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manifolds, and extends previous findings on the motion of light rays.
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I. INTRODUCTION

What we know about the geometric structure of space-
time, we infer from the properties of matter inhabiting it.
Remarkably, in some situations one is led to the conclusion
that the geometric structure of spacetime is best described
not by the familiar metric geometry, but by an area metric
manifold [1,2]. This is simply a four-dimensional smooth
manifold M equipped with a covariant tensor field G of
fourth rank, the area metric, which is symmetric under
exchange of the first and second pair of entries, and anti-
symmetric under exchange of the individual entries within
any one pair,

Gabcd ¼ Gcdab and Gbacd ¼ �Gabcd; (1)

and for which there exists an inverse, i.e., a contravariant
tensor field of the fourth rank, such that

GabmnGmncd ¼ 4�½a
½c�

b�
d�; (2)

where small Latin indices run through 0; . . . ; 3. While any
metric manifold ðM;gÞ immediately gives rise to an area
metric manifold by virtue of letting ðGgÞabcd ¼ gacgbd �
gadgbc, the converse is only true in three dimensions [3]. In
particular, a generic four-dimensional area metric is not
induced from some metric, but rather presents a refinement

of metric geometry. A scalar density j detGj1=6 of weight

one, and thus a volume form!Gabcd ¼ j detGj1=6�abcd, are
induced by virtue of the fact that the components of an area
metric may be arranged as a symmetric 6� 6 matrix, say
by considering the six antisymmetric index pairs in the
order [01], [02], [03], [23], [31], [12], and defining detG
precisely as the determinant over this 6� 6 matrix [4].

Area metrics emerge, for instance, as the effective
spacetime geometry seen by photons on curved
Lorentzian spacetime backgrounds [5], if the first order
quantum corrections are absorbed into the geometry [6]. In
this context it is the effective area metric, not the metric,
which governs the ticking of light clocks that operate with

photons rather than classical light rays. Another instance
concerns quantum strings. A string moving in a coherent
background of massless string excitations feels an area
metric geometry [1]. This result extends to Dirichlet
branes, whose world volume is that of an area metric
manifold. As a third instance we mention that combining
the scalar and tensor data of Brans-Dicke gravity [7] into
an area metric, one does not only discover that of the entire
one-parameter family of Brans-Dicke theories only one
presents an area metric gravity theory, but remarkably
also that this one member agrees with general relativity
to first post-Newtonian order if [8,9] and only if [10] matter
couples also to the scalar, as in this case geometrically
dictated by the area metric spacetime structure [11]. More
indirect, but no less intriguing, motivations for area metric
manifolds come from various approaches to quantum grav-
ity [12–17], where areas and two-dimensionality are seen
to emerge on a deeper level of the spacetime structure.
Quite generally, when studying the implications of an area
metric spacetime structure for the motion of matter, one
may consider area metric manifolds independently of the
various different mechanisms giving rise to it in the first
place. Operationally, this amounts to the hypothesis that
physical spacetime is an area metric manifold, and this is
the view we take in this paper.
It is then the purpose of this article to derive the impli-

cations of this assumption for the motion of massive point
matter. For light rays, i.e., massless point matter, this study
has been completed in [18], building on earlier results
obtained in the context of premetric electrodynamics
[19]. In the present paper, we arrive at the conclusion
that the worldlines x of free massive point particles in an
area metric spacetime stationarize the quartic functional

S½x� ¼
Z

d�½Gabcd _x
a _xb _xc _xd�1=4; (3)

where _x denotes the worldline tangent vector taken with
respect to the worldline parameter �, and the totally sym-
metric tensor G is the following algebraic expression in
terms of the area metric G and the volume form !GC ,
where GC

abcd ¼ Gabcd �G½abcd� is the cyclic part of the
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area metric:

G abcd ¼ � 1
24!

ijkl

GC !
mnpq

GC GijmðaGbjknjcGdÞlpq: (4)

