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Abstract

We generalize the Kantor-Koecher-Tits construction, which associates a Lie algebra
to any Jordan algebra. This gives a generalization of the conformal transformations
in a (p + ¢)-dimensional spacetime to a nonlinear realization of so(p + n, ¢ + n), for
arbitrary n, with a linearly realized subalgebra so(p, q). For Minkowski spacetimes of
3, 4, 6, 10 dimensions, the corresponding triple systems can be constructed from the
Jordan algebras of hermitian 2 x 2 matrices over the division algebras R, C, H, O,
respectively. We show that this construction can also be applied to 3 x 3 matrices and
then gives rise to the exceptional Lie algebras {4, e, €7, ¢, as well as to their affine,
hyperbolic and further extensions. In particular, this leads to a new realization of the
indefinite Kac-Moody algebras e;9 and eq;.
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1 Introduction and motivation

Jordan algebras were originally studied in order to understand the foundations of
quantum mechanics [1,2]. Even though the hope of applications to "relativistic and
nuclear phenomena” has not been fulfilled, Jordan algebras have turned out to play an
important role in fundamental physics through their connection to Lie algebras. The
origin of this connection lies in the observation that the triple product

(z,y, 2) = [[z, 7(y)], 2] (1.1)

in the subspace g_; of a 3-graded Lie algebra g_; 4+ go + g1, where 7 is an involution
g_1 — @1, has the same general properties as the triple product

(z,y, 2) = (zy)z + 2(y2) — y(z2) (1.2)

formed from the multiplication in a Jordan algebra. In the Kantor-Koecher-Tits con-
struction [3-5], based on this observation, any Jordan algebra gives rise to a 3-graded
Lie algebra, which is its conformal algebra, and two subalgebras that arise naturally
in this construction are its reduced structure algebra and derivation algebra. Jordan
algebras can be used to define generalized spacetimes in a way such that these Lie
algebras generate conformal transformations, Lorentz transformations and rotations,
respectively [6-9]. The conformal groups will then admit positive energy unitary rep-
resentations only for formally real (or Euclidean) Jordan algebras, which were the
original Jordan algebras introduced in [1], and classified (the simple ones) in [2]. The
classification involves the four (normed) division algebras R, C, H, O [10,11].

The formally real Jordan algebras H3(K) consist of 3 x 3 hermitian matrices over
K =R, C, H, O and their derivation, reduced structure and conformal algebras con-
stitute the first three rows in a magic square of Lie algebras [12-14]. They also give rise
to Freudenthal triple systems [15,16], to which the exceptional Lie algebras f4, ¢g, €7, ¢s
in the fourth row are associated. This construction of Freudenthal triple systems and
the associated quasiconformal algebras is possible also for another family of formally
real Jordan algebras, which is infinite and parametrized by a positive integer d. Their
quasiconformal algebras are respectively so0(4, d 4+ 2) for all positive integers d. For
d =3, 4, 6, 10, they constitute the fourth row of another 'magic square’ [17,18], con-
sisting of pseudo-orthogonal algebras, with so(d — 1), so(1, d —1), s0(2, d) in the first
three rows. These are the derivation, reduced structure and conformal algebras of
the formally real Jordan algebras H,(KK), consisting of 2 x 2 hermitian matrices over
K =R, C, H, O.

The formally real Jordan algebras of degree three [19], which are those that admit
quasiconformal algebras, are also those that arise in Maxwell-Einstein supergravity
theories [20-23]. In five dimensions, the scalar fields parametrize a manifold, which,
if it is a symmetric space, has the form G/H, where G is the global symmetry group



of the Lagrangian and H its maximal compact subgroup. Further conditions on the
manifold imply that G must be the reduced structure group of a formally real Jordan
algebra of degree three. By reduction to four and three dimensions, it extends to
the conformal and quasiconformal group, respectively, and these groups also act as
spectrum generating symmetry groups in five and four dimensions, respectively [24,25].

The conformal algebra comes with a non-linear realization, where the three sub-
spaces g_1, go and g; consist of operators which are respectively constant, linear or
quadratic. For a generalized spacetime, these are the generators of translations (con-
stant), Lorentz transformations together with dilatations (linear) and special confor-
mal transformations (quadratic). The operators act on the subspace g_;, which can
be identified with the Jordan algebra, or the generalized spacetime. This conformal
realization can be applied to any 3-graded Lie algebra, and the Jordan algebras are
then generalized to Jordan triple systems [26]. Similarly, the quasiconformal algebra
comes with a 5-grading, where the additional subspaces g+» are one-dimensional, and,
as was shown in [24], it has a quasiconformal realization on the subspace g_1 + g_o
that can be applied to any Lie algebra with such a 5-grading. In [27], we gave a new
nonlinear realization, based on Kantor triple systems [28,29] instead of Freudenthal
triple systems. This nonlinear realization is more general than the previous ones, in
the sense that it can be applied to a Lie algebra with an arbitrary 5-grading, including
the special cases of a 3-graded Lie algebra (where g1 = 0) and a 5-graded Lie algebra
with one-dimensional subspaces g.s.

In the quasiconformal realization, so(4, d 4 2) has s0(2, d) ® gl(2, R) as a linearly
realized subalgebra, and can therefore naturally be generalized to so(p+2, ¢+ 2) with
a linearly realized subalgebra so(p, ¢) @ gl(2, R) for arbitrary positive integers p, g.
This quasiconformal realization was given in [30] (explicitly for so(4, 12)) and [31].

In the present paper, we generalize the quasiconformal algebras so(4, d + 2) fur-
ther to so(p + n, ¢ + n) with a linearly realized subalgebra so(p, ¢) ® gl(n, R), for
arbitrary positive integers p, ¢, n. Instead of the quasiconformal realization, which
only works for n = 2, we use the more general one described in [27]. For signatures
(p, q) = (1, 2), (1, 3), (1, 5), (1, 9), the corresponding Kantor triple systems can be
constructed from the Jordan algebras H(K) for K = R, C, H, O, respectively, and
this gives a generalization of the Kantor-Koecher-Tits construction, which, to our
knowledge, has not appeared before. When we apply this construction to the Jordan
algebras H3(K), we get instead the exceptional Lie algebras {4, ¢g, ¢7, ¢ for n = 2,
their affine and hyperbolic extensions for n = 3 and n = 4, respectively, and further
extensions for n > 5. In particular, K = O yields generically the Kac-Moody algebras
¢61n. LThus, for n =4 and n = 5, the resulting algebras are, respectively, ¢;y and ey,
which both (but in different approaches) are conjectured to be symmetries underlying
M-theory [32,33].



1.1 Outline

The paper is organized as follows. Section 2 provides, briefly, the background about
the classification of simple formally real Jordan algebras, the Kantor-Koecher-Tits
construction and the magic square of Lie algebras. In section 3, we describe how a Lie
algebra can be given a grading by any of its simple roots, and how graded Lie algebras
give rise to generalized Jordan triple systems. Conversely, in section 4 we show how any
generalized Jordan triple system gives rise to a graded Lie algebra. This is the usual
generalization of the Kantor-Koecher-Tits construction from Jordan triple systems to
generalized Jordan triple systems [29,34], even though our description is new, but
it generalizes further when we replace the elements in the generalized Jordan triple
system by n-tuples of elements. In section 5, we confirm the general results in the case
of pseudo-orthogonal algebras and connect them to the Jordan algebras Hs(K). The
conclusion that the same construction applied to H3(K) gives the exceptional algebras
f4, €6, e7, eg and their extensions, is finally made in section 6.

2 Jordan algebras
A Jordan algebra is a commutative algebra that satisfies the Jordan identity
a*o(boa) = (a*ob)oa. (2.1)

Any associative algebra becomes a Jordan algebra if we replace the product by its
symmetric part

aob= %(ab—l—ba). (2.2)
A real Jordan algebra is formally real if it is finite-dimensional and satisfies
>+ =0 < a=b=0. (2.3)
Any simple formally real Jordan algebra is isomorphic to one of the following [2,10,11],
(i) the algebra R of real numbers,

(i) the direct sum J(U) of R and a Euclidean space U where the real number 1 is
identity element and the product of two elements a, b € U is equal to their inner
product, a o b = (a, b).

(iii) the algebras H,(K) of all hermitian n X n matrices over one of the division
algebras K = R, C, H for n > 3, with the product (2.2,

(iv) the algebra H3(Q) of all hermitian 3 x 3 matrices over the division algebra @ of
octonions, with the product (2.2).



The division algebras R, C, H, O are real algebras of dimension 1, 2, 4, 8, respec-
tively. The quaternions H and the octonions O are generalizations of the complex
numbers in the sense that they are spanned by the real numbers together with, re-
spectively, three or seven imaginary units e; that square to —1. In this way hermitian
matrices over C can be generalized to H and Q. Both H and O are non-commutative al-
gebras, since the imaginary units anticommute, and O is furthermore non-associative.
For dimU = 2, 3, 5, 9, the formally real Jordan algebra J(U) is isomorphic to the
algebra Hy(K) of all hermitian 2 x 2 matrices over K = R, C, H, O, respectively, with
the product (2.2)). An isomorphism is given by considering the matrices

((1) (1)) (g _oei)’ ((1) _01) (2.4)

(1 =1,2,...,dimK — 1) as an orthonormal basis of U. (For K = C the matrices
[24) are thus the usual Pauli sigma matrices.) If we replace the inner product in U
by one which is not positive-definite, we still get a Jordan algebra J(U), but it will
not be formally real. The same holds if we replace K = C, H, O by the ’split’ algebra
K?® which is obtained by changing the square of, respectively, 1, 2, 4 imaginary units
from —1 to 1, but otherwise leaving the multiplication table unchanged. Due to the
non-associativity of @, we get no Jordan algebras H, (Q) for n > 3, other than the
exceptional Jordan algebra H3(Q). As we will see next, it is related to the exceptional
Lie algebras.

2.1 The Kantor-Koecher-Tits construction

Let J be a Jordan algebra with identity element e. The subalgebra str J of End J,
generated by all (left) multiplications

ap:J — J, xw— az, (2.5)

where a € J, is the structure algebra of J. It can be shown [35] that the subalgebra
ver J of End J, consisting of all derivations of J, is spanned by all commutators |ar, br]
in str J, and that the structure algebra as a vector space is the direct sum of the
derivation algebra der.J and a subspace spanned by ay for all @ € J. The reduced
structure algebra stt’ J is the quotient (stt J)/h where b is the one-dimensional ideal
spanned by er. In the Kantor-Koecher-Tits construction [3-5], the structure algebra
gets extended to a 3-graded conformal algebra conJ consisting not only of linear
operators, but also of quadratic and constant operators. (The conformal algebra con J
will be defined in section [B.1] as a special case of the Lie algebra associated to a
generalized Jordan triple system, which is the subject of section 4.) In this way,
the real exceptional Jordan algebra H3(Q) gives rise to real forms of exceptional Lie



algebras. We have

vet H3(0) = fu(—s2),
ste'H3(0) = eg(_2),
con Hg(@) = €7(-25)- (26)

In this paper, we will present a generalization of the Kantor-Koecher-Tits construction,
which leads to a continuation of the sequence above to eg, ¢g, €19, and so on. There is
already a way to include eg in a unified construction of exceptional Lie algebras from
the four division algebras R, C, H, O, which we will review next, but to our knowledge,
there has not yet been any successful attempt to involve also its infinite-dimensional
extensions in this context.

2.2 Magic squares
For any pair (K, K) of division algebras R, C, H, O, we consider the vector space

M(K, K') = ver H3(K) @ (H3'(K) ® Im K') @ der K’ (2.7)

where H,'(K) is the subspace of H,(K) consisting of traceless matrices and Im K’ is
the subspace of K’ spanned by all imaginary units.

We can now define a certain Lie bracket [18] on M (K, K') such that we get the
following square of Lie algebras M (K, K').

K\K'| R C H 0
R aq Qo C3 f4
C (s D)) as D ao as €6
H C3 Qs 0g [4rd
0 fa 6 €7 €s

For simplicity, we do not write out the expression for the Lie bracket here, and we only
specify the complex Lie algebras. In this magic square, the real Lie algebras would
actually be the compact forms of the complex Lie algebras that we have specified,
but we also get other magic squares of real Lie algebras if we replace K or K’ by the
corresponding ’split’ algebra C*, H*, Q°. When K is split and K’ non-split, we get the
derivation, reduced structure and conformal algebras of H3(K') as the first three rows
(and in particular (2.6) in the last column). When K and K’ are both split, we get
the split real forms of the complex Lie algebras above.

We focus on the 3 x 3 subsquare in the lower right corner, consisting of simply-laced
algebras, with the following Dynkin diagrams.



