iµ

8
Ψ̄aΓ345Ψa − µ

6
fabcǫIJKΦa

IΦ
b
JΦc

K

)

.(52)

S̃µ = S
(µ

3

)

min
−
∫

R×T 2

1

g2

(

1

2

(µ

6

)2
2
∑

I=1

Φa
IΦ

a
I +

1

2

(

2µ

6

)2

Φa
3Φ

a
3 −

iµ

8
Ψ̄aΓ345Ψa − µF a

45Φ
a
7

)

.(53)

Type II Mass Deformation: The second class of mass deformed matrix quantum me-

chanics found in [22] do not have SO(3) invariant cubic interaction terms. Consequently,

the mass terms for the gauge theory are the same whether the theory is defined on R3 or

R×T 2. To match with the conventions used in[22], it is once again useful to identify 0, 4, 5

as the ‘Lorentz’ directions and let the sum over I run from 1 to 3 in (51). The explicit form

of the mass term is given by:

Sµ = S
(µ

6

)

min
−
∫

d3x

g2

(

1

2

(µ

6

)2
3
∑

I=2

Φa
IΦ

a
I +

1

2

(

2µ

6

)2

Φa
1Φ

a
1 −

µ

4
Ψ̄aΓ1Ψa

)

. (54)

In this case, the deformed theory reduces to (A5).

N = 2 Type I Deformation:

The D = 2 + 1,N = 2 action obtained by dimensionally reducing N = 1, D = 4 super

Yang-Mills theory down to D = 3 is

S0 =

∫

d3x

g2
(−1

4
(Fµν)a(Fµν)a − 1

2
(DµΦ3)

a(DµΦ3)
a − i

2
Ψ̄aΓµ(DµΨ)a − i

2
fabcΨ̄aΓ3Φb

3Ψ
c).(55)

S0 has a single adjoint scalar, denoted above by Φ3. If the mass deformation is to have a

SO(3) invariant cubic coupling involving the Bosonic degrees of freedom, it must necessarily
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involve a F a
12Φ

a
3 type of interaction. In other words, the mass deformation of the N = 2SYM

theory that reduces to N = 4 matrix quantum mechanics with an SO(3) invariant Chern-

Simons coupling (A6) can only be defined on R × T 2. In this special case, one has two

deformation (mass) parameters masses µ1 and µ2. The final answer for the mass-term is:

S̃µ =
4π(µ2

1 + µ2
2)

9g2

∫

dx0dµSO(2,1)K(A+, A−)

−
∫

R×T 2

1

g2

(

1

2

µ2
1 + µ2

2

9
Φa

3Φ
a
3 −

iµ1

4
Ψ̄aΨa − i

µ2

4
Ψ̄aΓ123Ψa − µ2F

a
12Φ

a
3

)

. (56)

N = 2 Type II Deformation:

In this case, the mass-term can be expressed both on R3 as well as on R × T 2 and it has a

single parameter µ.

Sµ = S
(µ

6

)

min
−
∫

d3x

g2

(

1

2

(

2µ

6

)2

Φa
3Φ

a
3 −

iµ

8
Ψ̄aΓ012Ψa

)

. (57)

This deformed theory is related to (A7).

N = 1:

We finally come to the case of the N = 1 SYM with the action given by:

S0 =

∫

d3x

g2
(−1

4
(Fµν)a(Fµν)a − i

2
Ψ̄aΓµ(DµΨ)a). (58)

In this case one only has a Type II deformation (A8). In the absence of adjoint scalars,

the mass-term is given by

Sµ =

(

S
(µ

6

)

min
+

∫

d3x

g2

iµ

8
Ψ̄aΨa

)

. (59)

5 Concluding Remarks:

Other than the issue of dimensional reduction, it would of course be very interesting to

probe various properties of the D = 3 massive gauge theories proposed in the paper. In

particular, it is important to understand whether or not these theories are supersymmetric

themselves. This is an issue that we are currently investigating and we hope to report on

it in the near future.

Another possibility that possibly merits further study is that of integrability. Many of

the massive matrix models that the gauge theories reduce to are known to be integrable in

the large N limit to various orders in perturbation theory. For, instance, the BMN matrix

model exhibits perturbative integrability up to the four loops order, at least in the SU(2)

sector[15, 14, 16]. The type I mass deformations of the N = 8 and 4 matrix models (A4,

14



A6), as well as the case of the N = 2 SMQM (A8) yield integrable spin chains at the one

loop order in perturbation theory as well[23]. This raises the exciting possibility of the

corresponding gauge theories being integrable, at least to low orders in perturbation theory.

Clearly this aspect of the massive gauge theories merits further study.

Since the gauge theories proposed in the paper are intimately related to supermem-

branes through dimensional reduction, it is only natural to ask if there is a natural gravity

theory that they might be dual to. The sixteen supercharge three dimensional Yang-Mills

is naturally related to M2 and D2 brane dynamics. As far as the theory in a flat spacetime

is considered, there has been considerable recent progress related to the understanding the

conformal M2 brane worldvolume theory. For the special case of the SU(2) gauge theory,

the work of Bagger, Lambert and Gustavsson[29, 30] presents a concrete proposal for an ef-

fective theory for the IR dynamics of the gauge theory. A more general class of N = 6 three

dimensional conformal field theories and their string duals have also been proposed in[31].

It is natural to expect that the underlying membrane theories admit mass-deformations as

well. For the particular case of the M2 brane theory, a supersymmetry preserving mass-

deformation was indeed worked out in [32, 33]. This begs the question if it is possible to

construct Yang-Mills theories that might be related to massive membrane backgrounds in

the strong coupling limit. Mass deformations of the D2 brane theories by the addition of

Chern-Simons interactions to N = 8 SYM on R × S2 was already considered in [28]. See

also[34] for a related approach towards mass-deformations. It would be extremely interest-

ing if the particular deformation of the sixteen supercharge theory proposed in the paper

can be understood in a natural manner as a deformation of the D2-brane theory.

Acknowledgements: We are indebted to Niklas Beisert, Dimitra Karabali, Prem Ku-

mar, Tristan McLoughlin, V. Parameswaran Nair and Alexios Polychronakos for many

illuminating discussions on various aspects of three dimensional Yang-Mills theories and

to Prem Kumar and Parameswaran Nair for their comments on an earlier version of the

manuscript. We are particularly grateful to Parameswaran Nair for sharing his detailed

notes on the work leading to[1].

APPENDIX A: Massive Supersymmetric Matrix Model Hamiltonians

In this appendix, we gather together the supersymmetric matrix quantum mechanical

Hamiltonian to which the various gauge theory Hamiltonians reduce to upon dimensional

reduction. We shall only quote the explicit forms of the matrix model lagrangians along

with the relevant charge conjugation properties of various spinor fields. A detailed deriva-

tion of the matrix models along with many other relevant details can be found in [22]. In
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all the formulae below, it is implied that the matrix model coupling

g2
M =

g2

V 2
M

= l−3
p = 1. (A1)

lp is the ‘Planck-length’ for the membrane theories that the matrix models provide regular-

izations for, while
V 2

M

2 is the volume of T 2 on which the gauge theory is compactified.

All the relevant lagrangians can be expressed as

L = L0 + Lµ (A2)

with Lµ being the mass deformation.

N =16: For the SU(2|4) symmetric BMN matrix model, we have:

LN=16
0 = Tr

(

1

2
DtΦ

aDtΦa +
1

4
[Φa,Φb]2 +

i

2
Ψ†DtΨ − 1

2
Ψ†Γa[Φa,Ψ]

)

LN=16
µ = Tr

(

iµ

8
Ψ†Γ789Ψ − iµΦ7[Φ8,Φ9] −

µ2

72

[

6
∑

a=1

Φ2
a + 4

9
∑

b=7

Φ2
b

])

. (A3)

Ψ is a sixteen (real) component spinor satisfying Ψ = CΨ∗, with C being the charge

conjugation matrix.

N =8, Types I and II:

LN=8
0 = Tr

(

1

2
DtΦ

aDtΦa +
1

4
[Φa,Φb]2 − i

2
Ψ̄DtΨ − 1

2
Ψ̄Γa[Φa,Ψ]

)

LN=8,I
µ = Tr

(

iµ

8
Ψ̄Γ345Ψ − iµΦ3[Φ4,Φ5] −

µ2

72

[

2
∑

a=1

Φ2
a + 4

5
∑

b=3

Φ2
b

])

. (A4)

The relevant superalgebra for the type I theory is SU(2|2). The type II mass deformation,

with an SU(2|1)⊕ SU(2|1) symmetry is given by:

LN=8,II
µ = Tr

(

µ

4
Ψ̄Γ1Ψ − µ2

72

[

5
∑

a=2

Φ2
a + 4Φ2

1

])

. (A5)

In this case, Majorana-Weyl spinors are 8 component fields, while the charge conjugation

matrix C is skew symmetric; CT = −C C† = C−1.

N =4, Types I and II:

LN=4
0 = Tr

(

1

2
DtΦ

aDtΦa +
1

4
[Φa,Φb]2 − i

2
Ψ̄DtΨ − 1

2
Ψ̄Γa[Φa,Ψ]

)

LN=4,I
µ = Tr

(

i

4
Ψ̄(µ1 + Γ123µ2)Ψ − iµ2Φ1[Φ2,Φ3] −

µ2
1 + µ2

2

18

[

3
∑

a=1

Φ2
a

])

. (A6)
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In this case the Fermions are Majorana, with ΨTC = Ψ̄. C = −CT . The relevant super-

algebra is SU(2|1). The type II deformation Lagrangian in this case, with Clifford4(R)

symmetry is given by

LN=4,II
µ = Tr

(

iµ

8
Ψ̄Γ012Ψ − µ2

72

[

2
∑

a=1

Φ2
a + 4Φ2

3

])

. (A7)

N =2 In the final case of Clifford2(R) symmetric N = 1 quantum mechanics, one has a

unique (type II) mass deformation.

LN=2
0 = Tr

(

1

2
DtΦ

aDtΦa +
1

4
[Φ1,Φ2]2 − i

2
Ψ̄DtΨ − 1

2
Ψ̄Γa[Φa,Ψ]

)

LN=2
µ = Tr

(

iµ

8
Ψ̄Ψ − µ2

72

[

2
∑

a=1

Φ2
a

])

. (A8)

In [22], a N = 1 + 1 symmetric SMQM with a time dependent mass was also obtained as

the dimensional reduction of D = 2,N = 1 SYM. Clearly, this particular cannot be derived

as a dimensional reduction of the class of gauge theories considered in this paper.
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