Despite its apparent complexity, this totally symmetric
tensor emerges naturally within area metric geometry,
and was in fact first discovered by Rubilar [20] in the
context of general linear backgrounds in electrodynamics.
In the case of a purely metric-induced area metric, Eq. (4)
reduces to the bi-quadratic form Gijkl ¼ gðijgklÞ and thus

expression (3) to an action functional whose stationary
points are the familiar metric geodesics. In the case of a
generic area metric, however, the tensor field G cannot be
generated from a metric, but defines a truly quartic
(pseudo-) norm. Thus, we find that the area metric geome-
try impresses itself on the motion of point particles as a
Finslerian geometry, and the action (3) gives rise to
Finslerian geodesics.

Of course, one could simply postulate that the dynamics
of a point particle be provided by (3). While perfectly
acceptable as a phenomenological model of particle mo-
tion, such an approach raises the question of compatibility
with other predictions of the theory. Indeed, studying the
geometric-optical limit of Maxwell theory on an area
metric spacetime, we showed in [18] from first principles
that light rays are described by stationary curves of pre-
cisely the same functional, but with the constraint that
Gabcd _x

a _xb _xc _xd ¼ 0. Similarly, in the present paper, we
derive the motion of massive point particles from a thor-
ough investigation of the motion of string fluids. The
central role of the functional (3) is underlined by the fact
that it arises with the same inevitability in both contexts,
the massless and massive one.

Technically, we obtain the class of distinguished curves
that present free point particle motion as follows. We start
in Sec. II from general observations concerning the de-
scription of matter in area metric spacetimes, with a special
focus on perfect fluids. The latter are described by three
macroscopic parameters (rather than the usual two in met-
ric spacetime), and may be viewed as being constituted by
classical strings, rather than point particles. In Sec. III, we
will then be prepared to perform the two crucial steps
toward the identification of the worldlines of free point
particles. The first step consists in the isotropization of the
string dust, i.e., a geometrically well-defined spatial aver-
aging over the orientations of the strings that constitute the
fluid. The insight that this first steps leads to an effective
fluid of interacting point particles then prompts the second
step, namely, the identification of the appropriate local
string interactions that are needed to make the string fluid
lump together such as to give rise to a noninteracting
particle fluid. The trajectories of this noninteracting parti-
cle fluid are recognized to follow Finslerian geodesics
according to the action (3), which are fully determined
by the area metric. This result underlines the importance of
Finsler geometry in testing generalized background ge-

ometries through the motion of light and matter. In
Sec. IV, we demonstrate the consistency of our results
with any diffeomorphism invariant gravity action for area
metric spacetimes. We conclude with a discussion in
Sec. V.

II. STRING FLUIDS ON AREA METRIC
BACKGROUNDS

In this section we make some general observations con-
cerning the coupling of matter to area metric backgrounds,
most importantly the conservation equation for matter
sources. Then we explain why perfect fluids on area metric
backgrounds feature a refined structure, which can be
viewed as arising from strings rather than point particles
being their constitutive matter. We briefly review and
elaborate on some known results on string fluids in order
to prepare our discussion of massive motion in the follow-
ing section.

A. Matter on area metric backgrounds

It is not difficult to derive some generic properties of
matter sources coupling to an area metric background.
Indeed, consider an action

S½G; c � ¼
Z
M
!GL½G; c � (5)

for a generic matter field c , which couples to the area
metricG via a scalar Lagrangian L½G; c �. Variation of this
action with respect to the area metric will always yield a

fourth-rank source tensor Tijkl ¼ j detGj1=6�S=�Gijkl, see

[2]. Important for the present paper is the observation that
independent of any assumed gravitational dynamics, dif-
feomorphism invariance of the matter action implies a
conservation equation for this source tensor. To see this
note that invariance of the matter action under diffeomor-
phisms requires

0 ¼ �S ¼
Z
M
�Gijkl

�S

�Gijkl

þ �c
�S

�c
; (6)

where the second term vanishes due to the equations of
motion of the matter field c . The variation of the area
metric under a diffeomorphism generated by a vector field
� can be written as the Lie derivative �Gijkl ¼ ðL�GÞijkl.
Straightforward substitution of this expression and partial
integration then lead to the source conservation equation

� j detGj1=6Tijkl@pGijkl þ 4@aðj detGj1=6TijkaGijkpÞ ¼ 0:

(7)

When considering matter given directly in terms of a
source tensor Tabcd, rather than in terms of an action, one
needs to impose the conservation equation by hand. This is,
mutatis mutandis, the case when considering perfect fluids
in metric spacetime, and so it is for the string fluids studied
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in the following section. Indeed, the latter present the
perfect fluids on area metric backgrounds.

B. String fluids

We now consider a particular form of matter on area
metric backgrounds, namely, string fluids [2,21,22]. As on
metric backgrounds [23–26], these can be thought of as
collections of strings. Geometrically, their description fea-
tures a field of local tangent areas � ¼ _x ^ x0, i.e., �ij ¼
_xix0j � _xjx0i, to the two-dimensional string world sheets
x:� ! M. This is analogous to perfect fluids in general
relativity, which can be understood as a collection of point
particles, and whose description involves the velocity field
tangent to the particle worldlines. Even though string fluids
are not derived from an action, their source tensor must
satisfy the conservation equation above in order to ensure a
consistent coupling to any theory of area metric gravity,
which is derived from an action by variation with respect to
the area metric G.

The simplest string fluid is noninteracting string dust
with source tensor

Tijkl ¼ ~��ij�kl: (8)

That this indeed describes noninteracting strings will now
be shown by proving that the source conservation equation
is equivalent to the equation of motion of the free classical
string, i.e., the minimal surface equation, and the string
continuity equation.

To see this, consider the string worldsheet tangent areas
to be normalized as Gð�;�Þ ¼ �1 for� ¼ u ^ v, where
u ¼ _x, v ¼ x0. Substituting the source tensor (8) into the
conservation Eq. (7), one obtains

0 ¼ j detGj1=6 ~�
�
vq@qðGapcdu

aucvdÞ

þ uq@qðGpbcdv
bucvdÞ � 1

2@pGabcdu
avbucvd

�

þGijkpu
ivj½@lðj detGj1=6 ~��klÞ�: (9)

The minimal surface equation for strings on area metric
backgrounds is derived as the stationarity condition of the
integrated worldsheet area [1], and requires the vanishing
of the curly brackets in the expression above. The continu-
ity equation [2] on the other hand requires the vanishing of
the square brackets. Hence, both these conditions together
imply source conservation; this direction of the argument
was already given in [2].

Now to show also the converse, observe that the term in
curly brackets in Eq (9) vanishes if contracted with �pq;
hence, the other term does. With the notation �pq ¼
Gpqrs�

rs one thus concludes

�mk@lðj detGj1=6 ~��klÞ ¼ 0 (10)

for �mk ¼ �mq�
qp�pk. The next step is to show that �mk

in this equation can be replaced simply by �mk. This

follows from the easily checked identity �ab�bc�
cd ¼

�ad, whence �mk�
kl ¼ �mk�

kl. By linear independence
of the vectors u and v (otherwise the tangent area � ¼ 0
would be degenerate), it follows that �mku

k ¼ �mku
k and

�mkv
k ¼ �mkv

k, i.e., �mk can be replaced by �mk in
contractions with u and v. This is precisely what we
need for the replacement of � by � in (10), and so we
see from (9) that source conservation implies the minimal
surface condition for string dust. Finally, we may rewrite
(10) as

Gðu; v; u; �Þ@lðj detGj1=6 ~�vlÞ
�Gðu; v; v; �Þ@lðj detGj1=6 ~�ulÞ ¼ 0: (11)

Evaluating this one-form on u and v, respectively, shows
that both divergence terms must vanish separately. Hence,
also the continuity equation, in the form of vanishing
square brackets in (9), holds.
With this new converse result, it is now rigorously

proven that noninteracting string dust on area metric back-
grounds is described by the source tensor given in (8). Any
modification of this source tensor by other terms depending
on the background geometry G or the worldsheet tangent
areas � hence describes an interacting string fluid. In the
cosmological context, for instance, the most general inter-
acting string fluid is given by a source tensor

Tijkl ¼ ð~�þ ~pÞ�ij�kl þ ~pGijkl þ ð~�þ ~qÞG½ijkl�: (12)

String dust is thus recovered by imposing the equations of
state ~p ¼ 0 and ~q ¼ �~�. The effect of switching on a
generalized pressure term ~p is that of an according modi-
fication of the string continuity equation, and that of gen-
erating a nonzero mean curvature (given by the projection
of the gradient d~p to the string tangent areas �) of the
strings constituting the fluid. In other words, switching on a
nonconstant generalized pressure ~p causes the strings in
the fluid to be nonstationary, which reveals that they must
be interacting [2]. Finally, one can show that string fluids
modelling radiation have ~q ¼ 0 [22]. In this paper, we will
not make use of these results in detail. But in the next
section, we will identify interaction terms that cause a
string fluid to lump together such as to move as an effective
particle fluid, and it may be helpful to already have the
intuition concerning interactions we sketched here.
Finally, consider the familiar case of a purely metric

spacetime ðM;gÞ where areas are simply measured by the
induced area metric Gabcd ¼ 2ga½cgd�b. Then the source

conservation Eq. (7) for string dust with source tensor (8)
reduces to raTeff

a
b ¼ 0 for Teff

a
b ¼ ~��ap�pb. Writing

� ¼ u ^ v as we did before, and choosing the basis
gðu; vÞ ¼ 0, gðu; uÞ ¼ �1, and gðv; vÞ ¼ 1, one obtains

Teff
a
b ¼ ~�ðuaub � vavbÞ (13)

for string dust. This special case of our construction is
known from the literature, and has been used to describe
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string energy momentum coupled to standard metric theo-
ries of gravity [23,24].

III. EFFECTIVE FINSLER GEODESICS

We are now prepared to derive the key result of this
paper. In this section wewill demonstrate the existence of a
class of interacting string fluids that behave precisely the
same way as noninteracting particle dust. We prove that
these string fluids effectively propagate along non-null
Finsler geodesics with respect to a special Finsler norm
determined by the area metric.

Consider again the case of noninteracting strings on a
metric background with effective energy momentum (13).
It is clear that such energy momentum cannot be inter-
preted as that of a point particle fluid: the string worldsheet
singles out a preferred spatial direction v, which destroys
isotropy around the particle trajectory u. The term ~�vavb

represents anisotropic pressure. From this observation,
which is not new for metric backgrounds, we learn the
following lesson for area metric geometry. Two issues must
be taken into account to derive string fluids that effectively
behave like noninteracting point particle fluids: we must

(i) isotropically superpose string fluids by implement-
ing an average over the spatial directions of the
respective world sheets; and

(ii) adjust the string interaction terms to achieve effec-
tive point particle motion.

This is the procedure we will now implement. In Sec. III A,
we will define the isotropic average of string dust matter; in
Sec. III B, we then determine the necessary string interac-
tion terms responsible for noninteracting particle motion.
The fact that interaction terms have to be added to an
isotropic average of noninteracting strings agrees with
the physical intuition that strings, in order to effectively
behave like point particle dust, must clump together by
some form of interaction.

A. Isotropization of string dust

As discussed above, the first step in finding string fluids
that effectively move as noninteracting particle fluids is the
definition of an isotropic average over the spatial world-
sheet directions. We define this average with respect to a
vector field u, which later emerges as the velocity field of
the resulting particle fluid. The construction will be inde-
pendent of coordinates.

Note first that the local tangent spaces can be decom-
posed as TM ¼ hui � V (the following construction will
not be affected by the nonuniqueness of the complement
V), which in turn induces a decomposition of the antisym-
metric tensor bundle as �2TM ¼ �2

uTM ��2
VTM for

�2
uTM ¼ f� 2 �2TMj� ^ u ¼ 0g: (14)

Thus, any element of the space�2
uTM can be written in the

form � ¼ u ^ v for v 2 V, but �2
uTM is independent of

the choice of complement V, since u ^ v ¼ u ^ ðvþ �uÞ

for any scalar �. Moreover, �2
uTM is a three-dimensional

linear subspace of �2TM to which the area metric hence
can be sensibly restricted. The restriction then defines a
unique metric ~g: �2

uTM��2
uTM ! R by

~g ¼ �Gj�2
uTM

(15)

on all areas in the set u ^ V independent of the choice of V.
We assume that ~g is positive definite; note that this is not a
restriction on the background geometry, but distinguishes
particular vector fields u that can play the role of velocity
field in our final particle fluid.
The sought-for isotropic average over the spatial world-

sheet directions will now essentially be the integration over
the linear subspace �2

uTM with metric measure ~g. But
since the volume of this space is noncompact, we must
restrict the integration to the two-dimensional unit sphere
S2u consisting of areas with ~gð�;�Þ ¼ 1. Let�� denote the
pullback from �2

uTM to S2u and use coordinates �1, �2.

Then vol S2u ¼
R
d2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det��~g

p ¼ 4�, which is most easily

seen by choosing the Cartesian frame fe0̂; e	̂g with e0̂ ¼ u
and he	̂i ¼ V such that ~g	̂ 
̂ ¼ ~gðe0̂ ^ e	̂; e0̂ ^ e
̂Þ ¼
�	̂ 
̂. We now calculate the average of the string dust

source tensor (8) over S2u,

hTabcdi ¼ ~�

volS2u

Z
S2u

d2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det��~g

p
�ð�Þab�ð�Þcd: (16)

The integral is performed using the same Cartesian frame

as above; for elements of S2u we then have � ¼ �	̂e0̂ ^
e	̂=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~gð�;�Þp

and hence the coordinates �	̂=jj�jj. As a
result we find

hT0̂ 	̂ 0̂ 
̂i ¼ 1
3~��

	̂ 
̂: (17)

Note that in this frame �	̂ 
̂ ¼ ~g	̂ 
̂, which is defined as the
inverse of ~g	̂ 
̂, is regarded as a 3� 3 matrix

~g 	̂ 
̂ ¼ 1

2 det~g
�0̂ 	̂ �̂ �̂�0̂ 
̂ �̂ 
̂~g�̂ �̂~g�̂ 
̂: (18)

Since the areas over which we averaged are elements of
�2

uTM, the result of the average, which is a linear opera-
tion, must be a tensor �2�

u TM��2�
u TM ! R. Hence,

there is an extension ~g�1: �2�
u TM��2�

u TM ! R with
components ~g�1abcd that in the frame chosen above re-

duces to ~g�10̂ 	̂ 0̂ 
̂ ¼ ~g	̂ 
̂. In other words, this allows us to
write the result of the average in the fully covariant form

hTabcdi ¼ 1
3~�~g

�1abcd ¼ 1
3~�

1
2u

½au½chd�b�; (19)

with

hab ¼ Gðu; u; u; uÞ�1!armn
GC !bspq

GC GC
rmtpG

C
vnsqu

tuv; (20)

G abcd ¼ � 1
24!

ijkl

GC !
mnpq

GC GC
ijmðaG

C
bjknjcG

C
dÞlpq: (21)

The antisymmetrizations in ~g�1 act only on the index pairs,
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GC denotes the cyclic part Gabcd �G½abcd� of the area

metric, and !abcd
GC ¼ j detGCj�1=6�abcd.

We remark that the equations that could now be obtained
from the conservation of the isotropic averaged source
tensor (19) only involve the vector field u and the back-
ground geometry determined by the area metric G, so they
are already equations for a particle fluid, albeit an interact-
ing one.

B. Matter trajectories

We now come to the second part of the program for this
section, and determine the necessary string interaction
terms that have to be added to the isotropic averaged source
tensor (19) so that the resulting string fluid moves as a
noninteracting particle fluid.

It will turn out to be sufficient to consider interaction
terms�ðGÞabcd that only depend locally on the background
geometry. Our ansatz for the particle string fluid source
tensor therefore is

Tabcd ¼ 1
3~�~g

�1abcd þ 4
3~��

abcd: (22)

We will now determine the term � so that the source
conservation Eq. (7) implies the standard continuity equa-
tion for point particles

@lðj detGj1=6 ~� ~AulÞ ¼ 0 (23)

for effective energy density ~� ~A , in which also ~AðGÞ de-
pends only locally on the background. In a second step we
will then be able to derive the equation of motion for the
point particle fluid; this will turn out to be the equation for
non-null Finsler geodesics.

We substitute the ansatz (22) for the particle string fluid
source tensor into the source conservation equation. The
result can be rewritten in the form

0 ¼ j detGj1=6 det~g�1 ~�@p
~Gijklu

iujukul

� 4@l

�
j detGj1=6 ~� Gpijku

iujuk

Gðu; u; u; uÞu
l

�

� j detGj1=6 ~��ijkl@pGijkl

þ 4@lðj detGj1=6 ~��lijkGpijkÞ � 2@pðj detGj1=6 ~�Þ:
(24)

Here, ~Gabcd ¼ j detGCj1=3Gabcd. The derivation of this
result requires the following identities, whose proof is
rather technical, but can be performed with relative ease
in the frame fe0̂; e	̂g, with e0̂ ¼ u

~g�1aijkGpijk ¼ �2�a
p � 4

Gpijku
iujuk

Gðu; u; u; uÞu
a; (25)

�~Gðu; u; u; uÞ
�GC

abcd

¼ � 1

4
det~g~g�1abcd: (26)

A first restriction on the term � can now be obtained by
using the fact that it depends only locally on the back-
ground geometry: hence, any condition on� that is derived
for constant area metric components Gabcd must also hold
for general backgrounds. We therefore set all partial de-
rivatives of G in (24) to zero, and contract with up. This is
the only possible scalar contraction, and so must imply the
continuity Eq. (23). This requires

�lijkGpijk ¼ 1
2�

l
p: (27)

Substituting this into the full Eq. (24), the last line is
precisely cancelled. We again contract with up to obtain
a scalar equation, now for generic backgrounds G. To
conveniently simplify the calculation we use the normal-

ization Gðu; u; u; uÞ ¼ 1 ¼ j detGCj�1=3 det~g in terms of
the totally symmetric tensor G defined in (21). It is then
straightforward to show that the continuity Eq. (23) can be
obtained for interaction terms � that also satisfy the con-
dition

�ijkl@pGijkl ¼ @p lnB (28)

for some scalar density BðGÞ. The function ~A is then

determined by ~A ¼ ~A0j detGCj�1=12B1=4.
We now employ the two conditions (27) and (28) for �

in the source conservation Eq. (24), which yields the
simplified equivalent expression

0 ¼ @�ðGpijku
iujukÞ � 1

4@pGijklu
iujukul

�Gpijku
iujuk@� ln ~Aþ @p ln ~A; (29)

where @� ¼ up@p. Note that all dependence on the string

fluid’s energy density ~� has cancelled. It is not hard to
prove now that this equation can be equivalently derived as
the stationarity equation from the point particle action

Z
d� ~A�1Gð _x; _x; _x; _xÞ1=4 (30)

together with the normalization constraint Gð _x; _x; _x; _xÞ ¼
1.
Thus, we have shown that all string fluids with the

source tensor (22) and string interaction terms � solving
both conditions (27) and (28) behave as noninteracting
particle fluids. The source conservation equation for these
string fluids not only implies the particle fluid conservation
Eq. (23), but also an equation of motion for the fluid
worldlines: the equation for non-null Finsler geodesics

[27] with respect to the Finsler norm ~A�1Gð _x; _x; _x; _xÞ1=4.
This Finsler norm is fully determined by the area metric G
through its associated totally symmetric dual Fresnel ten-
sor G, see definition (21).
We conclude this section with some comments. First,

note from the continuity Eq. (23) that the appearance of the

function ~A originates from a redefinition of the resulting

particle fluid’s energy density � ¼ ~� ~A in terms of the

string fluid variable ~�. Mathematically, ~A simply presents
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a conformal rescaling of the Finsler norm. This function

can be fixed as ~A ¼ 1 by identifying the tension per area ~�
of the strings with the energy density � of the effective
point particles [26].

Second, it is worthwhile to comment on possible inter-
actions that may modify the effective particle dust con-
structed here. In our discussion of string fluids in Sec. II we
learned that such interactions simply arise from adding
further terms to the averaged string fluid source tensor
(22). As an example we now discuss the standard isotropic
pressure term on metric-induced backgrounds Gabcd ¼
2ga½cgd�b. To do so we define the second-rank effective

energy momentum tensor Teff
a
b ¼ 4TaijkGbijk from the

source tensor. If the area metric is metric induced, the
source conservation equation simplifies to give standard
covariant conservation raTeff

a
b ¼ 0 of this effective en-

ergy momentum tensor. Also, it can be verified that the
noninteracting particle fluid with source tensor (22) pro-
duces Teff

a
b � ~�uaub, which is the standard expression for

particle dust. It is now obvious that including a term
~pGabcd into (22) will yield a contribution proportional to
~p�a

b in Teff
a
b, which is precisely the isotropic pressure

term.

IV. CONSISTENCY

Recall that a diffeomorphism invariant coupling of point
particles to any gravity theory for a metric spacetime al-
ready determines the motion of these particles along
Riemannian geodesics. This is because diffeomorphism
invariance will result in some Bianchi identity for the
gravitational curvature tensor and energy momentum con-
servation of the point particles. The latter requires the
worldlines to follow geodesics. So given the same initial
conditions, point particles will follow the same worldlines,
independent of their masses. We will now explicitly dem-
onstrate an analogous result for area metric spacetimes.
Also, here the motion of point particles along Finsler geo-
desics can be understood as a consequence of diffeomor-
phism invariance; thus, these point particles can be
consistently coupled to any area metric gravitational field
equations.

In the previous section we found that the point particle

limit of a string fluid leads to the action (30) with ~A ¼ 1.
The corresponding source tensor is then

TijklðyÞ ¼ �m
Z

d�
�ðy� xð�ÞÞ
j detGj1=6

�GabcdðyÞ
�Gijkl

_xa _xb _xc _xd;

(31)

where m denotes either the energy of a photon, or the mass
of a massive particle. Since this source tensor is obtained
from an action, it satisfies the conservation Eq. (7). We will
now show that this equation can be rewritten as

�m
Z

d��ðy� xð�ÞÞ
�
@pGabcd _x

a _xb _xc _xd

þ 4
d

d�
ðGpabc _x

a _xb _xcÞ
�
¼ 0: (32)

Since this equation must hold for any point y, the expres-
sion in square brackets must vanish, which is precisely the
equation of a geodesic in a Finsler geometry determined by
the Fresnel tensor G.
Indeed, the variation of the Fresnel tensor with respect to

the inverse area metric, as it appears in the source tensor
(31), can be expressed as a variation with respect to the
cyclic part GC of the area metric G as

�Gabcd

�Gijkl
¼ �Gabcd

�GC
	
��

�ðG	
�� �G½	
���Þ
�Gijkl

¼ � 1

4

�Gabcd

�GC
	
��

ðG	
ijG��kl �Gij½	
G���klÞ:

(33)

The first term of the source conservation equation can now
be evaluated as

first term ¼ m
Z

d��ðy� xð�ÞÞ �Gabcd

�GC
	
��

ð�rstu
	
��

� �rstu
½	
���Þ@pGrstu _x

a _xb _xc _xd; (34)

which via the chain rule already yields the first term of the
Finsler geodesic equation, in the square brackets of (32).
The simplification of the second term of the source con-
servation equation is slightly more involved. First, observe
that

�Gabcd

�GC
	
��

¼ � 1

12
ðGCÞ�1	
��Gabcd

þ j detGj�1=3 �~Gabcd

�GC
	
��

; (35)

where we defined the Fresnel tensor density ~Gabcd ¼
j detGCj1=3Gabcd. Using this the second term becomes

� 2m
Z

d�
@

@yp
�ðy� xð�ÞÞGabcd _x

a _xb _xc _xd

þ 4m
Z

d�
@

@y

�ðy� xð�ÞÞj detGj�1=3A


p; (36)

where we have introduced a shorthand for the quantity

A

p ¼ �~Gabcd _x

a _xb _xc _xd

�GC
	
��

GC
��	p: (37)

This quantity is most efficiently calculated using a non-

holonomic frame fek̂g with e0̂ ¼ u, and a dual frame ek̂.
After considerable algebra one finally arrives at
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A

p ¼ j detGj1=3ðGpabc _x

a _xb _xc _x
 þ 1
2�



pGabcd _x

a _xb _xc _xdÞ:0
(38)

Insertion of this result into (36) then provides the second
term of Eq. (32)

second term ¼ 4m
Z

d� _xp
@

@yp
�ðy� xð�ÞÞGabcp _xa _xb _xc:

(39)

Hence, in any diffeomorphism invariant theory of area
metric gravity, the field equations consistently couple to
effective point particles propagating along Finsler geode-
sics. This coupling is universal for all point particles,
irrespective of their mass (or energy for light). This in
fact shows consistency with the experimentally supported
weak equivalence principle.

V. CONCLUSIONS

In this article, we have calculated the paths of massive
pointlike matter on general area metric manifolds. Even
though pointlike particles do not arise as fundamental
mechanical objects on area metric backgrounds, their ef-
fective description is of phenomenological relevance.

Intriguingly, we find that an area metric background
impresses itself as a Finsler geometry on the motion of
all pointlike matter. Free motion is described by Finsler
geodesics, and the relevant Finsler norm is determined by
the area metric. To obtain this result, we have constructed
the class of classical string fluids that admit a particle fluid
limit through a geometrically well-defined averaging pro-
cess. It turned out that the massive case considered here is
governed by precisely the same Finsler geometry as the
propagation of light [18]. Taking into account recent stud-
ies of Finsler geometries in connection to the quantization
of deformed general relativity [28,29] and to quantum
generalizations of the Poincaré algebra [30], it is interest-
ing to note that the area metric structure of spacetime
attaches a prominent role to a particular Finsler geometry

when it comes to the description of the effective motion of
light and matter.
Of course, the Finsler geodesics found here simply

reduce to the standard metric geodesics in case the area
metric is induced by a metric. However, already ! ¼ 0
Brans-Dicke theory determines a true area metric back-
ground with an additional degree of freedom, namely, the
scalar field [11]. In this case, the Finsler geodesics are the
geodesics of a particular conformally rescaled metric, with
the result that the theory is rendered consistent with solar
system physics.
The general result that light and massive matter propa-

gate along Finsler geodesics becomes inevitable if the area
metric structure is taken seriously as the geometry of
spacetime. Indeed, spacetime backgrounds described by a
more general structure than metric geometry arise in vari-
ous approaches to quantum gravity, and in string theory
where additional massless background fields appear.
Especially important for the physical interpretation of
generalized geometries are the classical tests of gravity
in the solar system that require a model of planetary motion
via distinguished curves. Similarly in cosmology, the tra-
jectories of galaxies in an area metric spacetime must be
understood as arising from a fluid model of the cosmologi-
cal matter distribution. Our result identifies this
mechanism.
Thus, the findings of this article are essential in order to

test the viability of the hypothesis of those generalized
geometric backgrounds that can be cast in area metric
form.
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