K\K’ C

oo b oo
—oodoo
oo b oo

f
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The Dynkin diagrams in the last row are drawn with one black node each. The
outermost node next to it represents the simple root that generates (which we will
explain in the next section) the unique 5-grading where the subspaces g_, are one-
dimensional. This 5-grading gives rise to the corresponding Freudenthal triple system.
Deleting this node gives the algebra in the row above, which thus is an ideal of gy in
this 5-grading, and deleting also the black node itself take us yet another row upwards
in the square.

What we have described here is Tits’ construction of the magic square [12]. There
are also other constructions [14,18,36] where the symmetry M (K, K') = M (K', K) is
manifest. (However, the construction by Kantor [36] is different in the sense that the
real versions [37] do not contain any compact forms.)

In the same way as the exceptional Jordan algebra H3(Q) gives rise to exceptional
Lie algebras, the Jordan algebras Hy(KK) give rise to pseudo-orthogonal Lie algebras,

oert Hy(K) = so(d — 1),
stt’ Hy(K) =s0(1, d— 1),
con Hy(K) = s0(2, d), (2.8)

where d = dim K + 2 = 3, 4, 6, 10 for K = R, C, H, O, respectively. If we replace
H;3(K) by Hy(K) and det K’ by so(Im K') in (2.7)), we get the vector space

L(K, K') = ver Hy(K) @ (Hy'(K) ® Im K') @ so(Im K'). (2.9)

If we then define a Lie bracket [18] on L(K, K’) similar to the one on M (K, K’), we
get the subalgebra

LK, K') = so(K® K') (2.10)

of M(K, K'), and we find the algebras (2.8) in the first three rows of the following
square of Lie algebras L(K, K').



K\K' | R C i 0
R 50(2) 50(3) s0(h) 50(9)
C* | so(1,2)|so(l, 3) | so(l,5) | so(l,9)
H* | s0(2,3) | s0(2,4) | s0(2, 6) | s0(2, 10)
O° | so(4,5) | s0(4,6) | so(4, 8) | so(4, 12)

We will come back to the Jordan algebras Hy(K) in section 5.1 when we apply our
generalization of the Kantor-Koecher-Tits construction. We will show that it works
also for H3(KK), but we will for simplicity only consider the Hy(KK) case explicitly.

3 Kac-Moody algebras

In this section we will briefly recall how a complex Kac-Moody algebra can be con-
structed from its (generalized) Cartan matrix, or equivalently, from its Dynkin dia-
gram. For details, we refer to [38]. We will assume that the determinant of the Cartan
matrix is non-zero, which in particular means that we leave the affine case for now,
but we will come back to it in section [l The Kac-Moody algebra will then be finite-
dimensional (or simply finite) if the determinant is positive, and infinite-dimensional
(or indefinite) if the determinant is negative.

The Cartan matrix is of type r x r, where r is the rank of the Lie algebra. Its
entries are integers satisfying A% = 2 (no summation) and

i#j= AY <0, AT =0 A"=0 (3.1)
fori, 7 =1, 2, ..., r. The Dynkin diagram consists of r nodes, and two nodes i, j are
connected by a line if AY = A7 = —1, but disconnected if AY = A% = 0 (these are
the only two cases that we will consider).

In the construction of a Lie algebra from its Cartan matrix, one starts with 3r
generators e;, f;, h; satisfying the Chevalley relations (no summation)

[6i7 fj] = 5ijhj7 [hw h’j] = 07
[hi 5] = Ayzes, [hiy fil = —Aii fi- (3.2)
The elements h; span the abelian Cartan subalgebra go. Further basis elements of

g will then be multiple commutators of either e; or f;, generated by these elements
modulo the Serre relations (no summation)

(ad ;)" ""e; = 0, (ad ;)" f, = 0. (3.3)



It follows from (B.2) that these multiple commutators (as well as the elements e; and
fi themselves) are eigenvectors of ad h for any h € gy, and thus each of them defines
an element « in the dual space of gg, such that a(h) is the corresponding eigenvalue.
These elements « are the roots of g and the eigenvectors are called root vectors. In
particular, e; are root vectors of the simple roots «;, which form a basis of the dual
space of go. In this basis, an arbitrary root u = p‘e; has integer components ¢, either
all non-negative (if «v is a positive root) or all non-positive (if « is a negative root).

For finite Kac-Moody algebras, the space of root vectors corresponding to any root
is one-dimensional. Furthermore, if «v is a root, then —« is a root as well, but no other
multiples of a. For any positive root « of a finite Kac-Moody algebra g, we let e,
and f, be root vectors corresponding to a and —a, respectively, such that they are
multiple commutators of e; or f;. (This requirement fixes the normalization up to a
sign.) Thus a basis of g is formed by these root vectors e, f, for all positive roots «,
and by the Cartan elements h; for alli =1, 2, ..., r.

3.1 Graded Lie algebras

A Lie algebra g is graded, or has a grading, if it is the direct sum of subspaces g, C g
for all integers k, such that [g,, gn] C gm+n for all integers m, n. If there is a positive
integer m such that gi,, # 0 but gix = 0 for all k£ > m, then the Lie algebra g is
(2m + 1)-graded. We will occasionally use the notation g+ = g41 + gao + - - -

Any simple root «; of a Kac-Moody algebra g generates a grading of g, such that
g, is spanned by all root vectors e, or f,, with the component i = —k (the minus sign
is a convention) corresponding to «; in the basis of simple roots, and, if £ = 0, by the
Cartan elements h;.

A graded involution T on the Lie algebra g is an automorphism such that 72(z) = =
for any x € g and 7(gr) = g_x for any integer k. The simplest example of a graded
involution in a graded Kac-Moody algebra is given by e, < +f, and h; <> —h;. (With
the minus sign, this is the Chevalley involution.)

On the subspace g_; of a graded Lie algebra g with a graded involution 7, we can
define a triple product, that is, a trilinear map (g_1)® — g_1, given by

(#, y, 2) = (2y2) = [[x, 7(y)], 2. (3.4)

Then, due to the Jacobi identity and the fact that 7 is an involution, this triple product
will satisfy the identity

(uv(2y2)) = (zy(uvz)) = ((wor)yz) — (z(vuy)z), (3.5)

which means that g_; is a generalized Jordan triple system. As this name suggests,
and as we mentioned already in the introduction, this kind of triple systems is related
to Jordan algebras. We will explain the relation in more detail in section [5.11



3.2 Extensions of graded Lie algebras

We will now generalize the situation in the last row of the magic square to the case
when an arbitrary Kac-Moody algebra b is extended by an a,_; algebra, for an arbi-
trary integer n > 2, to a Kac-Moody algebra g with the following Dynkin diagram.

In the fourth row of the magic square on page [l we thus have n = 1, and especially
in the lower right corner, g = ¢s and h = e;. The root corresponding to the black
node n, which g and b have in common, generates a grading of g as well as of h. (It
can be connected to more than one node in the Dynkin diagram of h.) We want to
investigate how the generalized Jordan triple systems g_; and §_;, corresponding to
these gradings, are related to each other.

As described in section 3.1} a basis of h_; consists of all root vectors e, such that
the component of p corresponding to a,,y; in the basis of simple roots is equal to
one. A basis of g_; consists of all such basis elements e, of h_; together with all
commutators [e’, e,], where e’, for i =1, 2, ..., n— 1, is the root vector

e =[...[[ei, €ir1l] €irals - En_il (3.6)
of the a,,_; subalgebra of g. We also define the root vector

fr=1 Al finl, five)s s fad] (3.7)
for the corresponding negative root, and the element

h' = hi 4+ hiy1 + higa + -+ hpy (3.8)
in the Cartan subalgebra of g, such that

e, fT=h', (W el=2¢, W f]=-2f, (3.9)

(no summation). If ¢ # j, then

[hiv ej] = ejv [hlv f]] = _fjv (310>

10



while [e’, e’] is either zero or a root vector of g that does not belong to g_;. (We stress
the difference between having the indices 7, j, ... on e, f, h upstairs and downstairs.
The root vectors e; correspond to the simple roots of the a,,_; subalgebra, while the
root vectors e’ correspond to roots of the a,_; subalgebra for which the component
corresponding to the simple root «a,,_; is equal to one, and these roots are not simple,
except for oy, itself.) Using the relations (3.9)—(BI0) we get

[[e", 7], e = =8¢y, [e', £71, £l = 6V o,
[[euv fu]a ei] = _5uuei7 Hew fv]v f]] = 5Hij7 (311>
and then

[[eiv eu]v [fja fll = _5ij[€uv fol = 5u1/[€i7 fj]a

[[6ia eu]> fu] - 5uuei> [eua [fj> fu]] = _5ul/fj' (312)
Finally we have
[[ef, f7], ] = 67%e! + §7iek. (3.13)

For any graded involution 7, we define a bilinear form on h_; associated to T by

(eu, 7(f)) = 0. Then, from BII)—(BI2) we get

e, T(en)], €] = —(ep, ev)e, e, T(e)] f71 = (en, e)f,
[le", e, [f7, m(en)]] = =07 [en, T(e)] — (e en)le’, f7],
Heia eu), T(ew)] = (ep €V)ei> [ens [fja T(e)]] = —(ep 6V)fj> (3.14)
We consider now the direct sum (h_;)™ of n vector spaces, each isomorphic to h_1, and
write a general element in (h_1)" as (x1)! + (22)? + - -+ (2, 11)", Where z1, xo, ... are

elements in h_;. Using the relations above it is straightforward to prove the following
theorem.

Theorem 3.1. The vector space (h_1)", together with the triple product given by
(2%9°2%) = 8%[[z, T(y)], 2]° — 6% (x, y)2° + 6%(z, y)2" (3.15)

fora,b,...=1,2, ..., nandx, y, z € h_q, is a triple system isomorphic to the triple
system g_1 with the triple product

(vow) = [[u, 7(v)], w], (3.16)

where the involution T is extended from b to g by 7(¢') = —f'". Thus (h_1)" is a
generalized Jordan triple system, as well as g_.

11



Proof. The theorem says that there is a one-to-one linear map

Y (b)) — g (3.17)

such that
Y((wow)) = (Y (u)y(v)Y(w)) (3.18)
for all u, v, w € (h_1)". It is easy to see that the map 1 defined by e,' — e, and
(e,) ™ —[e', e,] for i =1,2,..., n—11is one-to-one. To prove that it is an isomor-

phism, it suffices to show (3.I8) when u, v, w are basis elements e,’, e,7, e,*, but this
must be done case by case for each of i, j, k equal to one or not, which means eight
different cases. Therefore (although each case is simple) a complete proof would be
quite lengthy, and we leave it as an exercise for the reader. 0

4 The Lie algebra associated to a generalized
Jordan triple system

In the end of section 3.1l we saw that any graded Lie algebra with a graded involution
gives rise to a generalized Jordan triple system. In this section, we will show the
converse, that any generalized Jordan triple system gives rise to a graded Lie algebra
with a graded involution. The associated Lie algebra has been defined in different way
by Kantor [29] and called the Kantor algebra [39].

We recall from section B. Il that a generalized Jordan triple system is a triple system
that satisfies the identity

(uv(2y2)) = (zy(uvz)) = ((wor)yz) — (2(vuy)z). (4.1)

For any pair of elements z, y in a generalized Jordan triple system 7', we define the
linear map

Soy T — T, s5(2) = (2y2). (4.2)
Thus (1) (for all z) can be written
[Suvs Say] = S(uva)y — Saz(vuy)- (4.3)
For any x € T, we also define the linear map
Uyt T — End T, v,(y) = Suy, (4.4)

which we will use in the following subsection.

12



4.1 Construction

Let T be a vector space and set Uy = EndT. For k < 0, define U}, recursively as the
vector space of all linear maps from 7" to Uy,,. Let U_ be the direct sum of all these
vector spaces,

U =U_,0U0,0- - (4.5)
and define a graded Lie algebra structure on U_ recursively by the relations
[u, v] = (ad u) o v — (ad v) o u. (4.6)

Assume now that T is a generalized Jordan triple system. Let Uy be the subspace of
U, spanned by sS4, for all u, v € T, and let U_ be the subspace of U_ generated by
v, for all x € T. Furthermore, let U, be a Lie algebra isomorphic to U_, with the
isomorphism denoted by

x:U_ — Uy, u—u" (4.7)
Thus U, is generated by v,* for all x € T'. Consider the vector space
LT)=U_aeUyeU,. (4.8)

We can extend the Lie algebra structures on each of these subspaces to a Lie algebra
structure on the whole of L(T'), by the relations

[S:cya 'Uz] = V(zyz), ['Uxa Uy*] = Szy, [S:cya 'Uz*] = —V(yzz)- (49)

Furthermore, we can extend the isomorphism * between the subalgebras U_ and U,
to a graded involution on the Lie algebra L(T"). On U,, it is given by the inverse of
the original isomorphism, (u*)* = u, and on Uy by s,,,* = —5y,.

Theorem 4.1. Let g be a graded simple Lie algebra, generated by its subspaces g1,
with a graded involution 7. Let g_, be the generalized Jordan triple system derived

from g by
(vow) = [[u, 7(v)], w]. (4.10)
Then the Lie algebra L(g_1) is isomorphic to g.

Proof. Define the linear map ¢ : g — L(g_1), with g — Uy for all integers k,
recursively by

ueg-: pu)(r)=e(u r(z)]),
s€go: w(s)(x)=[s, 2,
T(u) € gy 0 o(r(u)) = @(u)", (4.11)

where = € g_;. We will show that ¢ is an isomorphism.

13



® © is injective

Suppose that 7 and s are elements in gy such that ¢(r) = ¢(s). Then [r — s, 2] =0

for all x € g_;, which means that [r — s, g_] = 0 since g_ is generated by g_;. But
then the proper subspace
> (ad (go + 9+))(r — s) C g+ + go (4.12)
keN

of g is an ideal. Since g is simple, it must be zero, but r — s is an element of this
subspace, so r = s. Suppose now that u and v are elements in g_ with ¢(u) = p(v).
Then ¢([u, 7(z)]) = ¢([v, 7(x)]) for all € g_;, and by induction we can now show
that this implies [u — v, 7(x)] = 0 for all x € g_;. Now we can use the same argument
as before (but with g, replaced by g_) to show that u and v must be equal. The case
u, v € gy then easily follows by

p(r(u) = @(1(v)) = (u)" — (V)" = (p(u) = e(v))" (4.13)
e 0 is a homomorphism

It is sufficient to show this when u € g, and v € g; for all integers 7, 7 and we will
do it by induction over |i| 4+ |j|. One easily checks that ¢([u, v]) = [p(u), ¢(v)] when
li| + 7] < 1. Thus suppose that this is true if |i| 4+ |j| = p for some integer p > 1. For
17, 7 < 0 we now have

[o(w), e(v)](z) = [p(u), p(v)(x)] = [p(v), p(u)(z)]
= [p(w), ¢([v, T(z)])] = [(v), (lu, 7(x)])]
= o([u, [v, 7(@)]] = [v, [u, 7(2)]]) = ¢([u, v])(z) (4.14)
by the assumption of induction in the third step, and by the Jacobi identity in the
last one. We use this for the case i, 7 > 0, where we have

p([r(u), 7(v)]) = o(7([u, v])) = @(lu, v])* = [o(u), @(v)]*
= [p(w)", e(v)’] = [p(T(u)), p(r(v))]. (4.15)
Finally, we consider the case where i > 0 and j < 0. Again, we show it by induction
over |i| + |7|, which means ¢ — j in this case. One easily checks that it is true when
i=1and j = —1, so we can assume that j < —2 (or, analogously, i > 2). Then v can

be written as a sum of elements [z, y] where z € g,, and y € g, for j < m, n <0. We
consider one such term and, using what we have already proven, we get

[o(u), e([z, yD)] = [o(u), [o(@), e(y)]]

[p(w), e(@)], e()] = [lpu), )], #(2)]

= lp([u, 2]), o)) = [¢([u, ¥]), ¢(2)]

p(llu, =], y] = [lu, yl, 2]) = ¢(lu, [z, y]]) (4.16)

by the assumption of induction in the third and fourth steps.
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® © is surjective

Since ¢ is a homomorphism, this follows from the fact that g and L(g_;) are generated
by g+1 and U, respectively. The proof is complete. O

As we will see, the theorem is useful when a generalized Jordan triple system T
happens to be isomorphic to g_1, because it then tells us how to construct g from 7.

4.2 Realization

The construction of the Lie algebra in the previous subsection may seem rather ab-
stract, where the elements are linear operators acting on vector spaces of other linear
operators, which in turn act on other vector spaces, and so on. However, once the Lie
algebra is constructed, it can also be realized in a way such that the elements act on
the same vector space, but in general non-linearly, and there is a very simple formula
for this, as we will see in this subsection.

Let V' be the direct sum of (infinitely many) vector spaces V;, Vs, .... We write an
element v € V asv =wv; +vy+---, where v, € Vi, for k =1, 2, .... With an operator
on V of order p we mean a map f : V — V such that for any i =1, 2, ..., there is a
symmetric (p; + ps + - -+ )-linear map

F:VPixVP2x ... -V, (4.17)
where p; 4+ 2py + 3ps + - - - = 7 + p, that satisfies
f(v); = Fi(v1, v1, ..., V1; Vg, Vg, ..., Ug;...). (4.18)

We define the composition f o g of such an operator f and another operator g, of order
q, as the operator of order p 4 ¢ given by

(fog)i(v) =piFi(g(v)1, v1, ..., V1; Vo, Vay ..y Vaj...)
+paFi(vr, vi, oo 015 ()2, Vo, e V2 ) (4.19)
forall i =1, 2, ..., and a Lie bracket as usual by [f, g] = fog—go f. Let M, be the
vector space of all operators on V' of order p, and let M (V') be the direct sum of all
M, for all integers p (note that they can also be negative). It follows that M (V) is a

graded Lie algebra. It is isomorphic to the Lie algebra of all vector fields f0; on V,
where f € M(V), with an isomorphism given by

f— —flo;. (4.20)

Any graded Lie algebra g = g_ + go + g- is isomorphic to a subalgebra of M(g_). It
can be shown [40,41] that an injective homomorphism x : g — M(g_) is given by

X(u) : 2 (%Pe—ad ) (), (4.21)
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where P is the projection onto U_ along Uy + U, and the ratio should be considered
as the power series

adr adz (adz)® (ad x)*
T Tt T (4.22)

4.3 Examples

We will now illustrate the ideas in two cases, where the generalized Jordan triple
system satisfies further conditions.

First of all, we assume that the triple systems are such that if (zyz) = 0 for all
Y, z, then x = 0. This allows us to identify = with v, for all x in the triple system,
that is, we can identify U_; with 7" and we can consider any element [v,, v,] € U_5 as
a linear map on T, which we denote by (z, y). Since

[v2y 0] (2) = [vz, vy (2)] = [vy; va(2)

= [Vay Syz] = [vy, Saz] = V@azy) = V(gea), (4.23)

this linear map is given by

(z, y)(2) = (z2y) = (yzz). (4.24)

A generalized Jordan triple system is generalized in the sense that this linear map does
not have to be zero — in a Jordan triple system [26], the triple product (zyz) is by
definition symmetric in z and z. Accordingly, the Lie algebra associated to a Jordan
triple system is 3-graded, g = g_1 + go + g1, and it can be realized on its subspace g_;
by applying the formula (4.21]). Everything that is left from the power series expansion
(#22) is then the identity map,

1 _ai—id ;=1L (4.25)
and we get
ueg 1: x— Pu=u
[u, ()] € go = @ P([u, 7(v)] = [, [u, 7(V)]]) = —[z, [T(u), v]]

= [Suv, 7] = (uvz),
T(u)€gr: P(r(u) = [z, ()] + [z, [z, 7()]]) = 5[z, [z, 7(u)]]

= —1[sou, 7] = 3(zux). (4.26)

This is the conformal realization of g on g_1.
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We now turn to Kantor triple systems [28] (or generalized Jordan triple systems
of second order [29]). These are generalized Jordan triple systems that in addition to
the condition (4.1]) satisfy the identity

((u, ) (@), y) = ((yu), v) = ((yzv), u). (4.27)

It follows that the Lie algebra associated to a Kantor triple system is 5-graded, and
the only part of (£22) that we have to keep is

ad = ad x
_— =14 —. 4.28
1] —eadz + 2 ( )
Then we get

[u,v]€g9: 2+ 72— (u,v),
uegy: z+Z—u+3u 2),
[u, T(V)] €g0: 2+ 2 (wvz) — (u, Z(v)),
T(u) €gr: 2+ 2 —3(zuz) — Z(u)
¥ 5{(zu2), 2 - HZw, 2)
T(u), )] € g2t 2+ 2 —5(2{u, v)(2)2) = Z((u, v)(2))
£l 0)()2), 2) + (Z(w), Z(0)),  (4.29)

where z € g1 and Z € g_,, which is the same realization as in [27], apart from a
rescaling of the elements in g_, by a factor of two.

5 Applications to pseudo-orthogonal algebras

In this section, we will apply the general considerations in section 3], and the generalized
conformal realization in section K.3 to pseudo-orthogonal algebras. First we recall
some basic facts. Let V be a real vector space with an inner product. The real Lie
group SO(V') consists of all endomorphisms F' of V' which preserve the inner product,

(F(u), F(v)) = (u, v) (5.1)

for all u, v € V. The corresponding real Lie algebra so(V') consists of all endomor-
phisms f of V' which are antisymmetric with respect to the inner product,

(f(u), v) + (u, f(v)) =0 (5.2)

for all w, v € V. If V is non-degenerate and finite-dimensional with signature (p, q),
then we can identify SO(V) with the real Lie group SO(p, q) consisting of all real
(p+ q) x (p+ q) matrices X such that

XX =n, detX =1, (5.3)
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where 7 is the diagonal matrix associated to the inner product. Correspondingly, we
can identify so(V') with the real Lie algebra so(p, q) consisting of all (p + q) X (p + q)
matrices z such that

z'n +nz = 0. (5.4)

In other words, so(p, ¢) consists of all real matrices of the form

x = (‘CL Cbt) , (5.5)

where a and b are orthogonal p X p and ¢ x ¢ matrices respectively. These groups
and algebras are said to be pseudo-orthogonal or, if p = 0, orthogonal, written simply
SO(q) and so(q).
We consider now the pseudo-orthogonal algebra so(p + n, ¢ + n), with the inner
product given by
n= diag(:l, o, =L+ 4+ =1 =1+ +1J), (5.6)

v~ v~ v~ v~
P q n n

for some arbitrary positive integers n, p, ¢. It is spanned by all matrices G’ ;, where
the entry in row L, column K is given by

(GT K =8"06% =00y, (5.7)

and I, J,...=0,1,...,p+q+2n — 1. It follows that (G';)! = G7;. If I # J,
then the entry of G!; in row I, column J is 1 while the entry in row J, column I is
+1 and all the others are zero. If I = J, then G!; = 0. These matrices satisfy the
commutation relations

[G'y, GF L] =06"L,GX ) = 6% ,G" y + 0™y GM L — ™ G, (5.8)
and all those G! ; with I < J form a basis of so(p + n, ¢ + n).
For u,v,...=0,1,...,p+q—1and a, b, ... = 1,2, ..., n, with p < v and

a < b, we take the linear combinations

Kab — %(_Ga—i-m-i-n + Ga—i—m _ Ga+m+n + Ga+m),

b+m-+n b+m-+n b+m b+m
Kua = _Gua—i-m-i-n - Gua—i-ma
D% = 3(Gyiniln + Gyl + GELT™ + GRLLD,
Pua — _Gua—i-m-i-n _ Gﬂa—i—m’
P = (=G = Gilmen + GRin ™ + GRED), (5.9)

as a new basis, where we have set m = p + ¢ — 1 for convenience. We note that K,
and P vanish when n = 1, since they are antisymmetric in the indices a, b. The
basis elements (5.9]) satisfy the commutation relations

[Gﬂy’ Dab] = [Gulh Pab] = [Gﬂl” Kab] = 07
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(G2, Go] = 05GY — 00GY + 11" min Gy — 1 G,
[D%,, D¢4] = §“4D°), — 6, D",

[P, K"y = 2(6%G",, — 6" ,D%),

[GMV’ Ppa] = 5MPPVCL - annu)\P)\a> [GMW Kpa] = _5PVKMG + nupnlf)\K)\aa
[Daln P/JC] = _6cbp/.ta7 [Dalh Kuc] - 6acK“b7

[Pﬂav Pl/b] = 27]}“’Pab7 [Kuav Kub] = —QUW ab)

[Paba P,uc] = 07 [Kabu Kﬂc] = 07

[Dabu PCd] = 5dbpac — 5cbpad7 [Dabv ch] = 5achd — 5adew
[Kﬂa’ Pbc] - 5Ca77u)\P)\b - 5banuAP)\ca [Puaa Kbc] - 5ac77u)\K>\b - 5ab77u)\K>\c>
[Pabu PCd] = 07 [Kaln ch] = 07

ab __ ga b b a a b b a
[P, K] = 69D — 6t,D% — 69, D%, + 8¢, D7, (5.10)

We see that so(p+ n, ¢+ n) has the following 5-grading, which reduces to a 3-grading
when n = 1.

subspace ‘ g o ‘ g1 ‘ 9o ‘ g1 ‘ 92

basis ‘ pab ‘ P ‘ G*,, D% | K*, ‘ K

Furthermore, we see that D%, satisfy the commutation relations for gl(n, R). Since
they also commute with G*,, we have

go = s0(p, ¢) ® gl(n, R) (5.11)
as a direct sum of subalgebras. Finally, a graded involution 7 is given by
T(P,") = nu K"y = =G, + G0 (5.12)
and it follows that

T(K") = 1" P, = =G symin + G atm, (5.13)
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7(D%) = —D",, T(Ka) = P®,
T(G") = G*, T(P?) = Ka. (5.14)

Thus all conditions are satisfied for g_; to be a Kantor triple system K with the triple
product

(PP P)) = ([P, (B)], Po] = ([P, mak™s], By
— _25ab7],u>\(5)\ppl/c o annAHPRC) 4 25bc7hwppa
= 20" (1B — e P°) + 20", P,° (5.15)
If we now insert (5.I5) in (£29) (but rescale the elements in g_, according to [27]),

and use the isomorphism (£.20), so that we identify any operator f with the vector
field — f#,0,* — fu0*, then we get the realization

Pab — _28ab’
P = 0," — 22,40,
GMV = Iuaaua - xuaauaa
Dab = x“b&j’ + 2:6;,68“,
K", = —22",2"0,° + 2¥ w0 — w0
— 20 g, O + 22 gt O,
Kab = xuaxyba:,ucauc - xubxya$p08uc - xacxuba,uc + xbcxuaauc

+ 2:B“ax”b:vucx,,d00d — 2% e g O (5.16)

Straightforward calculations show that these generators indeed satisfy the commuta-
tion relations (5.I0). When n = 1, the gl(n, R) indices a, b, ... take only one value,
so we can suppress them, and everything antisymmetric in these indices vanishes. We
are then left with

P, =0y,
Gt, =x,0" — 2*0,,
D = a"0,,
Kt = =22"2"0, + 2"x,0,,, (5.17)

which is the usual conformal realization.

We will now show that the 5-grading of so(p+n, ¢+n) in this section is generated
(as described in section [B]) by the simple root corresponding to node n in the Dynkin
diagram below of 0, for p+ ¢ = 2r. We will then show that the casesn =1 and n > 1
are related in the way that we described in section [3
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1 2 n

For this we must relate the P, basis of g_; used in this section to the basis consisting
of root vectors. This relation will of course be different for different Lie algebras
s0(p+n, g+n). We consider first the case n = 1. Below we give explicitly the relations
(with a suitable choice of Cartan-Weyl generators) for two examples, (p, ¢) = (5, 5)
in the left table and (p, ¢) = (1, 9) in the right table. We have indicated the roots by
their coefficients in the basis of simple roots, corresponding to the nodes in the Dynkin
diagram above. It is evident from these tables how to generalize them to arbitrary
values of p, ¢ (with p 4 ¢ even).

H eu fﬁ H eM fﬁ

(Ps+ Py) | 2(K°+ K°) 10000 | 2(Ps+ By) | 3(K°+ K°)

N[
N[

0
10000

11000 | 3(Ps+ P1) | (K% + K") 11000

N[

(Ps —iPy) | (K +iK")

(P + Py) | 2(K"+ K?) 1100 | 2(Pr—iPy) | 2K +1K?)

N[
N[
N[

0
11100

11110 | 3(Ps+ Ps) | (K% + K?) 11170

N[

(Ps —iPs) | S(K® +1K3)

111?1 %(fb +‘fﬁ) %(}(9'+’}(4) 111?1 %(fb —-ifﬁ) %(}(9-+il(4)
1110 | 3(Po— Py) | 3(K? — K*) 1ito | 2(Py+iPy) | 3(K® —iK")
11 | 3(Ps— Py) | 5(K® — K3) it | 3(Bs +1iP3) | $(K® —iK?)
1131 | 5(Pr—P) | 3(K7— K?) 121 | 2(Pr+iP) | 2K —iK?)
11231 | 3(Ps — P) | 3(KS— K') 1921 | 3(Bs +1iPy) | 3(KS —iK")
12231 %(P5 - P) %(K5 — K9 19951 %(P5 - PR) %(K5 K")
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It follows that the bilinear form associated to the involution
T(P) = nu K, (5.18)

is given in the P, basis by (P,, P,) = 2n,,.
When we extend so(p+1, g+1) to g = so(p+n, g+n) forn > 1, we put a superscript
1 on P, in the expressions for the root vectors e, of the subalgebra h = so(p+1, ¢+1)
in h_; (and a subscript 1 on K*). In the notation that we used in section [3, we have
furthermore e* = D% and f* = D!,. Then the graded involution (5.12) on g is indeed
the extension of the original involution (5.18]) on h that we described in Theorem [3.1]
and we get
(P,*P,°P,%) = 26°n,,P,° — 25"n,,P,° + 26*n,, P,"
= 20°0,,P,° — 261, P,° + 261, P, — 261, P, + 26", P,"
= §(P,P,P,)" — 20", P,° + 26"1,, P,"
= §[[P,, 7(P,)], P,)° — 6°°(P,, P,)P,° + 6*(P,, P,)P,” (5.19)

as we should, according to Theorem [3.11

5.1 Connection to Jordan algebras
When n = 1, the triple product (5.I5) becomes
(P,P,P,) = 2n,,P, — 21,,P, + 21, P,. (5.20)

If we introduce an inner product in the vector space g_; by P, - P, = 7, then this
can be written

(xyz) =2(z-y)x —2(z-2)y +2(z - y)=. (5.21)

Let U be the subspace of g_; spanned by P; fori=1,2, ..., p+¢q— 1. Then we can
consider g_; as the Jordan algebra J(U) (defined in section 2 for Euclidean spaces U),
with the product

fori, 7=1,2,..., p+q—1, and Py as identity element. If we introduce a linear map
JWU)— JU), =z 2z, (5.23)

which changes sign on Fy, but otherwise leaves the basis elements P, unchanged, then
we can write the inner product as

2(u-v) =uod+wvod. (5.24)
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Inserting (5.24) in (5.21]), we get

(oy2) = (Foy)ow— (Fox)oy + (Foy)oz
+(z0g)oxz—(z0Z)oy+ (zoy)oz
=y, Z, 2|+ [y, Z, 2] + (z0g)ox + (xoF) oz (5.25)

It is easy to see that the associators in the last line remain unchanged if we move the
tilde from one element to another. Thus we get

(ryz) = +ly, &, 2]+ (zog)ox+ (zog)oz
= +[9, 7 2+ (zog)ox+(zog)oz

=2(zof)ox—2(zox)og+2xoy) oz (5.26)
If we instead use the involution given by
7(Py) = nu K", (5.27)
then we can remove the tilde,
(xyz) =2(z0y)ox —2(z0x)oy+2(xoy)o 2. (5.28)

Any Jordan algebra J is also a Jordan triple system with this triple product. The asso-
ciated Lie algebra, defined by the construction in section [, or in this case equivalently
by the realization (4.20]), is its conformal algebra con J.

Consider now the case p =1 (and still n = 1). Then U is a Euclidean space, and
J(U) is a formally real Jordan algebra. For ¢ = 2, 3, 5, 9, we recall from section 2 that
there is an isomorphism from J(U) to Hy(K), where K = R, C, H, O, respectively,
given by

10 01 0 —e 10
P°H<o 1)’ PlH(l o)’ B“H(ei 0)’ PP*‘HH<0 —1) (5.29)

fori=1,2,..., p+q— 3. (As before, e; are the 'imaginary units’ that anticommute
and square to —1.) The involution (5.27) becomes

7(P,) = K* (5.30)

and we see from the tables on page [21] that the associated bilinear form on g_; has
the simple form (z, y) = tr(xoy). If we instead consider the split form (p = q)
for p = 3,5, 9, then (5.29) is still an isomorphism, from J(U) to Hs(K®), where
K = C, H, O, respectively. Furthermore, the bilinear form on g_;, associated to the
graded involution (5.27)) still has the form (z, y) = tr (z o y).
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6 Conclusions

It is a well known fact that the conformal algebra con Hy(K) of the Jordan algebra
Hy(K)isso(p+1,g+1) for K=R, C, H, O and (p, ¢) = (1, 2), (1, 3), (1, 5), (1, 9),
respectively. This means that there is a 3-grading of so(p + 1, ¢ + 1) and a graded
involution such that the associated Jordan triple system is isomorphic to Hs(K) with
the triple product

(xyz) =2(zoy)ox —2(zox)oy+2(xoy)oz. (6.1)

From this 3-grading we get the conformal realization of so(p + 1, ¢ + 1).

In section [f] we have explicitly given the 3-grading of so(p + 1, ¢ + 1), the graded
involution and the isomorphism to Hs(K). We have also shown that the bilinear form
associated to the graded involution in Hy(K) is given by (z, y) = tr (z oy) and that
the 3-grading is generated by the simple root corresponding to the leftmost node in the
Dynkin diagram (drawn as on page[21]). If we add n—1 > 1 nodes to the left, then this
simple root will instead generate a 5-grading of the resulting algebra so(p +n, ¢+ n).
Theorem B3] tells us how the two triple systems, associated to the 5-graded Lie algebra
so(p+n, ¢+ n) and its 3-graded subalgebra so(p + 1, ¢ + 1), respectively, are related
to each other. The conclusion is that the generalized Jordan triple system associ-
ated to so(p+n, ¢+ n) for K=R, C, H, O and (p, q) = (1, 2), (1, 3), (1, 5), (1, 9),
respectively, is isomorphic to Hy(K)™ with the triple product

(2y’2%) = 20 ((2 0 y) 0 2)° — 20 ((2 0 7) 0 y)° + 20((z 0 y) 0 2)°
— 6 (x, )2 + 6" (x, y)2%, (6.2)

where a, b, ¢ = 1,2, ..., n and (z, y) = tr(zoy). The same holds if we replace
these pseudo-orthogonal algebras by the split forms of the corresponding complex Lie
algebras, and C, H, O by C*, H*, O°.

The idea that we have presented here can also be applied to the Jordan algebras
H3(K). The corresponding conformal algebras were given in the third row of the magic
square on page 6 (and for simplicity we here only consider the complex Lie algebras),
for example con H3(Q) = e7. The node next to the black one in each Dynkin diagram
represented the simple root that generates the corresponding 3-grading. If we add one
more node next to the black one, we get the exceptional Lie algebras in the fourth
row. The node that we add happens to be the ’affine’ one, which means that if we
add even more nodes, then we get first the affine extension of the exceptional Lie
algebra, and then the hyperbolic extension. The conclusion in this case is thus that
the exceptional algebras f4, ¢s, 7, eg are the Lie algebras associated to H3(K)?, with
the triple product ([6.2]) for K =R, C, H, O, respectively. Their affine and hyperbolic
extensions are those associated to H3(K)? and H3(K)?, respectively, while further
extensions correspond generically to H3(K)™ for n =5, 6, .. ..
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It remains to show that the bilinear form associated to the graded involution really
is given by (z, y) = tr (z o y), also in the case of 3 x 3 matrices. However, one can
show that the triple product (6.2)) indeed satisfies the definition of a generalized Jordan
triple system when z, y, z are elements in H3(K) and (z, y) = tr (z o y). In order to
verify the guess, one would need the relation between the two bases that we use for g_;
in the 3-grading of g = con H3(K), corresponding to the tables on page 21l However,
H3(K) is more complicated than Hy(K), and, to our knowledge, such a change of basis
has never been given explicitly. This is also the reason why we have studied only the
pseudo-orthogonal algebras associated to Hy(K) in detail, leaving the H3(K) case for
future work.

An important and interesting difference between the Hy(K)"™ and H3(K)™ cases is
that the Lie algebra associated to Hs(K)™ is 3-graded for n = 1 and then 5-graded
for all n > 2, while the Lie algebra associated to H3(K)" is 3-graded for n = 1 but
7-graded for n = 2, and for n = 3,4, 5,..., we get infinitely many subspaces in
the grading, since these Lie algebras are infinite-dimensional. In the affine case, we
only get the corresponding current algebra directly in this construction, which means
that the central element and the derivation must be added by hand. It would be
interesting to find an interpretation of these elements in the Jordan algebra approach.
Finally, concerning the hyperbolic case and further extensions, we hope that our new
construction can give more information about these indefinite Kac-Moody algebras,
which, in spite of a great interest from both mathematicians and physicists, are not
yet fully understood.
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