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The main aim of this study is the comparison of gravitational waveforms obtained from numerical

simulations which employ different numerical evolution approaches and different wave-extraction

techniques. For this purpose, we evolve an oscillating, nonrotating, polytropic neutron-star model with

two different approaches: a full nonlinear relativistic simulation (in three dimensions) and a linear

simulation based on perturbation theory. The extraction of the gravitational-wave signal is performed via

three methods: the gauge-invariant curvature-perturbation theory based on the Newman-Penrose scalar

c 4; the gauge-invariant Regge-Wheeler-Zerilli-Moncrief metric-perturbation theory of a Schwarzschild

space-time; some generalization of the quadrupole emission formula.
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I. INTRODUCTION

The computation of the gravitational-wave emission
from compact sources like supernova explosions,
neutron-star oscillations, and the inspiral and merger of
two compact objects (like neutron stars or black holes) is
one of the most lively subjects of current research in
gravitational-wave astrophysics. This goal may be pursued
using different numerical approaches. That is, (i) solving
the full set of coupled Einstein and matter equations;
(ii) solving the linearized Einstein and matter equations
around a fixed background, when such an approximation is
valid. In the latter case, with the additional condition of
spherical symmetry, the formalism we employ is based on
a multipolar expansion and the computation of the gravi-
tational waves directly follows from the knowledge of the
perturbative metric multipoles k‘m, �‘m, and c ‘m. On the
other hand, extracting gravitational waveforms from a
space-time computed numerically in a given coordinate
system is a highly nontrivial problem that has been ad-
dressed in various ways in the literature. In general, two
routes have proven successful: (i) the gauge-invariant cur-
vature-perturbation theory based on the Newman-Penrose
[1] scalar c 4, and (ii) the Regge and Wheeler [2], Zerilli
[3] theory of metric-perturbations of a Schwarzschild
space-time, recast in a gauge-invariant framework follow-
ing the work of Moncrief [4].

The aim of our study is the computation of the gravita-
tional waveforms emitted by the very controlled system
constituted by a nonrotating polytropic relativistic star that
oscillates nonisotropically around its spherically symmet-
ric equilibrium configuration because of an axisymmetric
perturbation. Our aim is to follow two (complementary)
calculation procedures. On one hand, we perform a full

3þ 1 numerical simulation of the system, i.e. we compute
a numerical solution of the Einstein equations without
approximations except those of the numerical method
itself. Because of its generality, this approach allows us
to analyze different physical regimes, in particular, the case
in which the ‘‘perturbation’’ is not small and nonlinear
effects can play a relevant role with important consequen-
ces on the waveforms. On the other hand, we follow a
perturbative approach based on the assumption that the
perturbation is ‘‘small.’’ If this is the case, one can
(i) expand the metric around a fixed background (i.e. the
Tolman-Oppenheimer-Volkoff solution), (ii) retain only
the linear term of this expansion, and (iii) solve the line-
arized Einstein equations. In addition, since the star is
nonrotating, one can factorize the angular dependence by
means of a spherical-harmonic decomposition of the met-
ric and matter fields, and, thus, only a 1þ 1 system of
partial differential equations must be solved.
The present work has much in common with Refs. [5,6],

where a comparison of different extraction techniques has
been performed. Following the same inspiration of
Ref. [6], we exploit perturbative computations to obtain
‘‘exact’’ waveforms to compare with the numerical-
relativity–generated ones. As done in Ref. [5], we use an
oscillating neutron star as a test-bed system, but we con-
sider a wider range of possible wave-extraction techniques.
Since there is a copious literature dealing with the problem
of gravitational-wave extraction in numerical relativity, we
prefer not to mention here the main bibliographic refer-
ences, but rather to address the reader to the references in
Refs. [5,6] and to the citations in the following text.
The article is organized as follows. In Sec. II, we de-

scribe the numerical time-evolution methods and the
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gravitational-wave extraction techniques adopted. In
Sec. III, we introduce our choice of initial data, and
Sec. IV is devoted to the presentation of our results.
Conclusions that can be drawn from our results are dis-
cussed in Sec. V.

Standard dimensionless units c ¼ G ¼ M� ¼ 1 and a
spacelike signature ð�;þ;þ;þÞ are used. Greek indices
are taken to run from 0 to 3, Latin indices from 1 to 3, and
we adopt the standard convention for the summation over
repeated indices.

II. THE PHYSICAL SYSTEM AND ITS
NUMERICAL EVOLUTION

In this section, we present the main elements of the two
evolutionary approaches and discuss the three wave-
extraction techniques mentioned in the introduction. In
our investigation, we deal with the full set of Einstein
equations

G�� ¼ 8�T��; (1)

coupled to a perfect fluid matter, with stress-energy tensor

T�� ¼ �

�
1þ �þ p

�

�
u�u� þ pg��; (2)

where u� is the fluid 4-velocity, p is the fluid pressure, � is
the specific internal energy, and � is the rest-mass density,
so that e ¼ �ð1þ �Þ is the energy density in the rest frame
of the fluid and H ¼ �ð1þ �Þ þ p is the relativistic spe-
cific enthalpy. The Einstein equations for the space-time
must be supplemented by the relativistic hydrodynamics
equations, namely, the conservation law for the energy-
momentum tensor r�T

�� ¼ 0, the conservation law for

the baryon number r�ð�u�Þ ¼ 0, and an equation of state

(EOS) of the type p ¼ pð�; �Þ. For the purpose of this
work, we restrict our attention to the polytropic (isoen-
tropic) equation of state:

p ¼ K��; � ¼ K

�� 1
���1; (3)

with parameters K ¼ 100 and � ¼ 2.

A. PERBACCO: a general-relativistic 1D linear code

The PERBACCO (PerturBAtive Constrained Code)
general-relativistic linear code that we employ in this
work is a development of the one introduced in
Refs. [7,8] and recently used in many studies [9–11].
This code is 1þ 1-dimensional and evolves, in the time
domain, nonspherical, matter and metric linear perturba-
tions of a spherical star. The equations that are solved are
obtained, after a multipolar decomposition of the linear-
ized Einstein equations, as the static-background case in
the gauge-invariant and coordinate-independent formalism
of perturbations of spherically symmetric space-times de-
veloped in Refs. [12–16]. We work explicitly in the Regge-

Wheeler gauge. In this case, the full set of perturbation
equations that we use is equivalent to that of Refs. [17,18].
The focus of this work is on even-parity perturbations

only.1 Let us recall that Ref. [9] showed how the even-
parity perturbation problem can be set up, and stably
solved, using a constrained formulation of the perturbation
equations. These equations, as well as their numerical
solution, have been discussed several times in the literature
[8–10]. Notably, common practice is that (i) one elliptic
equation, the Hamiltonian constraint, namely, Eq. (7) of
Ref. [10], is solved to obtain the perturbed conformal
factor, k‘m; (ii) one hyperbolic equation, namely, Eq. (6)
of Ref. [10], is used (only inside the star) to evolve the
matter variable H‘m (i.e. the perturbation of the relativistic
enthalpy); (iii) another hyperbolic equation, namely,
Eq. (5) of Ref. [10], permits to obtain the nondiagonal,
gauge-invariant metric degree of freedom (the one actually
associated with gravitational radiation), �‘m. After speci-
fication of initial data, the hyperbolic equations are solved
with standard, second-order-convergent-in-time-and-
space, finite-differencing algorithms (e.g. leapfrog or
Lax-Wendroff). Consistently, the elliptic equation is dis-
cretized at second order in space and reduced to a tridiag-
onal linear system, which is then solved by inversion. For
any given multipole, ð‘;mÞ, one solves the system of
equations to obtain �‘m and k‘m as functions of time.
Outside the star, one finally computes the Zerilli-
Moncrief function as

�ðeÞ
‘m ¼ 2rðr� 2MÞ

�½ð�� 2Þrþ 6M� �
�
�‘m � r@rk‘m

þ r�þ 2M

2ðr� 2MÞk‘m
�
; (4)

where M is the stellar mass and � ¼ ‘ð‘þ 1Þ. This func-
tion is directly connected to the hþ and h� gravitational-
wave polarization amplitudes (see Eq. (41) below) and it
can be extracted from general-relativistic 3D codes; for this
reason it will be the main object of our interest in the
forthcoming discussion. Note that Eq. (4) also defines
our normalization conventions and notation, that agree
with those of Ref. [19].

B. CACTUS-CARPET-CCATIE-WHISKY: a general-
relativistic 3D nonlinear code

We evolve a conformal-traceless ‘‘3þ 1’’ formulation
of the Einstein equations [20–23], in which the space-time

1The metric perturbations of a spherically symmetric back-
ground space-time are divided in two classes, which are de-
coupled: the even-parity perturbation (also called electric
because it is generated by the time variation of the mass multi-
pole moments of the source), which transform as ð�1Þ‘ under a
parity transformation, and the odd-parity perturbation (also
called magnetic because it is generated by the current multipole
moments), which transform as ð�1Þ‘þ1.
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is decomposed into three-dimensional spacelike slices,
described by a metric �ij, its embedding in the full

space-time, specified by the extrinsic curvature Kij, and

the gauge functions � (lapse) and 	i (shift), that specify a
coordinate frame (see Sec. II B 1 for details on how we
treat gauges, and Ref. [24] for a general description of the
3þ 1 split). The particular system which we evolve trans-
forms the standard ADM variables as follows. The three-
metric �ij is conformally transformed via


 ¼ 1

12
lndet�ij; ~�ij ¼ e�4
�ij (5)

and the conformal factor 
 is evolved as an independent
variable, whereas ~�ij is subject to the constraint det~�ij ¼
1. The extrinsic curvature is subjected to the same confor-
mal transformation and its trace trKij is evolved as an

independent variable. That is, in place of Kij we evolve

K � trKij ¼ gijKij; ~Aij ¼ e�4


�
Kij � 1

3
�ijK

�
;

(6)

with tr ~Aij ¼ 0. Finally, new evolution variables

~� i ¼ ~�jk~�i
jk (7)

are introduced, defined in terms of the Christoffel symbols
of the conformal three-metric.

The Einstein equations specify a well-known set of
evolution equations for the listed variables and are given by

ð@t �L	Þ~�ij ¼ �2� ~Aij; (8)

ð@t �L	Þ
 ¼ � 1

6
�K; (9)

ð@t �L	Þ ~Aij ¼ e�4
½�DiDj�þ �ðRij � 8�SijÞ�TF
þ �ðK ~Aij � 2 ~Aik

~Ak
jÞ; (10)

ð@t �L	ÞK ¼ �DiDi�þ �

�
~Aij

~Aij þ 1

3
K2

þ 4�ð�ADM þ SÞ
�
; (11)

@t~�
i ¼ ~�jk@j@k	

i þ 1

3
~�ij@j@k	

k þ 	j@j~�
i � �j@j	

i

þ 2

3
~�i@j	

j � 2 ~Aij@j�þ 2�

�
~�i

jk
~Ajk þ 6 ~Aij@j


� 2

3
~�ij@jK � 8�~�ijSj

�
; (12)

where Rij is the three-dimensional Ricci tensor. Di is the

covariant derivative associated with the three-metric �ij.

‘‘TF’’ indicates the trace-free part of tensor objects. �ADM,
Sj, and Sij are the matter source terms defined as

�ADM � n�n	T
�	; Si � ��i�n	T

�	;

Sij � �i��j	T
�	;

(13)

where n� � ð��; 0; 0; 0Þ is the future-pointing four-vector
orthonormal to the spacelike hypersurface, and T�	 is the
stress-energy tensor for a perfect fluid [cf. Eq. (2)]. The
Einstein equations also lead to a set of physical constraint
equations that are satisfied within each spacelike slice:

H � Rð3Þ þ K2 � KijK
ij � 16��ADM ¼ 0; (14)

M i � DjðKij � �ijKÞ � 8�Si ¼ 0; (15)

which are usually referred to as Hamiltonian and momen-

tum constraints. Here Rð3Þ ¼ Rij�
ij is the Ricci scalar on a

three-dimensional time-slice. Our specific choice of evo-
lution variables introduces five additional constraints:

det~�ij ¼ 1; (16)

tr ~Aij ¼ 0; (17)

~� i ¼ ~�jk~�i
jk: (18)

Our code actively enforces the algebraic constraints (16)
and (17). The remaining constraints,H ,Mi, and (18), are
not actively enforced and can be used as monitors of the
accuracy of our numerical solution. See Ref. [25] for a
more comprehensive discussion of the above formalism.

1. Gauges

We specify the gauge in terms of the standard Arnowitt-
Deser-Misner (ADM) lapse function �, and shift vector 	i

[26]. We evolve the lapse according to the ‘‘1þ log’’
slicing condition [27]:

@t�� 	i@i� ¼ �2�ðK � K0Þ; (19)

where K0 is the initial value of the trace of the extrinsic
curvature and equals zero for the maximally sliced initial
data we consider here. The shift is evolved using the

hyperbolic ~�-driver condition [25]:

@t	
i � 	j@j	

i ¼ 3

4
�Bi; (20)

@tB
i � 	j@jB

i ¼ @t~�
i � 	j@j~�

i � �Bi; (21)

where � is a parameter which acts as a damping coeffi-
cient. The advection terms on the right-hand sides of these
equations have been suggested in Refs. [28–30].
All the equations discussed above are solved using the

CCATIE code, a three-dimensional finite-differencing code

based on the Cactus Computational Toolkit [31]. A de-
tailed presentation of the code and of its convergence
properties have been recently presented in Ref. [32].
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Mesh refinement is achieved through the CARPET code
[33].

2. Evolution system for the matter

We solve the general-relativistic hydrodynamics equa-
tions with the WHISKY code [34–38]. An important feature
of the WHISKY code is the implementation of a flux-
conservative formulation of the hydrodynamics equations
[39–41], in which the set of conservation equations for the
stress-energy tensor T�� and for the matter current density
J� ¼ �u�, namely,

r�T
�� ¼ 0; r�J

� ¼ 0; (22)

is written in a hyperbolic, first-order and flux-conservative
form of the type

@tqþ @if
ðiÞðqÞ ¼ sðqÞ; (23)

where fðiÞðqÞ and sðqÞ are the flux vectors and source terms,
respectively [42]. Note that the right-hand side (the source
terms) does not depend on derivatives of the stress-energy
tensor. Furthermore, while the system (23) is not strictly
hyperbolic, strong hyperbolicity is recovered in a flat
space-time, where sðqÞ ¼ 0.

As shown by Ref. [40], in order to write system (22) in
the form of system (23), the primitive hydrodynamical
variables (i.e. the rest-mass density �, the pressure p
measured in the rest-frame of the fluid, the fluid three-
velocity vi measured by a local zero-angular momentum
observer, the specific internal energy �, and the Lorentz
factor W) are mapped to the so-called conserved variables
q � ðD; Si; �Þ via the relations

D � ffiffiffiffi
�

p
W�; (24)

Si � ffiffiffiffi
�

p
�HW2vi; (25)

� � ffiffiffiffi
�

p ð�HW2 � pÞ �D: (26)

Note that, in the case of a general EOS of the type p ¼
pð�; �Þ only five of the seven primitive variables are inde-
pendent. Furthermore, if one adopts—as we do in the
present work—a simpler isoentropic EOS of the type p ¼
pð�Þ where also the specific energy (�) is fully determined
by the rest-mass density (�), there is even one less inde-
pendent variable. Namely, Eq. (26) becomes redundant and
needs not be solved. No fundamental changes need be
applied to the code, except that a simpler conversion
scheme from conservative variables to primitive variables
can be adopted [43,44].

In this approach, all variables q are represented on the
numerical grid by cell-integral averages. The functions that
the q represent are then reconstructed within each cell,
usually by piecewise polynomials, in a way that preserves
conservation of the variables q [45]. This operation pro-

duces two values at each cell boundary, which are then
used as initial data for the local Riemann problems, whose
(approximate) solution gives the fluxes through the cell
boundaries. A method-of-lines approach [45], which re-
duces the partial differential equations (23) to a set of
ordinary differential equations that can be evolved using
standard numerical methods, such as Runge-Kutta or the
iterative Cranck-Nicholson schemes [46,47], is used to
update the equations in time (see Ref. [48] for further
details). The WHISKY code implements several reconstruc-
tion methods, such as total-variation-diminishing (TVD)
methods, essentially-non-oscillatory (ENO) methods [49],
and the piecewise parabolic method (PPM) [50]. Also, a
variety of approximate Riemann solvers can be used, start-
ing from the Harten-Lax-van Leer-Einfeldt (HLLE) solver
[51], over to the Roe solver [52] and the Marquina flux
formula [53] (see Ref. [38,48] for a more detailed
discussion).
In this work, we always use a global second-order

accurate scheme, where time evolution is performed using
the iterative Cranck-Nicholson scheme with three substeps
and with a Courant-Friedrichs-Lewy factor equal to 0.25.
We always use the PPM method (that it is nominally third-
order accurate, but in actual simulations usually shows at
best second-order accuracy) for the reconstruction and the
Marquina formula for the approximate fluxes. The em-
ployed finite differencing for the space-time evolution
with the CCATIE code is fourth-order accurate. There are
no particular reasons to prefer these schemes with respect
to others used in the literature (like third-order Runge-
Kutta methods for time evolutions), however, since in
this work we have focused on comparing gravitational-
wave–extraction methods rather than time-evolution meth-
ods, we decided to use the old-fashioned iterative Cranck-
Nicholson scheme.

3. Treatment of the atmosphere

At least mathematically, the region outside our initial
stellar models is assumed to be a perfect vacuum.
Independently of whether this represents a physically real-
istic description of a compact star, the vacuum represents a
singular limit of the Eqs. (24)–(26) and must be treated
artificially. We have here followed a standard approach in
computational fluid dynamics and added a tenuous ‘‘atmo-
sphere’’ filling the computational domain outside the star.
We treat the atmosphere as a perfect fluid governed by

the same polytropic EOS used for the bulk matter, but
having a zero coordinate velocity. Furthermore, its rest-
mass density is set to be several (6 in the present case)
orders of magnitude smaller than the initial central rest-
mass density.
The evolution of the hydrodynamical equations in grid

zones where the atmosphere is present is the same as the
one used in the bulk of the flow. Furthermore, when the rest
mass in a grid zone falls below the threshold set by the
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atmosphere, that grid zone is simply not updated in time
and the values of its rest-mass density and velocity are set
to those of the atmosphere.

C. Gravitational-wave extraction in CACTUS-CARPET-

CCATIE-WHISKY

On a flat space-time, it is natural to express the wave-
form as a multipolar expansion in spin-weighted spherical
harmonics of spin weight s ¼ �2 as

hþ � ih� ¼ X1
‘¼2

X‘
m¼�‘

h‘m�2Y
‘mð
;
Þ: (27)

The problem of gravitational-wave extraction out of a
space-time computed numerically amounts to computing,
in a coordinate-independent way, the multipolar coeffi-
cients h‘m. Two routes are commonly followed in
numerical-relativity simulations of astrophysical systems
which do not involve matter (like binary black-hole co-
alescence). On one hand, one focuses onWeyl ‘‘curvature’’
waveforms [54], by extracting from the numerical space-
time the Newman-Penrose scalar c 4, which is related to
the second time derivative of ðhþ; h�Þ (see below). The
metric waveform (27) is then obtained from the curvature
waveform via time integration. On the other hand, one can
rely on the Regge-Wheeler [2] and Zerilli [3] theory of
metric perturbations of Schwarzschild space-time, after
recasting it in its gauge-invariant form according to
Moncrief [4]. This allows us to compute the metric wave-
form directly from the numerical space-time. See also
Refs. [19,55,56] for reviews and generalizations.
Moreover, if matter is involved, it is also possible to
calculate the gravitational radiation emitted by the system
by means of some (modified) Landau-Lifshitz quadrupole
formula. The purpose of this section is to review the main
elements of the three wave-extraction procedures, as an
introduction to Sec. IV, where waveforms obtained via the
different methods will be compared and contrasted.

1. Wave extraction via Newman-Penrose scalar c 4

The use of Weyl scalars for wave-extraction purposes
has become very common in numerical relativity and it has
been successfully applied in current binary black hole (see
Ref. [57] and references therein), binary–neutron-star [34],
and mixed-binary [58] simulations.

Given a spatial hypersurface with a timelike unit normal
n� and given a spatial unit vector r� in the direction of the
wave propagation, the standard definition of c 4 is the
following component of the Weyl curvature tensor C��	�:

c 4 ¼ �C��	�‘
�‘� �m� �m	; (28)

where ‘� � 1=
ffiffiffi
2

p ðn� � r�Þ and m� is a complex null
vector (such that m� �m� ¼ 1) that is orthogonal to r�

and n�. This scalar can be identified with gravitational
radiation if a suitable frame is chosen at the extraction

radius. On a curved space-time there is considerable free-
dom in the choice of the vectors r� and m�, and different
researchers have made different choices, which are all
equivalent in the r ! 1 limit (see for example [59] and
references therein). We define an orthonormal basis in the
three-space ðêr; ê
; ê
Þ, centered on the Cartesian origin

and oriented with poles along the z axis. The normal to the
slice defines a timelike vector êt, from which we construct
the null frame

l ¼ 1ffiffiffi
2

p ðêt � êrÞ; n ¼ 1ffiffiffi
2

p ðêt þ êrÞ;

m ¼ 1ffiffiffi
2

p ðê
 � ie
Þ:
(29)

We then calculate c 4 via a reformulation of Eq. (28) in
terms of ADM variables on the slice [60],

c 4 ¼ Cij �m
i �mj; (30)

where

Cij � Rij � KKij þ Kk
i Kkj � i�kli rlKjk: (31)

The gravitational-wave polarization amplitudes hþ and h�
are related to c 4 by [61]

€hþ � i €h� ¼ c 4: (32)

It is then convenient to expand c 4 in spin-weighted spheri-
cal harmonics of weight s ¼ �2 as

c 4ðt; r; 
; 
Þ ¼ X1
‘¼2

X‘
m¼�‘

c ‘m
4 ðt; rÞ�2Y

‘mð
;
Þ; (33)

so that the relation between c ‘m
4 and the metric multipoles

h‘m becomes

€h ‘mðt; rÞ ¼ c ‘m
4 ðt; rÞ: (34)

h‘mðt; rÞ is then the double indefinite integral of c ‘m
4 ðt; rÞ,

which we numerically compute (after multiplying both
sides by r) as

r~h‘mðt; rÞ �
Z t

0
dt0

Z t0

0
dt00rc ‘m

4 ðt00; rÞ; (35)

which results in

rh‘mðt; rÞ ¼ r~h‘mðt; rÞ þQ0 þ tQ1; (36)

where the integration constants Q0 and Q1 are explicitly
written. They can be determined from the data themselves

and their physical meanings areQ0 ¼ rh‘mð0; rÞ andQ1 ¼
r _h‘mð0; rÞ.
This is not the end of the story yet. The equations

discussed so far refer to a signal extracted at a finite value
of r, while one is interested in computing c ‘m

4 at spatial
infinity. It is imaginable that in the computed values of
c ‘m

4 ðt; rÞ there may be an offset, dependent on the extrac-
tion radius; that is, c ‘m

4 at spatial infinity should be written
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as

rc ‘m
4 ðtÞ � rc ‘m

4 ðt; rÞ þ 2Q2ðrÞ; (37)

where c ‘m
4 ðt; rÞ is the scalar extracted at a finite radius r

and 2Q2ðrÞ is an offset function, that takes into account (in
an additive way) the effects of the extraction at a finite
radius. The time integration of this offset generates an
additional term that is quadratic in time, so that the final
result for rh‘mðtÞ is

rh‘mðtÞ ¼ r~h‘mðt; rÞ þQ0 þQ1tþQ2ðrÞt2: (38)

The term Q2ðrÞ should tend to zero when the extraction
radius goes to infinity. We checked that this is the case for
the results of our simulations (see Sec. IVC and Fig. 10).

Various ways of fixing the two integration constants Q0

and Q1 have been discussed in the literature about coales-
cing binary black-hole systems [32,62–64]. In particular, in
Appendix A of Ref. [64] the following procedure was
proposed: (i) integrate the curvature waveform twice for-
ward in time (starting from t ¼ 0 and including the initial
burst of radiation due to the initial-data setup) and
(ii) subtract the linear-in-time offset present in there.
This simple procedure led to an accurate metric waveform
which exhibited the correct circular polarization behavior.
A similar line was also followed in Ref. [62], where it was
pointed out that in some situations (e.g. close extraction
radius, higher multipoles) one needs to subtract a general
polynomial in t, consistently with our Eq. (38).

2. Abrahams-Price metric wave-extraction procedure

The wave-extraction formalism based on the perturba-
tion theory of a Schwarzschild space-time was introduced
by Abrahams and Price [65] and subsequently employed
by many authors [66–69].

The assumption underlying this extraction method is
that, far from the strong-field regions, the numerical
space-time can be well approximated as the sum of a
spherically symmetric Schwarzschild ‘‘background’’ g0��

and a nonspherical perturbation h��. Even if based on the

gauge-invariant formulation of perturbations due to
Moncrief [4], the standard implementation [65] of this
approach is done by fixing a coordinate system
(Schwarzschild coordinates) for the background. As usual,
the spherical symmetry2 of g0�� allows one to eliminate the

dependence on the angles ð
;
Þ by expanding h�� in

(tensor) spherical harmonics, i.e. seven even-parity and
three odd-parity multipoles. The multipolar expansion ex-
plicitly reads

g��ðt; r; 
; 
Þ ¼ g0�� þ
X1
‘¼2

X‘
m¼�‘

½ðh‘m��ÞðoÞ þ ðh‘m��ÞðeÞ�:

(39)

The metric multipoles ðh‘m��Þðo=eÞ (and their derivatives) can
be combined together in two gauge-invariant master func-

tions, the even-parity (Zerilli-Moncrief) �ðeÞ
‘m [see Eq. (4)

above] and the odd-parity (Regge-Wheeler) �ðoÞ
‘m. These

two master functions satisfy two decoupled wavelike equa-
tions with a potential.3 Finally, in a radiative coordinate
system we have

h‘m ¼ N‘

r
ð�ðeÞ

‘m þ i�ðoÞ
‘mÞ; (40)

where N‘ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið‘þ 2Þð‘þ 1Þ‘ð‘� 1Þp

.
Note that the use of Schwarzschild coordinates for the

background metric is not at all necessary and more general
wave-extraction frameworks exist. In particular, Sarbach
and Tiglio [56] and Martel and Poisson [55] have shown
that there exists a generalized formalism for perturbations
that is not only gauge invariant (i.e. invariant under infini-
tesimal coordinate transformation), but also coordinate
independent, in the sense that it is invariant under finite
coordinate transformations of theM2 Lorentzian submani-
fold of the background. Since in a numerical-relativity
simulation the gauge depends on time, one is a priori
expecting that the gauge fixing of the background may
introduce systematic errors. For the odd-parity case,
Ref. [6] has shown that this is indeed the case for the
particular physical setting represented by the scattering
of a Gaussian pulse of gravitational waves on a
Schwarzschild black hole in Kerr-Schild coordinates (see
Ref. [70] for the even-parity case). In this work, we present
results obtained using the ‘‘standard’’ Moncrief formalism.
A comprehensive discussion of results obtained via the
generalized formalism will be presented elsewhere [71].

3. Landau-Lifshitz quadrupole-type formula

In the presence of matter, it is sometimes convenient to
extract gravitational waves using also some kind of (im-
proved) Landau-Lifshitz ‘‘quadrupole’’ formula. Although
this formula is not gauge invariant, this route has been
followed by many authors with different degrees of sophis-
tication [5,72–75], to give well-approximated waveforms
[5]. For the sake of completeness, let us review how this
quadrupole formula came into being, as the first contribu-
tion in a multipolar expansion, and let us express it in the
convenient form of h‘m, as outlined above. The basic
reference of the formalism is a review by Thorne [76];
most of the useful formulas of this review have been
collected by Kidder [77], who condenses and summarizes

2That is, the background 4-manifold M can be written as M ¼
M2 � S2, where M2 is a two-dimensional Lorentzian manifold
and S2 is the unit two-sphere.

3The equations are just approximately satisfied on the ex-
tracted background.
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the gravitational-wave–generation formalism developed in
Refs. [78,79].

Following Ref. [77], we recall that Eq. (40) can be
derived in all generality by (i) decomposing the asymptotic
waveform hTTij into two sets of symmetric trace-free (STF)

radiative multipole moments (to be related later to the
matter multipole moment of the source in the near-zone)
called UL and V L, where a capital letter for an index
denotes a multi-index (i.e. UL ¼ Ui1i2...i‘); (ii) projecting

the STF-decomposed hTTij along an orthonormal triad that

corresponds to that of the spherical coordinate system. In
the same notation of Ref. [77], Eq. (40) reads

h‘m ¼ 1ffiffiffi
2

p
r
ðU‘m � iV‘mÞ; (41)

where the mass multipole momentsU‘m and current multi-
pole moments V‘m are related to their STF counterparts by

U‘m ¼ 16�

ð2‘þ 1Þ!!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð‘þ 1Þð‘þ 2Þ
2‘ð‘� 1Þ

s
ULY‘m�

L ; (42)

V‘m ¼ � 32�‘

ð2‘þ 1Þ!!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘þ 2

2‘ð‘þ 1Þð‘� 1Þ

s
V LY‘m�

L ; (43)

where Y‘m
L are the STF spherical harmonics. These func-

tions form a basis of the ð2‘þ 1Þ-dimensional vector space
of STF ‘-tensors; they are related to the scalar spherical
harmonics by

Y‘m ¼ Y‘m
L NL; (44)

where Ni is a component of the unit radial vector. The
expanded form of the STF Y‘m

L is given in Refs. [76,80]
(see also Eq. (A6a) of Ref. [78]). In the post-Newtonian
(PN) wave-generation formalism of Refs. [78,79], one can
relate in a systematic manner the radiative multipole mo-
ments ðUL;V LÞ to a set of six STF source moments
ðIL;J L;W L;XL;YL;ZLÞ, which can be computed
from the stress-energy pseudotensor of the matter and of
the gravitational field of the source. A set of two canonical
source moments ðML;SLÞ can be computed as an inter-
mediate step between the source moments and the radiative
moment. Two of the source moments, the mass moments
IL and the current moment J L are dominant, while the
others only make a contribution starting at 2.5 PN order
and we neglect them here. In a first approximation (i.e.
neglecting the nonlinear ‘‘tail-interactions’’ as well as
higher-order nonlinear interactions), the L-th radiative mo-
ment is given by the ‘-th time derivative of the canonical
moments as

U L � I ð‘Þ
L þOð"5=2Þ; (45)

V L � J ð‘Þ
L þOð"5=2Þ; (46)

where "� ðv=cÞ2 indicates some PN ordering parameter

of the system. As a result, the computation of U‘m and V‘m

is straightforward. As an example (that will be used in the
following), let us focus on the ‘ ¼ 2 moments of a general
astrophysical system with equatorial symmetry. In this
case, the (2, 1) moment is purely odd-parity, while the
(2, 0) and (2, 2) are purely even-parity. Straightforward
application of what we have reviewed so far gives

h20 ¼ 1

r

ffiffiffiffiffiffiffiffiffi
24�

5

s �
€I zz � 1

3
Trð €IÞ

�
; (47)

h21 ¼ �i

r

ffiffiffiffiffiffiffiffiffiffiffiffi
128�

45

s
ð €J xz � i €J yzÞ; (48)

h22 ¼ 1

r

ffiffiffiffiffiffiffi
4�

5

s
ð €Ixx � 2i €Ixy � €IyyÞ: (49)

In the harmonic gauge, in the case of small velocity and
negligible internal stresses (i.e. in the Newtonian limit) one
has I ij ¼

R
d3x�xixj and J ij ¼

R
d3x�"abixjxav

b. The 1

PN corrections to the mass quadrupole have been com-
puted in Ref. [81]. Recently, Ref. [82] included 1 PN
correction, using an effective 1 PN quadrupole momentum,
in the gravitational-wave–extraction procedure from super-
nova core-collapse simulations. As a complementary ap-
proach, Ref. [5] proposed to ‘‘effectively’’ take into
account possible general-relativistic corrections by insert-
ing in Eqs. (47)–(49) the following effective ‘‘quadrupole
moment’’ defined in terms of the ‘‘coordinate rest-mass
density’’ �� � �

ffiffiffiffi
�

p
u0�,

I ij ¼
Z

d3x��xixj: (50)

This presents some very useful properties: (i) it is of simple
implementation and (ii) from the continuity equation
@t�� þ @ið��viÞ ¼ 0, one can analytically compute the
first time-derivative of the quadrupole moment, so that
only one numerical time-derivative needs to be evaluated.
The last property is extremely important; in fact, on data
computed via a second-order accurate numerical scheme it
is not possible to calculate noise-free third derivatives,
which are needed for the gravitational-wave luminosity.
The accuracy of a scheme based on Eq. (50) has been tested
in Ref. [5] in the case of neutron-star oscillations and was
subsequently used by various authors to estimate the
gravitational-wave emission in other physical scenarios.
See, for example, Refs. [35,74,83,84]. In order to get
some more insight on the accuracy of possible ‘‘general-
ized’’ standard quadrupole formulas (SQFs), we have tried
the strategy exploited in Ref. [85], namely, to test some
pragmatic modifications of the quadrupole formula and to
check which one is closer to the actual gravitational wave-
form. In practice, we start with a sort of generalized
quadrupole moment of the form
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I ij½%� �
Z

d3x%xixj; (51)

where now, instead of the ‘‘matter density,’’ we use the
following generalized effective densities %:

SQF % :¼ �; (52)

SQF1 % :¼ �2 ffiffiffiffi
�

p
T00; (53)

SQF 2 % :¼ ffiffiffiffi
�

p
W�; (54)

SQF 3 % :¼ u0� ¼ W

�
�: (55)

We do not think that any of the ‘‘quadrupole formulas’’
obtained using these generalized quadrupole moments
should be considered better than the others. Note that
none of them is gauge invariant and, indeed, the outcome
will change if one is considering isotropic or
Schwarzschild-like coordinates. These formulas were
widely used in the literature and the main purpose of the
comparison among Eqs. (52)–(55) is to give an idea of the
kind of information that can be safely assessed using them.
We will comment more on that in the discussion in the
following Sec. IVE.

III. INITIAL DATA

As a representative model for a neutron star, we choose a
model described by a polytropic EOS [Eq. (3)] with � ¼ 2,
K ¼ 100, central rest-mass density �c ¼ 1:28� 10�3 and
so with rest mass M ’ 1:4. This model has been widely
used in the literature and it is known as model A0 in
Ref. [86]. Some of its equilibrium properties are listed in
Table I.

A. Fluid-perturbation setup

In both the linear and nonlinear codes, setting up the
initial data amounts to (i) solving the Tolman-
Oppenheimer-Volkov (TOV) equations to construct the
equilibrium configuration; (ii) fixing an axisymmetric
pressure perturbation; and (iii) solving the linearized con-
straints for the metric perturbations. We rewrite the pertur-
bative equations in terms of enthalpy perturbations because
it is more convenient.

We set up the initial pressure perturbation as an axisym-
metric multipole:

�pðr; 
Þ � ðpþ eÞH‘0ðrÞY‘0ð
Þ; (56)

and then one is free to specify a profile for the relativistic
enthalpy H‘0ðrÞ. Actually we limit our study to ‘ ¼ 2
(quadrupole) perturbations. Since we aim at a comparison
between waveforms and not at exploring the physics of the
process of neutron-star oscillations, for our purpose the
best system is represented by a star oscillating precisely at
one frequency, i.e. such that H‘0ðrÞ corresponds to an
eigenfunction of the star. We set a profile of H‘0ðrÞ that
excites, mostly, the f mode of the star (with a small
contribution from the first overtone). In general, as sug-
gested in Ref. [8], an ‘‘approximate eigenfunction’’ for a
given fluid mode can be given by setting

H‘0 ¼ � sin

�ðnþ 1Þ�r
2R

�
; (57)

where n is an integer controlling the number of nodes of
H‘0ðrÞ, � is the amplitude of the perturbation, and R is the
radius of the star in Schwarzschild coordinates. The case
n ¼ 0 has no nodes (i.e. no zeros) for 0< r � R; as a
result, the f mode is predominantly triggered (as in
Ref. [8]) and the p-mode contribution is negligible. If n ¼
1, the f mode is still dominant, but a non-negligible con-
tribution of the p1 mode is present. If n ¼ 2, in addition to
the fundamental and the first pressure modes also the p2

mode is clearly present in the signal. For higher values of n
more and more overtones are excited.
In the following, we use the same setup, Eq. (57), to

provide initial data in both the linear and nonlinear codes.
Correspondingly, the computation of �p is needed to get a
handle on the magnitude of the deviation from sphericity.
The best indicator is given by the ratio �p=pc, where pc is
the central pressure of the star. Figure 1 displays the profile
of �p=pc, at the pole and at the equator, as a function of the
Schwarzschild radial coordinate r for � ¼ �0 ¼ 0:001.
For simplicity, we consider only n ¼ 0 perturbations,
with four values for the amplitude, namely � ¼
½0:001; 0:01; 0:05; 0:1�, in order to see, in the 3D code,
how the transition from linear to nonlinear regime occurs.
Maxima and minima of the initial pressure perturbation for
the different values of the initial perturbation amplitude �
can be found in Table II.

B. Metric-perturbation setup: the 1D linear code

Let us turn now to discuss the implementation of Eq.
(57) in the two codes and the corresponding treatment of
the related initial metric perturbation. As discussed in
Refs. [12,15], the even-parity metric perturbation of a
general (nonstatic) spherically symmetric space-time is
described by 3 degrees of freedom (k‘m, �‘m, and c ‘m)
that are the solution of three coupled partial differential
equations. On the static TOV background, only k‘m and
�‘m are independent degrees of freedom of the gravita-
tional field, and their evolution equations are decoupled

TABLE I. Equilibrium properties of model A0. From left to
right the columns report: central rest-mass density, central total
energy density, gravitational mass, radius, compactness.

Name �c ec M R M=R

A0 1:28� 10�3 1:44� 10�3 1.40 9.57 0.15
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from that of c ‘m, which can be obtained at every time step
once �‘m and k‘m are known. The recovery of c ‘m from
�‘m and k‘m, that is needed in the 3D case, will be
explicitly discussed in Sec. III C below. By contrast, for
the 1D implementation one only needs to specify initial
data for �‘m, k‘m, and their time derivatives. This is ac-
complished by solving the constraints under a number of
assumptions related to the physics that we want to inves-
tigate. First of all, we consider only axisymmetric pertur-
bations (m ¼ 0) and we restrict ourselves to the dominant
quadrupole mode (‘ ¼ 2). Then, since in this work we are
not interested in w-mode excitation, we impose the con-
formally flat condition (�20 ¼ 0) (see Refs. [9,10] for de-
tails). With these hypotheses, we solve the Hamiltonian
constraint, namely, Eq. (7) of Ref. [10], for k20. This is
done on a grid r 2 ½0; rmax�, with rmax 	 R and with
boundary condition k20 ¼ 0 at r ¼ 0 and at r ¼ rmax. We

impose _k20 ¼ _�20 ¼ 0 for simplicity, but we are aware that
this is inconsistent with the condition thatH20 � 0 initially
and thus the momentum constraints should also be solved.
However, since the effect is a small initial transient in the

waveforms that quickly washes out before the quasihar-
monic oscillation triggered by the perturbation H20 sets in,
we have decided to maintain the initial-data setup simple.
Figure 2 synthesizes the information about the initial data.
The top panel shows (as a solid line) the profile of k20
(versus Schwarzschild radius) corresponding to the pertur-
bation � ¼ �0 of Table II; the bottom panel shows (as a
solid line) the initial profile of the Zerilli-Moncrief func-

tion �ðeÞ
20 outside the star.

C. Metric-perturbation setup: the 3D nonlinear code

In the 3D code we setup the same kind of initial condi-
tion as in the 1D code, but the procedure is more compli-
cated as one needs to reconstruct the full 3D metric on the
Cartesian grid. In addition, the main difference with re-
spect to the 1D case is that the perturbative constraints are
expressed using a radial isotropic coordinate �r instead of
the Schwarzschild-like radial coordinate r. This is done
because �r is naturally connected to the Cartesian coordi-
nates in which the code is expressed, i.e. �r ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
. The initialization of the metric in the 3D

case has to follow four main steps: (i) The perturbative
constraints are solved; (ii) The multipolar metric compo-
nents are added to the unperturbed background TOV met-
ric; (iii) The resulting metric is written in Cartesian
coordinates; (iv) It is interpolated on the Cartesian grid.
Let us then recall some useful formulas. At the back-

ground level, the TOVmetric in isotropic coordinates reads

ds20 ¼ �e2adt2 þ e2bðd�r2 þ �r2d�2Þ; (58)

where d� ¼ d
2 þ sin2d
2. The relations between the
Schwarzschild and isotropic radial coordinates in the ex-
terior are given by

r ¼ �r

�
1þM

2�r

�
2
; (59)

�r ¼ 1

2
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � 2Mr

p
þ r�MÞ; (60)

and in the interior by

r ¼ �re2bðrÞ; (61)

�r ¼ Cr exp

"Z r

0
dx

1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2mðxÞ=xp

x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2mðxÞ=xp

#
; (62)

where

C ¼ 1

2R
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � 2MR

p
þ R�MÞ

� exp

"
�
Z R

0
dx

1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2mðxÞ=xp

x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2mðxÞ=xp

#
: (63)

In terms of the isotropic radius, the perturbative
Hamiltonian constraint explicitly reads

TABLE II. From the enthalpy perturbation to the relative
magnitude of the pressure perturbation for n ¼ 0, ‘ ¼ 2, and
m ¼ 0 (see Fig. 1). The minimum pressure perturbation occurs
at some value of r on the xy plane (
 ¼ �=2), while the
maximum pressure perturbation is found at some value of r on
the z axis (
 ¼ 0).

Name � minð�p=pcÞ maxð�p=pcÞ
�0 0.001 �0:001 25 0.002 51

�1 0.01 �0:012 53 0.025 06

�2 0.05 �0:062 66 0.125 33

�3 0.1 �0:125 33 0.250 67
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FIG. 1. Profile of the relative pressure perturbation �p=pc

[computed on the z axis (
 ¼ 0) and on the xy plane (
 ¼
�=2)] obtained from Eqs. (56) and (57) with n ¼ 0 and � ¼ �0.
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k‘m;�r �r þ
k‘m;�r
�r

�
1þ

�
1� 2mðrÞ

r

�
1=2

�
þ e2b

�
8�e� �

r2

�
k‘m

� 1

�r

�
1� 2mðrÞ

r

�
1=2

�‘m
;�r � e2b

�
�þ 2

2r2
� 8�e

�
�‘m

¼ �8�ðpþ eÞH‘m

C2
s

; (64)

where r � rð�rÞ according to Eq. (59) and (61).
After solving the TOVequations, we choose a profile for

H‘m, impose the conformal-flatness condition �‘m ¼ 0,
and solve Eq. (64) for k‘m. As we discussed in the previous
section, one also needs to impose on c ‘m some condition
that can be regarded as an initial gauge condition. Then

ð�‘m; k‘m; c ‘mÞ must be inserted in the explicit expression
of the (even-parity) metric perturbation

�s2‘m ¼ fð�‘m þ k‘mÞe2adt2 � 2c ‘me
aþbdtd �r

þ e2b½ð�‘m þ k‘mÞd�r2 þ �r2k‘md��gY‘m: (65)

In the absence of azimuthal and tangential velocity pertur-
bations, in Schwarzschild coordinates and in the Regge-
Wheeler gauge, from the momentum-constraint equation,
namely, Eq. (95) of Ref. [12], one obtains

c ‘m;r ¼ �2½mðrÞ þ 4�r3pðrÞ�
r� 2mðrÞ c ; (66)

which, once solved, gives

c ‘mðrÞ ¼ ~C exp

�
�
Z r

0
dx

2ðmðxÞ þ 4�x3pðxÞÞ
x� 2mðxÞ

�
: (67)

The requirement c ‘m ! 0 for large r, like for k‘m, implies
~C ¼ 0; therefore, the metric perturbation is given by Eq.
(65) with c ‘m ¼ �‘m ¼ 0. The full metric in isotropic
coordinates is obtained as ds2 ¼ ds20 þ �s2‘m. This metric

is transformed to Cartesian coordinates and then it is
linearly interpolated onto the Cartesian grid used to solve
the coupled Einstein-matter equations numerically. To en-
sure a correct implementation of the boundary conditions
(i.e. k‘m ! 0 when �r ! 1), the isotropic radial grid used
to solve Eq. (64) is much larger (�r� 3000) than the cor-
responding Cartesian grid (�r� 208), and the spacing is
much smaller.
One proceeds similarly for the matter perturbation:

From a given profile for H‘mðrÞ, the pressure perturbation
�pðr; 
Þ is computed and from this the total pressure is
given by pþ �p. This is interpolated on the Cartesian grid
to finally obtain the vector of the conserved hydrodynamics
variables ðD; Si; �Þ.
The consistency of the initial-data setup procedure in

both the PERBACCO 1D linear code and in the CACTUS-

CARPET-CCATIE-WHISKY 3D nonlinear code is highlighted

in Fig. 2. The top panel of the figure compares the profiles
of k20 in the 1D case (solid line) and in the 3D case (dashed
line) for � ¼ �0 and n ¼ 0. The small differences are
related to a slightly different location of the star surface
in the two setups and to the different resolution of the grids.
The bottom panel of Fig. 2 contrasts the Zerilli-Moncrief

functions �ðeÞ
20 from the 1D code (solid lines) with those

extracted (at t ¼ 0) from the numerical 3D metric (dashed
lines). For all initial conditions, the curves show good
consistency.

IV. RESULTS

The presentation of our results is organized in the fol-
lowing way: in Sec. IVA, we focus first on radial oscil-
lations, that are always present due to numerical
discretization error. Then we concentrate on nonradial
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FIG. 2 (color online). Initial-data setup in the 1D and 3D
codes. Top panel: profiles of the k20 multipole at t ¼ 0 versus
the Schwarzschild radial coordinate r, obtained from the solution
of the perturbative Hamiltonian constraint with � ¼ �0 and n ¼
0. Bottom panel: profiles of �ðeÞ

20 at t ¼ 0 versus the

Schwarzschild radial coordinate r, for different values of the
initial perturbation �. Both panels compare the results of the
computations of the 1D and 3D codes.

BAIOTTI, BERNUZZI, CORVINO, DE PIETRI, AND NAGAR PHYSICAL REVIEW D 79, 024002 (2009)

024002-10



stellar oscillations and we compare the 1D and 3D metric
waveforms (Sec. IVB) and curvature waveforms
(Sec. IVC). In Sec. IVD, we discuss advantages and
disadvantages of these two wave-extraction techniques.
Finally, we discuss the use of quadrupole-type formulas
in Sec. IVE, while Sec. IV F is devoted to the analysis of
nonlinear couplings between oscillation modes.

A. Radial oscillations

The unperturbed configuration A0 has been stably
evolved for about 20 ms. The numerical 3D grid used for
this simulation is composed of two concentric cubic boxes
with limits ½�32; 32� and ½�16; 16� in all the three
Cartesian directions. The boxes have resolutions �xyz ¼
0:5 and 0.25, respectively; bitant symmetry, i.e. the z < 0
domain is copied from the z > 0 domain instead of being
evolved, was imposed as a boundary condition in order to
save computational time.

The truncation errors of the numerical scheme trigger
(physical) radial oscillations of (mainly) the fundamental
mode F and the first overtones. We have checked that these
frequencies agree with those computed evolving the radial
pulsation equation with the perturbative code. This com-
parison is shown in Table III. We note in passing that our
numbers are in perfect agreement with those of Table I of
Ref. [87].

As a further check, the entire sequence of uniformly
rotating models with mass M ¼ 1:4 and nonrotating limit
A0 has been evolved. Simulations were done with a cubic
grid with limits ½�32; 32� in each direction, and uniformly
spaced with grid spacing �xyz ¼ 0:5. As before, we have

imposed bitant symmetry. The sequence of initial models
has been computed by means of the version of the RNS code
[88] implemented in WHISKY. For the equilibrium proper-
ties of the models, see Ref. [89].

The fluid modes of this sequence were previously inves-
tigated in different works, using various approaches
[86,89,90]. With our general-relativistic 3D simulations
we are able to study the effect of rotation on the radial
mode and compare the results with those obtained via
approximated approaches. Our results are summarized in
Table IV. We have found that the frequencies computed by
Dimmelmeier et al. [89] in the conformally flat approxi-
mation are consistent with ours (the difference is of the
order of a few percent); on the other hand, the results of
Stergioulas et al. [86], obtained in the Cowling approxi-

mation, differ of about a factor two, consistently with the
estimates of Ref. [91]. In all cases, the frequencies de-
crease if the rotation increases and the trend is linear in the
rotational parameter 	 � T=jWj, the ratio between the
kinetic rotational energy and the gravitational potential
energy.

B. Nonradial oscillations: comparing 1D and 3D metric
waveforms

Let us now turn to the discussion of nonspherical oscil-
lations and to the related extraction of waveforms from 1D
and 3D simulations. We consider a star perturbed with an
‘ ¼ 2, H‘0ðrÞ profile with n ¼ 0, according to the proce-
dure outlined in Sec. III. This system is evolved separately
with the two codes and the related gravitational waveforms
are compared.
We focus first on the discussion of the outcome of the 1D

linear code. We accurately performed very long simula-
tions, whose final time is about 1 s. The extraction radii for
the Zerilli-Moncrief function extend as far as �r ¼ 420 ( ’
300M). The resolution of the radial grid is �r ¼ 0:032,
which corresponds to having 300 points inside the star.

Figure 3 shows the Zerilli-Moncrief function�ðeÞ
20 (for � ¼

�1) extracted at different radii. It is plotted versus the
observer retarded time, namely u ¼ t� r�, where r� is
the Regge-Wheeler tortoise coordinate r� ¼ rþ
2M log½r=ð2MÞ � 1� and M is the mass of the star.
The farther observers that are shown in Fig. 3 are suffi-

ciently deep in the wave zone that the initial offset, that is
typically present due to the initial profile of k20, is small
enough to be considered negligible. We checked the con-
vergence of the waves with the extraction radius using as a

reference point the maximum of �ðeÞ
20 . This point can be

accurately fitted, as a function of the extraction radius, with

maxð�ðeÞ
20 Þ � a1 þ a1

r
: (68)

The extrapolated quantity a1 allows an estimate of the

TABLE III. Frequencies of the fundamental radial mode of
model A0.

n Perturbative [Hz] 3D [Hz] Difference [%]

0 1462 1466 0.3

1 3938 3935 0.1

2 5928 5978 0.8

TABLE IV. Frequencies of the fundamental radial mode of
models in the sequence AU of uniformly rotating polytropic
stars of Refs. [86,89]. The frequency of model AU0 (A0) has
also been computed in Ref. [87] (1450 Hz) and in this work
(1462 Hz), where a finer grid was used (see Table III). The data
in the column marked as ‘‘CF’’ refer to Table III of Ref. [89].
The data in the column marked as ‘‘Cowling’’ refer to Table II of
Ref. [86].

MODEL F [Hz] F(CF) [Hz] F(Cowling) [Hz]

AU0 1444 1458 2706

AU1 1369 1398 2526

AU2 1329 1345 2403

AU3 1265 1283 2277

AU4 1166 1196 2141

AU5 1093 1107 1960
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error related to the extraction at finite distance

�a � ja1 �maxð�ðeÞ
20 ðrÞÞj

a1
: (69)

The values of �a for different radii are �a ’ 0:5 for r ¼
25M, �a ’ 0:09 for r ¼ 50M, �a ’ 0:017 for r ¼ 100M,
and �a < 0:016 for r > 200M.

The waveform can be described by two different phases:
(i) an initial transient, of about half a gravitational-wave
cycle, say up to u ’ 50, related to the setup of the initial
data,4 followed by (ii) a quasiharmonic oscillatory phase,
where the matter dynamics are described in terms of the
stellar quasinormal modes. From the Fourier spectrum of

�ðeÞ
20 over a time interval from 1 to about 30 ms (namely,

u 2 ½50; 6000�), we found that the signal is dominated by
the f mode (at frequency �f ¼ 1581 Hz) with a much

lower contribution of the first pmode (at frequency around
�p1

¼ 3724 Hz). The frequency of the f mode agrees with

that of Ref. [87] within 1–2%. The accuracy of our linear
code for frequencies obtained from Fourier analysis on
such long time series has been checked in Refs. [8,10]
and is better than 1% on average. We mention that the
Fourier analysis of the matter variable H‘m permits to
capture some higher overtones than the p1 mode, although
they are essentially not visible in the gravitational-wave
spectrum. In a first approximation, the waveform can thus
be thought as the superposition of damped harmonic oscil-
lators

�20 �
XN
k¼0

A2k cosð2��2kuþ
2kÞ expð��2kuÞ; (70)

and we aim at determining the quantities A2k,
2k, �2k, and
�2k from a standard nonlinear least-square fit. Since the
frequency � is also independently known from the Fourier
analysis, it is used as feedback for the fit. In addition, to
quantify the global differences between the ‘‘actual’’ and
the ‘‘fitted’’ time series, we compute the (l2) scalar product

�ðX; YÞ ¼
P
j
XjYjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

j
ðXjÞ2

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
j
ðYjÞ2

r ; (71)

which is bounded in the interval [0, 1], and then we look at
the residual R ¼ 1��. This residual gives us a relative
measure of the reliability of the fit. In addition we use the
l1 distance:

D ðX; YÞ ¼ max
j

jXj � Yjj; (72)

that gives the maximum difference between the two time
series. We will use the quantities R and D also as mea-
sures of the global agreement between the 3D and 1D
waveforms.
On the interval u 2 ½50; 6000�, the waves can be per-

fectly (R ’ 7� 10�4, D ’ 6� 10�6) represented by a
one-mode expansion, N ¼ 1, as the waveform is domi-
nated by f-mode oscillations. The frequency we obtain,
�20 ¼ 1580:79
 0:01 Hz, is perfectly consistent with that
obtained via Fourier analysis; for the damping time, we
estimate �20 ¼ 3:984
 0:066 s�1 and thus �20 ¼ ��1

20 ’
0:25 s. If we consider the entire duration (1 s) of the signal
(see the inset in Fig. 4), it is clear that a one-mode expan-
sion is not sufficient to accurately reproduce the waveform.
The Fourier analysis of the waveform in two different time
intervals, one for t & 0:5 s and one for t * 0:5, reveals that
in the second part of the signal the p1 mode, which has
longer damping time, clearly emerges and must be taken
into account. We fit the entire signal with two modes,
namely N ¼ 2, with a global agreement of R ’
2� 10�6 and D ’ 4� 10�5. The results of the fit are
reported in Table V. The frequencies are slightly larger
than those computed via Fourier analysis and via the fit
procedure restricted to only one mode on a shorter interval.
They are, however, still consistent. The damping times are
�20 ¼ 0:268 s and �21 ¼ 2:37 s, with errors of the order of
0.1% and 2%, respectively.
At this stage, we have clearly assessed the accuracy of

the waveforms computed via our 1D code; in the following
we shall consider these waveforms (extracted at the far-
thest observer) as exact for all practical purposes. We turn
now to the discussion of the metric waveforms extracted
from the 3D code and we compare them to the exact,
perturbative results for different values of the perturbation
�.

−100 0 100 200 300 400 500
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
x 10

−3

u

Ψ
(e

)
20

 

 

FIG. 3. Evolution of the Zerilli-Moncrief function, extracted at
various isotropic radii �r, versus the retarded time u, for the 1D
linear code evolution with � ¼ �1. Note how the initial offset
decreases with the extraction radius.

4In practice, the first half cycle of the waves cannot be ex-
pressed as a superposition of quasinormal modes and it is related
to the initial-data setup. This initial transient is related to two
facts: (i) We use the conformally flat approximation; (ii) We
assume _k‘m ¼ 0 even if our initial configuration (a star plus a
nonstatic perturbation) is evidently not time symmetric, since a
velocity perturbation is present and thus also a radiative field
related to the past evolutionary history of the star.
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The 3D simulations are performed over grids with three
refinement levels and cubic boxes with limits ½�120; 120�,
½�24; 24�, and ½�12; 12� in each direction. The resolutions
of the boxes are �xyz ¼ 0:5, 0.25, and 0.125, respectively.

The equations are evolved only on the first octant of the
grid and symmetry conditions are applied. The outermost
detector is located at isotropic-coordinate radius �r ¼ 110
(� 80M).

Figure 5 is obtained with perturbation � ¼ �1. It dis-
plays the Zerilli-Moncrief normalized metric waveforms,
extracted on coordinate spheres of radii �r 2
f30; 60; 90; 110g and plotted versus the (approximate) re-
tarded time u ¼ t� r�, where r� ¼ rþ 2M log½r=ð2MÞ �
1�. Here, r is the areal radius of the spheres of coordinate
radius �r and M is the Schwarzschild mass enclosed in �r
[6,65,68]. This figure is the 3D analogous of Fig. 3. The 1D

and 3D waveforms look qualitatively very similar apart
from the presence of a highly damped, high-frequency
oscillation at early times. In Sec. IVD, we will argue that
this oscillation is essentially unphysical because its ampli-
tude grows linearly with the extraction radius �r, instead of
approaching an approximately constant value (as it hap-
pens instead for the subsequent fluid-mode oscillations).
Section IVD is devoted to a thorough discussion of these
issues; for the moment, we simply ignore this problem and
focus our attention only on the part of the waveform
dominated by fluid modes.

Each panel of Fig. 6 compares the 1D, exact �ðeÞ
20

(dashed lines) with that computed via the 3D code (solid
lines) for the four values of the perturbation �. The ex-
traction radius is (in both codes) �r ¼ 110 and this implies
that a nonzero, constant offset for u & 0 is present. Note, in
this respect, the good consistency between 3D and 1D
results for u & 0, confirming here the information enclosed
in the bottom panel of Fig. 2. After the initial high-
frequency (unphysical) oscillations, the top-left panel of
Fig. 6 shows that an excellent agreement between the
waveforms is found when the perturbation is small. Then,
for larger values of � (until it assumes values that cannot be
considered a perturbation anymore) the amplitude of the
oscillation in the 3D simulations becomes smaller with
respect to the linear case, suggesting that nonlinear cou-
plings (specifically, couplings with overtones as well as
couplings with the radial modes) are redistributing the
energy of the ‘ ¼ 2, m ¼ 0 oscillations triggered by the
initial perturbation. In Sec. IV F, we will argue that cou-

TABLE V. Perturbative 1D evolution with � ¼ �1: results of
the fit to a superposition of two fluid modes [see Eq. (71)] over
the interval u 2 ½0; 200000�, i.e. about 1 s (cf. Fig. 4). For this
fit, R ’ 1:6� 10�6 and D ’ 3:6� 10�5 (see text for explan-
ations).

[Arbitrary units] � [Hz] �½s�1�
A20 ¼ 1:3145þ2�2 � 10�3 �20 ¼ 1583:7369þ2�1 �20 ¼ 3:7358þ9

�9

A21 ¼ 3:517þ13
�12 � 10�5 �21 ¼ 3706:9413þ11�11 �21 ¼ 0:421þ8

�6
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FIG. 5. Zerilli-Moncrief normalized metric waveforms shown
versus the observer retarded time u ¼ t� r� at different extrac-
tion radii (�r ¼ 30 to �r ¼ 110), for a 3D evolution with pertur-
bation � ¼ �1. The initial part of the waveform is dominated by
a pulse of junk radiation.
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FIG. 4. Evolution of the Zerilli-Moncrief function, extracted at
isotropic radius �r ¼ 280 for the same evolution of Fig. 3 versus
the retarded time u expressed now in seconds (1 dimensionless
time unit is equal to 4:92549� 10�6 s). The main panel shows
only the envelope of the waveform that is dominated by the
damping time of the f mode (�f ’ 0:27 s). The two insets

represent the full waveform at early (top) and late (bottom)
times. The presence of the overtone is evident in the oscillations
at late times.
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plings between modes become more and more relevant
when the perturbation increases, giving a quantitative ex-
planation to the phenomenology that we observe. This
effect is summarized in Fig. 7, which displays the ampli-

tude A20 obtained by fitting the waveform with the tem-
plate Eq. (70) versus the magnitude of the perturbation for
1D (linear) and 3D (nonlinear) simulations. It is evident
from the figure that there is a consistent deviation from
linearity already when the perturbation is relatively small
(� & 0:02). As a measure of the global agreement between
1D and 3D waveforms (as a function of the initial pertur-
bation �) we list in Table VI the l2 residuals R ¼ 1�
�ð�1D;�3DÞ and the l1 distances Dð�1D;�3DÞ.
The 3D waveforms for �0 and �1 turn out to be damped

on a time scale of about 20 ms. This damping time is much
shorter than the one of the f mode or p1 mode, as com-
puted via the 1D approach. This ‘‘effective-viscosity’’
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FIG. 6 (color online). Metric waveforms extracted at �r ¼ 110 computed from 3D simulations (dashed lines) and 1D linear
simulations (solid lines) for different values of the perturbation �. If � is sufficiently small (e.g., � & 0:01) the outcomes of the
two codes show good agreement. If the perturbation is large (�� 0:1), nonlinear effects become dominating.

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

2

4

6

8

10

12

14

x 10
−3

 λ

M
od

e 
A

m
pl

itu
de

,  
A

20

 

 

1D linear evolution
3D nonlinear evolution

FIG. 7 (color online). Comparison between the oscillation
amplitude A20 (from fits) in the 1D (linear) and 3D (nonlinear)
simulations versus the initial perturbation �. Deviations from
linearity are occurring already for very small values of �.

TABLE VI. ‘‘Global-agreement’’ measures computed on the
interval �u ¼ ½50; 3000� (after the junk burst) at the outermost
detector. Here, R ¼ 1��ð�1D;�3DÞ is the l2 residual while
Dð�1D;�3DÞ is the l1 distance.

� R D

�0 3:07� 10�2 7:93� 10�5

�1 4:88� 10�2 7:79� 10�4

�2 1:63� 10�1 2:78� 10�3

�3 9:96� 10�1 2:04� 10�2
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damping time �visc (that is related to the inverse of the
viscosity coefficient) can be extracted by means of the fit
analysis discussed above for the waveform. We have found
that �visc depends on the initial perturbation, being �visc ’
0:022, 0.132, 0.203, 0.129 s, respectively, for � ¼ �0, �1,
�2, �3. The best agreement with the expected physical
value of �20 ¼ 0:268 s is obtained for � ¼ �2; both for
larger and smaller perturbations the 3D results show even
shorter damping times. The errors on these quantities are of
the order of 0.5%. The interpretation of these results may
include two different effects. The smaller damping time of
the wave for the � ¼ �3 perturbation with respect to the
� ¼ �2 one may be interpreted as due to the nonlinear
couplings that allow the disexcitation of the fundamental
mode in other channels; as it can be seen from Fig. 7 and
19, the importance of nonlinear effects is larger for the
simulation with perturbation � ¼ �3. However, for pertur-
bations smaller than � ¼ �2 the effective viscosity is not
found to decrease towards the expected perturbative value,
as it could have been expected from the above argument.
This discrepancy might be due to the numerical viscosity
proper of the evolution scheme. Such numerical viscosity
would have a bigger influence in low-perturbation simula-
tions, where the energy lost from the fundamental mode
into other modes is smaller (while in higher-perturbation
simulations the coupling of modes is the dominant effect).
Although the detailed analysis of the numerical viscosity
of the 3D code is beyond the scope of the present work, we
checked that, as expected, it depends on the grid resolution.
We performed tests using a three-refinement-level setup
with the resolution of the coarsest grid (with limits
½�120; 120� in the three directions) set at the values
�xyz ¼ 2 (low), 1 (medium), and 0.5 (high). Using these

three resolutions, we observed that, in the case of the
coarsest grid, there was an initial explosion in the ampli-
tude, then followed by a strong damping during the first
five gravitational-wave cycles. This shows that this reso-
lution is not even sufficient to extract the qualitative be-
havior of the waveform. On the other hand, the other two
resolutions did not show any qualitative difference in
addition to the different value of the effective viscosity
that is smaller for higher resolutions. We also checked
whether there is a measurable effect due to the artificial
atmosphere. Focusing only on the � ¼ �0 perturbation, we
varied the value of the rest-mass density of the atmosphere

in the range �atm ¼ 10½�5;�6;�7��max, without finding any
significant influence on the values of �visc. We leave to
forthcoming studies a detailed analysis of the viscosity of
the 3D evolution code.

Finally, we have also Fourier-transformed the 3D wave-
forms to extract the fluid-mode frequencies and we have
compared them with the linear ones. This comparison is
shown in Table VII. Apparently, the frequency of the f
mode (that dominates the signal) is less sensitive to non-
linear effects than its amplitude, as it can be seen from the

fact that only the � ¼ �3 initial data are such to force the
star to oscillate at a frequency slightly different from that
of the linear approximation. On the other hand, the first
overtone (the p1 mode) seems more sensitive. It is in any
case remarkable that for � ¼ �0 and � ¼ �1 the frequen-
cies from 3D and 1D simulations coincide at better than
1%, suggesting that the main gravitational-wave frequen-
cies are only mildly affected by nonlinearities.

C. Nonradial oscillations: comparing 1D and 3D
curvature waveforms

This section is devoted to the comparison between 1D
and 3D curvature waveforms. In the 1D code one can use
the relation

rc ‘m
4 ¼ r €h‘m ¼ N‘ð €�ðeÞ

‘m þ i €�ðoÞ
‘mÞ (73)

to obtain the Newman-Penrose scalar (multiplied by the
extraction radius) rc ‘m

4 from the gauge-invariant metric
master functions. Because of our choice of initial condi-

tions, we shall consider only �ðeÞ
20 in the following.5 The

second time derivative of�ðeÞ
20 is computed via finite differ-

encing, by applying twice a first-order derivative operator
with fourth-order accuracy. By contrast, in the 3D code
c 20

4 is extracted independently of the metric waveform.

Then, one computes rc 20
4 ,where r is an approximated

radius6 from Eq. (59) with M ¼ 1:4.
Figure 8 displays the rc 20

4 waveforms from 1D (solid
line) and 3D (dashed line) evolutions with perturbation
� ¼ �0. The extraction radius is �r ¼ 110 in both codes.
Visual inspection of the figure immediately suggests that:
(i) The initial transient in the 1D metric waveform preced-
ing the setting in of the quasiharmonic f-mode oscillation
results in a highly damped, high-frequency oscillation;

TABLE VII. Frequency analysis of the 3D waveforms (see
Fig. 6) over the interval u 2 ½50; 3000�. The frequencies from
1D simulations are �1D

f ¼ 1581 Hz and �1D
p1

¼ 3724 Hz. From

left to right the columns report the amplitude of the perturbation,
the f-mode frequency, its relative difference with the 1D value,
the p1-mode frequency and its relative difference with the 1D
value.

� �3D
f [Hz] Difference [%] �3D

p1
[Hz] Difference [%]

�0 1578 0.2 3705 0.5

�1 1576 0.3 3705 0.5

�2 1573 0.5 3635 2.4

�3 1623 2.7 3565 4.3

5Note that in principle one could compute c 4 independently,
solving the Bardeen-Press-Teukolsky equation [92].

6This is an approximate relation as �r is a coordinate radius and
the mass inside the sphere of radius �r is time dependent. We
neglect all higher-order effects here as this approximation is
sufficiently accurate for our purposes.
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(ii) The initial transient radiation has the same qualitative
shape in both the 1D and 3D waveforms, although the
amplitude of the oscillation is larger in the latter case. At
this point one should note that: (i) In the 1D case, although
the conformally flat condition is imposed at t ¼ 0, the
constraint is solved numerically and thus a small violation
of this condition occurs; (ii) The violation is expected to be
larger in the 3D case, because of the larger truncation
errors. It is in any case remarkable that, as the figure shows,

these errors (e.g. the slightly different shapes of k20, the
linear interpolation from spherical to Cartesian coordi-
nates, etc.) are sufficiently under control to produce the
same qualitative behavior besides small quantitative dif-
ferences in the initial part of the 1D and 3D waveforms.
The question that occurs at this point is whether the

violation of the conformally flat condition introduces
some amount of physical w-mode excitation in the wave-
forms. To answer this question we show in Fig. 9 the
Fourier power spectral density (PSD) of the rc 20

4 wave-

forms of Fig. 8. The PSD is computed all over the wave-
form and not only during the ‘‘ring down,’’ because of the
difficulty of separating reliably this part from the ‘‘precur-
sor’’ [11]. We are aware of the problems related to the
precise determination the w-mode frequencies and to their
location in the waveform (see Refs. [11,93] for a related
discussion), and, in particular, of the fact that the Fourier
analysis can not provide accurate and definitive answers,
essentially because, in the presence of damped signals with
frequencies comparable to the inverse of the damping time,
the Fourier spectrum results in a broad peak. However it
represents a fundamental part of the analysis and, in the
present case, is preferable to a fitting procedure because of
the already mentioned problem of separating the precursor
from the ring-down part.
The dashed-dotted vertical lines of Fig. 9 locate the first

two w-mode frequencies of this model, �w1
¼ 10:09 kHz

and �w2
¼ 17:84 kHz. These frequencies have been com-

puted by K. Kokkotas and N. Stergioulas via an indepen-
dent frequency-domain code and have been kindly given to
us for this specific comparison. Two of the maxima of the
PSD of the 3D rc 20

4 waveform can be associated to the

frequencies �w1
and �w2

, even if they are in a region very

close to the noise. The frequency �w1
is probably slightly

excited also in the 1D case (see inset), while only noise is
present around �w2

. In Fig. 9, we show also the PSD of the

1D �ðeÞ
20 (dashed dark line) and the one of the 3D �ðeÞ

20

(dashed light line) obtained from the double time integra-
tion of c 20

4 . In both cases, it is not possible to disentangle

�w1
and �w2

from the background noise.

The fact that a signal characterized by highly damped
modes is much less evident in the PSD of the metric
waveform than in the corresponding curvature one is sim-
ply due to the second derivative that relates the two gauge-
invariant functions. When space-time modes are excited,
the metric waveform is (approximately) composed by a
pure ring-down part plus a tail contribution [94], that is

�ðeÞ
20 � e��t þ 	t�7, where � ¼ �þ i! (� is the inverse

of the damping time and! thew-mode frequency) and	 is
a numerical coefficient. When one takes two time deriva-

tives to compute rc 20
4 from �ðeÞ

20 , the tail contribution is

suppressed by a factor t�2 and the oscillatory part of the
waveform emerges more sharply. This comparison sug-
gests that the best way to extract information about w
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FIG. 8 (color online). 1D versus 3D evolution of the rc 20
4

curvature waveform for perturbation � ¼ �0. The initial tran-
sient is consistent between the two evolutions. The inset con-
centrates on the initial part of the waveform.
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modes (especially when their contribution is small) is, in
general, to look at rc ‘m

4 . In addition, it also highlights that,
while it is not possible to exclude the presence of w modes
in the rc ‘m

4 signal due to the small violation of the con-
formally flat condition at t ¼ 0, at the same time we can
not definitely demonstrate that those high frequencies
present near the noise are attributable to w modes. In the
next section, we are going to show similar analyses on the

spectra computed from �ðeÞ
20 waveforms extracted á la

Abrahams-Price from the 3D simulation.
Finally, the global-agreement measures on the c 4 ex-

traction are R ’ 1:42� 10�2 and D ’ 9:09� 10�7, and
they highlight some differences between the linear and the
nonlinear approach.

The analysis discussed so far indicates that, in the
present framework, the wave-extraction procedure based
on the Newman-Penrose scalar c 4 seems to produce wave-
forms that, especially at early times, are more accurate than
the corresponding ones extracted via the Abrahams-Price
metric-perturbation approach. However, one of the big
advantages of the latter method is that the waveforms hþ
and h� are directly available at the end of the computation,
and thus ready to be injected in some gravitational-wave–-
data-analysis procedure. By contrast, if we prefer to use
Newman-Penrose wave-extraction procedures (which are
the most common tools employed in numerical-relativity
simulations nowadays), we must consistently give pre-

scriptions to obtain �ðe=oÞ
‘m from c ‘m

4 . To do so, one needs

to perform a double (numerical) time integration, with at
least two free integration constants to be determined to
correctly represent the physics of the system. Inverting Eq.
(73) following the considerations of Sec. II C 1, we obtain
the following result [see Eq. (38)]:

rh‘m ¼ N‘ð�ðeÞ
‘m þ i�ðoÞ

‘mÞ
¼

Z t

0
dt0

Z t0

0
dt00rc 4

‘mðt00Þ þQ0 þQ1tþQ2t
2;

¼ r~h‘mðtÞ þQ0 þQ1tþQ2t
2; (74)

where Q0, Q1, and Q2 are (still) undetermined integration
constants, which are complex if m � 0. Note that this
relation does not involve the Q2 integration constant only
if finite-radius extraction effects can be considered negli-
gible (see below).

Our aim is to recover the metric waveform that corre-
sponds to the 3D rc 20

4 waveform that we have character-

ized above. We consider the waveform of Fig. 8 up to
t ¼ 1500, where the reduction in amplitude due to numeri-
cal viscosity is already of the order of 30% with respect to
the exact linear waveform. This sampled curvature wave-
form is integrated twice in time, from t ¼ 0 without fixing

any integration constant to obtain r~h‘mðtÞ.
The raw result of this double integration is shown in

Fig. 10. The ‘‘average’’ of the oscillation does not lay on a
straight line, as it does instead in the case of the waveforms

of binary black-hole coalescence discussed in Ref. [64],
but rather it shows also a quadratic correction due to the
finite extraction radius (see discussion in Sec. II C 1).
Indeed, when a ‘‘floor’’ of the form PðtÞ ¼ Q0 þQ1tþ

Q2t
2 is subtracted, the resulting metric waveform is found

to oscillate around zero, as it can be seen in Figs. 10 and 11,
which focus on the beginning of the oscillation. The values
of the coefficients of PðtÞ obtained from the fit are Q0 ¼
�4:338� 10�7, Q1 ¼ �1:2462� 10�7, and Q2 ¼
�6:2046� 10�9. The fact that Q0 < 0 is connected to
the choice of initial data we made (i.e. k20 � 0 at t ¼ 0).
Then, Q1 � 0 indicates that the system is (slightly) out of
equilibrium already at t ¼ 0 and it is thus emitting gravi-
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FIG. 10 (color online). Recovery of �ðeÞ
20 from two successive

time integrations of rc 20
4 extracted from the 3D simulation with

initial perturbation � ¼ �0. After the subtraction of a quadratic
floor the waveform correctly oscillates around zero.
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FIG. 11 (color online). Selecting the best fitting function for
the 3D integrated-and-subtracted metric waveform. The dash-
dotted line refers to the curve obtained with the subtraction of a
cubic fit and the dashed line to the curve obtained with the
subtraction of a quadratic fit. They are very similar to each other
and to the 1D waveform (solid line). Contrary to the case of the
extracted metric waveform, no initial burst of radiation is present
in the 3D integrated-and-subtracted waveform.
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tational waves since _�ðeