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Abstract

The Bowen–York family of spinning black hole initial data depends essentially
on one, positive, free parameter. The extreme limit corresponds to making
this parameter equal to zero. This choice represents a singular limit for the
constraint equations. We prove that in this limit a new solution of the constraint
equations is obtained. These initial data have similar properties to the extreme
Kerr and Reissner–Nordström black hole initial data. In particular, in this limit
one of the asymptotic ends changes from asymptotically flat to cylindrical. The
existence proof is constructive, we actually show that a sequence of Bowen–
York data converges to the extreme solution.

PACS numbers: 04.20.Dw, 04.20.Ex, 04.70.Bw

1. Introduction

The Kerr–Newman black hole depends on the three parameters, m, q and J , the mass, the
electric charge and the angular momentum of the spacetime, respectively. They satisfy the
following well-known inequality

m2 � q2 +
J 2

m2
. (1)

This inequality can be written in the following form in which the mass appears only on the
left-hand side of the equation, and on the right-hand side we have all the ‘charges’

m2 � q2 +
√

q4 + 4J 2

2
. (2)

The extreme Kerr–Newman black hole is defined by the equality in (2)

m2 = q2 +
√

q4 + 4J 2

2
. (3)

For fixed values of q and J , we can interpret the extreme black hole as the black hole with the
minimum mass. In other words, the extreme black hole has the maximum amount of charge
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and angular momentum per mass unit allowed for given values of q and J . This variational
interpretation of extreme black holes generalizes to non-stationary, axially symmetric black
holes ([14–16]). It is convenient to define a parameter μ which measures how far a black hole
is with respect to the extreme case. In the stationary case, assuming that m, q and J satisfy
inequality (2), μ is given by

μ =
√

m2 − q2 +
√

q4 + 4J 2

2
. (4)

Note that μ has unit of mass. The extreme limit corresponds to μ = 0. For the Schwarzschild
solution we have μ = m.

In the extreme limit the global structure of the spacetime changes (see [10]). Particularly
relevant for the study of black holes as an initial value problem is the change in the structure
of Cauchy surfaces, and hence initial data set, in this limit. The slices t = constant in Boyer–
Lindquist coordinates represent Cauchy surfaces for the Kerr–Newman black hole. For μ > 0
these slices have two isometrical asymptotically flat ends. In the extreme limit μ = 0 one of
the ends changes from asymptotically flat to cylindrical. Also, for μ > 0 the Cauchy surfaces
contain an apparent horizon (in this case, due to the symmetry, it is also a minimal surface).
In the extreme case they do not contain any apparent horizons or minimal surfaces.

We can characterize a black hole spacetime by an initial data set. Then, it is possible to
define an analog to the extreme limit discussed above for more general (in particular, non-
stationary) black holes families. In [19], the extreme limit for the Bowen–York family of
spinning black holes initial data [5] was defined. Here we will restrict our considerations
to a subset of this family, which describes non-stationary, axisymmetric, black holes with
angular momentum and zero linear momentum. Having fixed the angular momentum, this
subset of the Bowen–York family depends on one parameter, which is the analog of the μ

parameter defined in (4). As for the Kerr–Newman black hole, the extreme limit in this
case also corresponds to μ → 0. The problem is that these data are not given explicitly.
They are prescribed as solutions of a nonlinear elliptic equation (essentially, the Hamiltonian
constraint) with appropriate boundary conditions. For the case μ > 0 it is well known that
this equation has a unique solution. However, the value μ = 0 represents a singular limit for
this equation. The values of the mass and the area of the apparent horizon were computed
numerically in this limit in [12]. It was shown that the value of these quantities is well defined
in the limit. In [19] the behavior of the whole solution was explored numerically in this limit.
The numerical calculations indicate that in the limit a new solution is obtained (see also [26]).
The purpose of this paper is to prove this. Namely, we will prove that the sequence μ → 0 of
Bowen–York spinning black hole data converges to a limit solution. We call this new solution
of the constraint equations the extreme Bowen–York data. We also prove that the solution
(as it was indicated numerically in [19]) has a similar behavior to the extreme Kerr–Newman
initial data discussed above.

The Bowen–York spinning black hole initial data have been extensively used in numerical
relativity (see the review article [13]). The extreme Bowen–York data constructed here
represent the data with the maximum amount of angular momentum per mass unit in this
family and hence they are suitable for modeling highly spinning black holes. There exist
astrophysical scenarios where it is expected that highly spinning black holes are relevant. In
particular, the data presented here are useful in the study of the recent discovered kicks in the
collision of two black holes (see [7, 8, 19, 21, 22, 24, 26]). In this process, the final recoil
velocity depends on the angular momentum of the black holes and it is maximal for nearly
extreme black holes (see [19]).
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As a final comment, we mention that asymptotically flat Riemannian manifolds have been
extensively studied in general relativity in connection with the constraint equations (see the
review article [3]). On the other hand, very little is known about manifolds with cylindrical
ends which appear naturally in extreme black holes. The solution presented here represents a
non-stationary and non-trivial example of such manifolds.

This paper is organized as follows. In section 2 we present our main result given by
theorem 2.1 and we discuss its implications. The proof of this theorem is split into section 3,
4 and 5. Possible generalizations and further studies are discussed in section 6. Finally, in
the two sections of the appendix we prove the version of the maximum principle used in the
paper and give the explicit expression of a lower bound for the solution that can be useful in
numerical calculations.

2. Main result

Let us review the Bowen–York spinning black hole initial data [5] with ‘puncture’ boundary
conditions [6]. The three-dimensional manifold is given by R

3\{0}. On R
3\{0} the metric hij

and the second fundamental form Kij are given by

hij = �4δij , Kij = �−2σij , (5)

where δij is the flat metric and the tensor σij is given by

σij = 6

r3
n(iεj)klJ

knl, (6)

where r is the spherical radius, ni the corresponding radial unit normal vector, εijk the flat
volume element and Jk an arbitrary constant vector. In this equation the indices are moved
with the flat metric δij .

The conformal factor � satisfies the following nonlinear elliptic equation in R
3\{0}

�� = F(x,�), (7)

where

F(x,�) = −9J 2 sin2 θ

4r6�7
, (8)

and J 2 = JiJj δ
ij ,� is the flat Laplacian and x denotes spherical coordinates (r, θ).

Boundary conditions for black holes are prescribed as follows. For a given parameter
μ > 0, define the function uμ on R

3, by

�μ := 1 +
μ

2r
+ uμ. (9)

Inserting this definition into equation (7) we obtain the following equation for uμ:

�uμ = F(x,�μ), (10)

where

F(x,�μ) = − 9J 2 sin2 θ

4r6
(
1 + μ

2r
+ uμ

)7 . (11)

Then, equation (10) is solved in R
3 for a function uμ ∈ C2, subject to the asymptotic behavior

uμ → 0 as r → ∞. (12)

For every μ > 0 there exists a unique solution uμ ∈ C2(R3) of (10) such that it satisfies (12).
Note that uμ is C2 even at the origin. A proof of this result was given in [6] based on [9]. It is
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also possible to prove this result using a suitable adapted version of the sub and supersolution
theorem presented in [11] or using a compactification of R

3 like the existence theorems in [4],
[17].

Note that equation (10) depends, in principle, on two parameters, J and μ. There
exists however a scale invariance for this equation (see [19]), and hence the solution depends
non-trivially only on one parameter. We chose to fix J and vary μ.

In the rest of this paper we will denote by uμ the unique solution of (10), with boundary
condition (12) for any given μ > 0. We have that uμ � 0 and uμ ∈ C2,α(R3), where Ck,α(R3)

denotes Hölder spaces (see, for example, [20] for definition and properties of these functional
spaces).

The total angular momentum of the data is given by J and the total mass m is given by

m = μ +
1

2π

∫
R3

9J 2 sin2 θ

4r6
(
1 + μ

2r
+ uμ

)7 dx. (13)

Note that the mass cannot be a priori explicitly calculated as a function of μ and J since it
involves the solution uμ.

As we said in the introduction, we are interested in studying the limit

lim
μ→0

uμ. (14)

The corresponding equation becomes

�u0 = − 9J 2 sin2 θ

4r6(1 + u0)7
. (15)

We remark that when μ > 0, the right-hand side of (10) is bounded in R
3 (this is of course

related with the fact the solution uμ is regular at the origin for μ > 0). Whereas in the extreme
case, μ = 0, it becomes singular at the origin, and hence we cannot expect the solution u0 to
be regular at the origin.

The following theorem constitutes the main result of the present paper. To formulate
the theorem we will use weighted Sobolev spaces, denoted by H ′ 2,δ , defined in [2] (see
equation (69) in section 5).

Theorem 2.1.

(i) There exists a solution u0 of equation (15) in R
3\{0} such that u0 ∈ C∞(R3\{0}) and u0

satisfies the following bounds:

u−
0 � u0 � u+

0, (16)

where the functions u+
0 and u−

0 are explicitly given by

u+
0 =

√
1 +

|q|
r

− 1, |q| =
√

3|J |, (17)

and

u−
0 = Y00(θ)χ1(r) − Y20(θ)

53/2
χ2(r). (18)

Here Y00 and Y20 are spherical harmonics (see equation (B.5)) and χ1(r) and χ2(r) are
elementary functions given explicitly in the appendix (equations (B.13) and (B.14)).

(ii) In addition, we have that u0 ∈ H ′ 2,δ for −1 < δ < −1/2 and u0 is the limit of the
sequence

lim
μ→0

uμ = u0, (19)

in the norm H ′ 2,δ .
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The bounds (16) obtained in part (i) of theorem 2.1 imply

u0 = O(r−1) as r → ∞, u0 = O(r−1/2) as r → 0. (20)

These bounds show that the limit solution u0 behaves differently near the origin from the
sequence’s members uμ. This behavior confirms the numerical calculations presented in
[19] and [26]. This is also related to the change of one of the ends from asymptotically
flat to cylindrical in the extreme limit. To see this, we calculate the area of the 2-surfaces
r = constant with respect to the physical metric hij defined in (5). The area A is given by

Aμ(r) = 2πr2
∫ π

0
�4

μ sin θ dθ. (21)

It is well known that for μ > 0 the surface r = μ/2 is a minimal surface. Also, for μ > 0 we
have

lim
r→∞ Aμ(r) = lim

r→0
Aμ(r) = ∞, (22)

which reflects the fact that the data has two asymptotically flat ends. Moreover, these
asymptotic regions are isometrical and are connected by the minimal surface at r = μ/2.
The situation changes in the extreme limit. Using the bounds (16) we can obtain the following
bounds for the area in this limit:

0 < 2.37π |J | � A0(0) � 12π |J |. (23)

We see that the point r = 0 has finite, non-zero area. This shows that r = 0 is not an
asymptotically flat end. It is a cylindrical end similar to that present in extreme Kerr and
extreme Reissner–Nordström. On the other hand, the behavior as r → ∞ is identical in both
the non-extreme and the extreme cases. That is, this end is always asymptotically flat.

Having described some similarities between extreme Bowen–York and extreme Kerr data,
it is also worth mentioning some differences. It is not a priori obvious that in the limit we do
not obtain extreme Kerr data. However, this follows from the theorem proved in [28], because
our data are conformally flat and there are no conformally flat slices in Kerr (including the
extreme limit). Moreover (using the theorem proved in [16]) we also conclude that for the
Bowen–York data the strict inequality

√|J | < m holds (cf equation (2)), where m is the total
mass of the data (for extreme Kerr we have

√|J | = m). This is also explicitly observed in
numerical computations (see [12–18]), where bounds for the ratio

√|J |/m have been found.
Note that in part (i) of theorem 2.1 nothing is said about the behavior of the derivatives of

u0 near the origin and the fall-off near infinity. The behavior of the derivatives of u0 in these
regions is analyzed in part (ii) with the weighted Sobolev spaces. In particular, these spaces
provide a norm for the convergence of the sequence and its derivatives in R

3.
Finally, let us mention three important points which we were unable to analyze at the

moment. The first one is uniqueness of the solution u0. We have not proven that this solution
is unique in H ′ 2,δ or in other suitable functional space. The second point is related with
the behavior of the total mass in the sequence uμ. The numerical calculations show that the
mass decreases as μ → 0 (see [18–19]). This is, of course, the main reason why we call this
solution the extreme Bowen–York data. However, we did not prove this analytically. Finally
the third point is concerned with the existence of minimal surfaces and horizons. For μ > 0
the spinning Bowen–York data contain a minimal surface located at r = μ/2 which is also an
apparent horizon. This follows because the data are symmetric under an inversion of the form
r → μ2/(4r) (see [5]). However, in the singular limit μ → 0 this inversion symmetry is lost.
The heuristic picture is that the minimal surface moves toward the end r = 0 as μ decreases
and it disappears in the limit μ → 0. We conjecture that the extreme solution does not have
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any minimal surface or apparent horizon (in analogy with the extreme Kerr–Newman black
hole). This is also indicated in numerical calculations. But we were unable to show this.

The proof of theorem 2.1 falls naturally into three parts presented in section 3, 4 and 5.
The plan of this proof is presented below.

Proof. We first prove that the sequence uμ is pointwise monotonically increasing as μ

decreases. This is proved in lemma 3.1. Then, we show that there exists a function u+
0 ,

independent of μ, which is an upper bound to this sequence for all μ. See theorem 4.1. This
theorem constitutes the most important part of the proof. From this upper bound we construct a
lower bound u−

0 in lemma 4.2. Combining these lemmas and using standard elliptic estimates
for the Laplacian on open balls which do not contain the origin we prove that the limit (19)
exists and u0 is smooth outside the origin. See lemma 5.1. This proves the part (i) of the
theorem. Finally, part (ii) is proved in lemma 5.2. �

3. Monotonicity

The function F(x,�) defined by (8) is non-decreasing in �. This fact, together with the
maximum principle for the Laplace operator, will allow us to prove the monotonicity of the
sequence uμ with respect to the parameter μ.

The non-decreasing property of F is conveniently written in the following way. Let
�1,�2 be positive functions such that �1 � �2, then we have

F(x,�1) − F(x,�2) = (�1 − �2)H(�2,�1) � 0, (24)

where we have defined the function H(�2,�1) = H(�1,�2) as

H(�2,�1) = 9J 2 sin2 θ

4r6

6∑
i=0

�i−7
1 �−1−i

2 � 0, (25)

and we have used the following elementary identity for real numbers a and b:

1

ap
− 1

bp
= (b − a)

p−1∑
i=0

ai−pb−1−i . (26)

In our case the functions � are given by (9) with μ > 0, and since uμ � 0 for μ > 0, from
(9) we obtain an upper bound for H

|H(�μ2 ,�μ1)| � 9J 2r2 sin2 θ

4

6∑
i=0

(
r +

μ1

2

)i−7 (
r +

μ2

2

)−1−i

, (27)

which shows that H is bounded in R
3 if μ1, μ2 > 0. Taking an upper bound, independent of

μ, on the right-hand side of (27) we obtain the following bound for H :

∣∣H (
�μ2 ,�μ1

)∣∣ � 63J 2 sin2 θ

4r6
. (28)

Note that this bound diverges at the origin.
The main result of this section is summarized in the following lemma.

Lemma 3.1. Assume μ1 � μ2 > 0 then we have uμ1(x) � uμ2(x) in R
3.

Proof. Define w by

w(x) = uμ2(x) − uμ1(x). (29)

6
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Using equation (10), we obtain that w satisfies the equation

�w = F(x,�μ2) − F(x,�μ1). (30)

We use (24) to write this equation in the following form:

�w − wH(�μ2 ,�μ1) = μ2 − μ1

2r
H(�μ2 ,�μ1), (31)

where H is given by (25). Since H � 0 and by hypothesis we have μ2 − μ1 � 0, then the
right-hand side of (31) is negative. We also have that w → 0 as r → ∞ (because of (12)).
Hence, we can apply the maximum principle for the Laplace operator (theorem A.1 in the
appendix), to conclude that w � 0 in R

3. We emphasize that this theorem can be applied
because H is bounded in R

3 when μ1, μ2 > 0. �

Remarkably, the sequence �μ has the opposite behavior as the sequence uμ, namely �μ

is increasing with respect to μ. This is proved in the following lemma.

Lemma 3.2. Assume μ2 � μ1 > 0 then we have �μ2(x) � �μ1(x) in R
3\{0}.

Proof. The proof is similar to that in the previous lemma, however since �μ is singular at
the origin we need to exclude this point from the domains. First, we note that for μ2 = μ1

we have �μ2 = �μ1 because the solution uμ is unique. Hence, in the following we assume
μ2 > μ1 > 0.

In order to handle the singularity of �μ at the origin we choose a domain � defined as
R

3\Bε where Bε is a small ball of radius ε centered at the origin. As before, we define w as
the difference

w = �μ2 − �μ1 = μ2 − μ1

2r
+ uμ2 − uμ1 . (32)

Then, we have

�w − wH(�μ1 ,�μ2) = 0, (33)

where H is given by (25). Since uμ is bounded in R
3 for μ > 0 then the first term on the

right-hand side of (32) will dominate for sufficiently small r. Hence, for μ2 > μ1 > 0 there
exists ε sufficiently small such that w is positive on ∂Bε . Consider equation (32) on �. Since
w goes to zero at infinity, we can apply the maximum principle (theorem A.1 in the appendix)
in � to obtain w � 0. �

4. Bounds

In this section we give bounds for the sequence uμ. The main result of the section is given by
theorem 4.1 where we construct an upper bound u+

0 , based on the Reissner–Nordström black
hole initial data, which does not depend on μ. The lower bound is then directly constructed
using this upper bound in lemma 4.2.

The Reissner–Nordström black hole will play an important role in what follows. Let us
review it. The Reissner–Nordström metric is characterized by two parameters: the mass m
and the electric charge q. This metric describes a black hole if |q| � m. When |q| = m the
solution is called the extreme Reissner–Nordström black hole. Take a slice t = constant in
the canonical coordinates and let r be the isotropical radius on this slice. The intrinsic metric
on the slice is conformally flat, i.e. it has the form (5) where the conformal factor is denoted
by �+

μ (the reason for the + in the notation will become clear later on) and it is explicitly given
by

�+
μ =

√
1 +

m

r
+

μ2

4r2
, (34)

7
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where the parameter μ is defined in terms of m and q by (4) (with J = 0), that is

m =
√

μ2 + q2. (35)

Note that, when q is fixed, m decreases as μ goes to zero. We also define the function u+
μ(x)

by

�+
μ = 1 +

μ

2r
+ u+

μ(x), (36)

that is, we have

u+
μ(x) =

√
1 +

m

r
+

μ2

4r2
− 1 − μ

2r
. (37)

The extreme limit corresponds to μ = 0, in this limit the solution is denoted by u+
0 , we have

u+
0(x) =

√
1 +

|q|
r

− 1. (38)

As a consequence of the constraint equations the function u+
μ satisfies

�u+
μ = − q2

4r4
(
�+

μ

)3 . (39)

We have u+
μ � 0. From the explicit expression (37) we deduce that the sequence u+

μ is
increasing as μ → 0 and it is bounded by the extreme solution u+

0 , that is

u+
μ(x) < u+

0(x), (40)

for all μ > 0. Also, u+
μ(x) is smooth on R

3\{0} and, for μ > 0, we have u+
μ ∈ C1(R3) (but it

is not C2 at the origin). The values of the function and its derivative at the origin are given by

u+
μ(0) = m

μ
− 1

du+
μ

dr
(0) = − q2

μ3
. (41)

Note that both values diverge as μ → 0. In fact the limit function u+
0 diverges as r−1/2 near

the origin. We want to prove that a similar behavior occurs for the Bowen–York case.
The following constitutes the main result of this section.

Theorem 4.1. Assume that

|q| �
√

3|J |. (42)

Then, for all μ > 0, we have

uμ(x) � u+
μ(x) < u+

0(x), (43)

where u+
μ and u+

0 are given by (37) and (38) respectively.

Proof. From (39) and assuming that condition (42) holds, we obtain

�u+
μ = − q2

4r4
(
�+

μ

)3 � − 9J 2 sin2 θ

q24r4
(
�+

μ

)3 . (44)

Then, since m � |q|, we have

(
�+

μ

)4 �
(

1 +
|q|
r

)2

� q2

r2
, (45)

which gives us

�u+
μ � −9J 2 sin2 θ

4r6
(
�+

μ

)7 = F
(
x,�+

μ

)
. (46)

8
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Now, we define the difference

w = u+
μ − uμ. (47)

Using equation (15) and (46) we obtain

�w � F
(
x,�+

μ

) − F(x,�μ). (48)

We use formula (24) to conclude that

�w − wH
(
�+

μ,�μ

)
� 0. (49)

Note that the function w is not C2 at the origin because u+
μ is not C2, and hence it does not

satisfy the inequality (49) in the classical sense at the origin. However, we have w ∈ H 1
loc (in

fact w is C1 because u+
μ is C1) and then it satisfies (49) in the weak sense also at the origin.

We also have that w goes to zero as r → ∞. Hence, we can apply the maximum principle
(theorem A.1 in the appendix) to conclude that w � 0. �

Since F is non-decreasing, once an upper bound is found for the sequence, the construction
of a lower bound is straightforward. Namely, we define u−

μ(x) as the solution of the following
linear Poisson equation:

�u−
μ = F

(
x,�+

μ

) = − 9J 2 sin2 θ

4r6
(
1 + m

r
+ μ2

4r2

)7/2 , (50)

with the fall-off condition

lim
r→∞ u−

μ = 0. (51)

Lemma 4.2. Let u−
μ be the solution of (50) with the asymptotic condition (51). We have that

for all μ > 0

u−
μ(x) � uμ(x), (52)

and
μ

2r
+ u−

μ(x) � u−
0 (x). (53)

The function u−
0 has the following behavior:

u−
0 (x) = C1

r
+ O(r−2), as r → ∞, (54)

u−
0 (x) = C2√

r
+ O(1), as r → 0, (55)

where C1, C2 > 0.

Proof. The solution can be explicitly constructed using the fundamental solution (or Green’s
function) of the Laplacian (see the appendix). From the standard elliptic estimates (or directly
from the explicit expression) we deduce that u−

μ ∈ C2,α(R3) for μ > 0.
Let us prove inequality (52). As usual we take the difference w = uμ − u−

μ , then, using
equation (50), we have

�w = F(x,�μ) − F
(
x,�+

μ

) = (
uμ − u+

μ

)
H

(
�μ,�+

μ

)
. (56)

Since uμ − u+
μ � 0 by lemma 4.1 we obtain �w � 0 and then by the maximum principle we

get w � 0.

9
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To prove inequality (53) we use a similar argument as in the proof of lemma 3.2. Note
that we can in principle deduce (53) from the explicit expression for u−

μ , however the formula
is so complicated that this is not straightforward.

Finally, the fall-off behavior (54)–(55) is obtained from the explicit expression of u−
0

given in the appendix (see equation (B.15) and (B.16)). �

Note that the sequence u−
μ is monotonic in μ, as the Bowen–York sequence uμ. Namely,

for μ1 � μ2 � 0, we obtain

u−
μ1

(x) � u−
μ2

(x) � u−
0 (x), (57)

and also for μ1 > μ2 > 0 we have

�−
μ1

(x) � �−
μ2

(x) � �−
0 (x) (58)

where �− is defined as

�−
μ = 1 +

μ

2r
+ u−

μ . (59)

5. Convergence

In this section we prove that the sequence uμ converges in the limit μ → 0. We begin with
the interior convergence. We will make use of Lebesgue spaces L2 and Sobolev spaces H 2

(for definition and properties of these functional spaces see, for example, [20]).

Lemma 5.1. Let U be an arbitrary open ball contained in R
3\{0}. Then the sequence uμ

converges in the H 2(U) norm. Moreover, the limit function

u0 = lim
μ→0

uμ (60)

is a solution of equation (15) in U and u0 ∈ C∞(U).

Proof. Given the open ball U, there always exists an open ball U ′ contained in R
3\{0} such

that U ⊂⊂ U ′. The set U ′ is important in what follows, in order to use the interior elliptic
estimate given by (62).

Choose x ∈ U ′. Consider the sequence of real numbers uμ(x) for μ → 0. By lemma 3.1
the sequence uμ is non-decreasing as μ goes to zero, and by lemma 4.1 it is bounded from
above (and the bound does not depend on μ) by uμ(x) � u+

0(x). Note that it is important that
the closure of U ′ does not contain the origin {0}, since u+

0 is not bounded there. It follows that
the sequence converges pointwise to a limit u0(x). And then, the convergence in the L2 norm
follows from the dominated convergence theorem (see, e.g., [25]). Hence, the sequence uμ is
a Cauchy sequence in L2(U ′), i.e.

lim
μ1,μ2→0

‖w‖L2(U ′) = 0, (61)

where w = uμ2 − uμ1 .
To prove that the sequence uμ is a Cauchy sequence in H 2(U) we use the standard elliptic

estimate for the Laplacian (see e.g. [20])

‖w‖H 2(U) � C(‖�w‖L2(U ′) + ‖w‖L2(U ′)) (62)

where the constant C depends only on U ′ and U.
The difference w satisfies equation (31), then we obtain

‖�w‖L2(U ′) =
∥∥∥∥Hw + H

μ2 − μ1

r

∥∥∥∥
L2(U ′)

(63)

10
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� ‖Hw‖L2(U ′) + (μ1 − μ2)

∥∥∥∥H

r

∥∥∥∥
L2(U ′)

. (64)

The functions H and H/r are bounded in U ′ (see equation (28)) by a constant independent of
μ. Then, from the inequality (63) we obtain

‖�w‖L2(U ′) � C(‖w‖L2(U ′) + (μ1 − μ2)) (65)

where C does not depend on μ. Using the estimate (62) we finally get

‖w‖H 2(U) � C(‖w‖L2(U ′) + (μ1 − μ2)). (66)

From this inequality and the convergence in L2 given by (61) we conclude that

lim
μ1,μ2→0

‖w‖H 2(U) = 0 (67)

and hence u0 = �0 − 1 ∈ H 2(U). By the same argument we also have that u0 is a strong
solution (see [20] for the definition of strong solutions for elliptic equations) of equation (15)
in U.

Using the standard elliptic estimates once again and iterating using equation (15) we get
that u0 ∈ C∞(U). This iteration can be done as follows. By the Sobolev imbedding theorem
we have that u0 ∈ Cα(U). Then, it follows that F(x,�0) ∈ Cα(U). But then, by Hölder
estimates for the Laplace operator (see [20]) it follows that u0 ∈ C2,α(U). We can iterate this
argument to obtain that u0 is smooth in U. �

In the previous theorem we have not analyzed the fall-off of the solution u0 at infinity and
its behavior at the origin. In order to do so, more precise estimates are required. In particular,
we need to make use of weighted Sobolev norms. We will use the weighted Sobolev spaces
defined in [2] and denoted here by H ′ k,δ . The definitions of the corresponding norms are the
following (we restrict ourselves to the case p = 2 and dimension 3):

‖f ‖′
L′ 2,δ =

(∫
R3\{0}

|f |2r−2δ−3 dx

)1/2

, (68)

and

‖f ‖′
H ′ k,δ :=

k∑
0

‖Djf ‖′
L′ 2,δ−j . (69)

These functional spaces are relevant for our purpose because we have that

u+
μ(x) ∈ H ′ 2,δ for −1 < δ < −1/2, (70)

for all μ � 0. We can understand the given range of δ by noting that the extreme Reissner–
Nordström solution goes as r−1/2 as r → 0, and as r−1 as r → ∞. It can also be seen that,
if we consider only solutions with μ > 0, then the allowed interval for δ expands to (−1, 0)

reflecting the fact that in this case, the functions are bounded at the origin.

Lemma 5.2. The sequence uμ is Cauchy in the norm H ′ 2,δ for −1 < δ < −1/2.

Proof. The proof is similar as in the previous lemma, the main difference is that we have to
take into account the singular behavior of the functions at the origin.

We first note that the same argument presented above allows us to prove convergence
in the weighted Lebesgue spaces L′ 2,δ . In effect, consider the sequence uμr−δ−3/2 for
−1 < δ < −1/2. This sequence is pointwise bounded by u+

0r
−δ−3/2 and monotonically

increasing as the parameter μ goes to zero, which means that it is a.e. pointwise converging to

11
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a function u0r
−δ−3/2. Then, we can use the dominated convergence theorem (since u+

0r
−δ−3/2

is summable in R
3 for the given values of the weight δ) to find that the new sequence

converges in L2(R3). But this implies that the original sequence uμ converges in L′ 2,δ , with
δ ∈ (−1,−1/2). That is

lim
μ1,μ2→0

‖w‖L′ 2,δ = 0, (71)

where w is the difference introduced above in equation (29).
In order to prove that the sequence uμ is a Cauchy sequence also in the weighted Sobolev

space H ′ 2,δ with δ ∈ (−1,−1/2), we will apply the following estimate (see, e.g. [2]):

‖w‖H ′ 2,δ � C‖�w‖L′ 2,δ−2 , (72)

where the constant C depends only on δ.
As before, we obtain

‖�w‖L′ 2,δ−2 =
∥∥∥∥Hw + H

μ2 − μ1

r

∥∥∥∥
L′ 2,δ−2

(73)

� ‖Hw‖L′ 2,δ−2 + (μ1 − μ2)

∥∥∥∥H

r

∥∥∥∥
L′ 2,δ−2

. (74)

From the definition of the norm L′ 2,δ given in (68) we obtain

‖Hw‖L′ 2,δ−2 � sup
R3

|Hr2|‖w‖L′ 2,δ , (75)

and hence, using (73) we have

‖�w‖L′ 2,δ−2 � C

(
sup
R3

|Hr2|‖w‖L′ 2,δ + (μ1 − μ2)

∥∥∥∥H

r

∥∥∥∥
L′ 2,δ−2

)
. (76)

The crucial step in the proof is to bound, in (76), the corresponding norms of H and H/r . This
point is where the weighted Sobolev spaces play a role, because these norms are not bounded
in the standard Sobolev norms.

To bound Hr2 we use

H � 63J 2 sin2 θ

4r6
7(1 + u−

0 )−8. (77)

By theorem 4.2 we know that u−
0 goes to zero at infinity, hence H decays as r−6. At the origin,

by lemma 4.2, we know that u−
0 = O(r−1/2), therefore, H grows as r−2. Hence the r2H is

finite for every value of the parameter μ.
For the other term we have∥∥∥∥H

r

∥∥∥∥
L′ 2,δ−2

=
(∫

R3\{0}

∣∣∣∣Hr
∣∣∣∣
2

r−2δ+1dx

)1/2

(78)

and, using again the lower bound as in (77) we find that this norm is also finite for
δ ∈ (−1,−1/2). Then, we can write

‖w‖H ′ 2,δ � C (‖w‖L′ 2,δ + (μ1 − μ2)) , (79)

where the constant C does not depend on μ. This and equation (71) give us, in the limit
μ1, μ2 → 0

lim
μ1,μ2→0

‖w‖H ′ 2,δ = 0. (80)

Then, the sequence uμ is Cauchy in the H ′ 2,δ norm, with δ ∈ (−1,−1/2). �

Note that this theorem also implies that u0 is a strong solution in the Sobolev spaces H ′ 2,δ

of equation (15) also at the origin.

12
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6. Final comments

In this paper, we have studied the extreme limit of the Bowen–York family of initial data.
We have found that the extreme solution exists and has similar properties to the extreme Kerr
black hole data. It is straightforward to generalize the results presented here for more general
second fundamental forms keeping the conformal flatness of the data. A more relevant and
difficult generalization would involve more general background metric. In particular, it would
be interesting to generalize the extreme limit for binary Kerr black hole data. A possible
strategy to attack this problem is to prove, using similar techniques as those presented here,
that the sequence of two non-extreme Kerr black holes constructed in [1] actually converges
in the extreme limit.

As it was mentioned in the introduction, there exists a variational characterization of the
extreme limit. The extreme initial data, and hence data with cylindrical ends, appear naturally
as minimum of the mass in appropriate class of data. The example presented here incorporates
a new class of data in which this variational characterization holds. As we said in section 2, we
expect that this minimum of the mass (i.e. the extreme solution) has no horizon. Moreover, we
expect that a small perturbation of an extreme solution (in particular, the extreme Bowen–York
data) will always have an horizon. It would be interesting to prove or disprove this conjecture.
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Appendix A. Weak maximum principle on unbounded domains

In this section we prove the version of the weak maximum principle used in the main part of
the paper. This version applies for unbounded domains and weak solutions. Although this is
certainly a standard result, we were not able to find exactly this form in the literature. The
proof is similar to the proof of theorem 8.1 in [20] and lemma 5.2 in [27]. A related version
of the maximum principle for classical solutions and asymptotically flat manifolds (without
inner boundaries) is proved in [11].

Let B be a bounded domain in R
n (in this paper we always worked in R

3, however the
dimension plays no role here). We consider the following unbounded domain � = R

n\B.
We allow the possibility that B is empty, in this case we have � = R

n.

Theorem A.1. Let u ∈ H 1
loc(�) satisfy

�u − au � 0 in �, (A.1)

where a � 0 is a bounded and measurable function. We also assume that

u � 0 in ∂�, (A.2)

and

u → 0 as r → ∞. (A.3)

Then, u � 0 in �.
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Remarks: Since the function u is only weakly differentiable the inequalities in this theorem
must be understood in the weak sense. In the case where ∂� is empty we do not have
condition (A.2).

Proof. Choose ε > 0. Define the function ν = max{−ε − u, 0}. Since u � 0 on ∂� and
u → 0 as r → ∞, then ν has compact support in �. We denote by �+ the support of ν. We
also have that ν ∈ H 1(�) (see [20]). Then, we can use ν as a test function for the inequality
(A.1). Integrating by parts we obtain∫

�

∂ν∂u + aνu � 0. (A.4)

Suppose that −ε − u > 0 at some point in �, then the support �+ of ν is non-empty. Since
∂ν = −∂u in �+, using (A.4) we obtain

0 �
∫

�+
aνu �

∫
�+

|∂u|2, (A.5)

where in the first inequality we have used the hypothesis a � 0. Then, we conclude that u (and
hence ν) is constant on �+. Since ν has compact support, this implies that ν is zero and we
get a contradiction. Hence, we have proved that −ε � u for an arbitrary, positive, ε. Letting
ε → 0 we obtain the desired result. �

Appendix B. Explicit expression of the subsolution u−
μ (x)

In this section we construct the explicit solution to the equation

�u−
μ(x) = F (B.1)

where F is given by

F = sin2 θR(μ, r), (B.2)

and

R(μ, r) = − 18J 2

8r6
(
1 + m

r
+ μ2

4r2

)7/2 . (B.3)

The solution is constructed integrating the Green function of the Laplacian, that is

u−
μ(x) = − 1

4π

∫
R3

F(x ′)
|x − x ′| dx ′. (B.4)

We use the expansion of the Green function in terms of spherical harmonics (see, for example,
[23]). The angular dependence of the source F is given by sin2 θ , which has an expansion in
terms of the following two spherical harmonics:

Y00 = 1√
4π

, Y20 =
√

5

16π
(3 cos2 θ − 1), (B.5)

namely

sin2 θ = 2

3

√
4π

(
Y00 − Y20√

5

)
. (B.6)

Hence, it follows that the angular dependence of the solution can also be expanded in terms of
these two spherical harmonics. That is, u−

μ has the form (18) where the radial functions χ1(r)

14
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and χ2(r) are given by the following integrals:

χ1 =
∫ r

0
R(r ′, μ)

1

r
r ′ 2dr ′ +

∫ ∞

r

R(r ′, μ)
1

r ′ r
′ 2dr ′, (B.7)

χ2 =
∫ r

0
R(r ′, μ)

r ′ 2

r3
r ′ 2dr ′ +

∫ ∞

r

R(r ′, μ)
r2

r ′ 3
r ′ 2 dr ′. (B.8)

Computing these integrals, we find

χ1 = 2
√

πJ 2

5rq6

(
−8(4μ2 + 3q2)(2r + μ)

+
(4μ2 + 3q2)(16r4 + μ4) + 4mr(5q2 + 8μ2)(4r2 + μ2)(

r2 + mr + μ2

4

)3/2

+
+6r2(5q4 + 16μ4 + 20q2μ2)(

r2 + mr + μ2

4

)3/2

)
, (B.9)

and

χ2 = 2
√

πJ 2

5r3q6

(
−8(2r + μ)(16r4 − 8r3μ + 4r2μ2 − 2rμ3 + μ4)

+
256r8 + μ8 + 6rm(64r6 + μ6) + 96r6(q2 + 2μ2)(

r2 + mr + μ2

4

)3/2

+
4r3m(2μ2 − q2)(4r2 + μ2) + 6r2(2μ6 + μ4q2 + r2q4)(

r2 + mr + μ2

4

)3/2

)
. (B.10)

From these expressions we see that

u−
μ = 64J 2

5r(2m + μ)3
+ O(r−2) r → ∞, (B.11)

and

u−
μ(r = 0) = 4J 2(2m − μ)3

5μq6
. (B.12)

When μ = 0 the radial functions (B.9)–(B.10) reduce to

χ1|μ=0 = 4J 2√π

5q4
√

r

(
24r2 + 40qr + 15q2

(r + q)3/2
− 24

√
r

)
, (B.13)

χ2|μ=0 = 4J 2√π

5q6
√

r

(
128r4 + 192r3q + 48r2q2 − 8q3r + 3q4

(r + q)3/2
− 128r5/2

)
. (B.14)

In this case the asymptotic behaviors are given by

u−
0 = 8J 2

5rq3
+ O(r−2) r → ∞, (B.15)

and

u−
0 = 9J 2(17 − cos2 θ)

25q7/2
√

r
+ O(1) r → 0. (B.16)

Finally, we mention that it is possible to construct a positive lower bound which is spherically
symmetric and has the correct behavior at the origin and at infinity. Namely, from (18) we
deduce

u−
μ � Y00

(
χ1 − 1

5χ2
)

� 0. (B.17)
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[7] Brügmann B, Gonzalez J A, Hannam M, Husa S and Sperhake U 2008 Exploring black hole superkicks Phys.

Rev. D 77 124047 (arXiv:0707.0135)
[8] Campanelli M, Lousto C O, Zlochower Y and Merritt D 2007 Large merger recoils and spin flips from generic

black-hole binaries Astrophys. J. 659 L5–8 (arXiv:gr-qc/0701164)
[9] Cantor M 1979 A necessary and sufficient condition for York data to specify an asymptotically flat spacetime

J. Math. Phys. 20 1741–4
[10] Carter B 1973 Black hole equilibrium states Black Holes/Les Astres Occlus (École d’Été Phys. Théor., Les

Houches, 1972) (New York: Gordon and Breach) pp 57–214
[11] Choquet-Bruhat Y, Isenberg J and York J W Jr 1999 Einstein constraint on asymptotically Euclidean manifolds

Phys. Rev. D 61 084034 (arXiv:gr-qc/9906095)
[12] Cook G and York J W 1990 Apparent horizons for boosted or spinning black holes Phys. Rev. D 41 1077–85
[13] Cook G B 2001 Initial data for numerical relativity Living Rev. Rel. 3 (2000) 5 (electronic)

http://www.livingreviews.org/lrr-2000-5
[14] Dain S 2006 Angular momemtum–mass inequality for axisymmetric black holes Phys. Rev. Lett. 96 101101

(arXiv:gr-qc/0511101)
[15] Dain S 2008 The inequality between mass and angular momentum for axially symmetric black holes Int. J.

Mod. Phys. D 17 519–23 (arXiv:0707.3118 [gr-qc])
[16] Dain S 2008 Proof of the angular momentum–mass inequality for axisymmetric black holes J. Diff. Geom. 79

33–67 (arXiv:gr-qc/0606105)
[17] Dain S and Friedrich H 2001 Asymptotically flat initial data with prescribed regularity Commun. Math.

Phys. 222 569–609 (arXiv:gr-qc/0102047)
[18] Dain S, Lousto C O and Takahashi R 2002 New conformally flat initial data for spinning black holes Phys. Rev.

D 65 104038 (arXiv:gr-qc/0201062)
[19] Dain S, Lousto C O and Zlochower Y 2008 Extra-large remnant recoil velocities and spins from near-extremal-

Bowen–York-spin black-hole binaries Phys. Rev. D 78 024039 (arXiv:0803.0351)
[20] Gilbarg D and Trudinger N S 2001 Elliptic Partial Differential Equations of Second Order (Berlin: Springer)

(reprint of the 1998 edition)
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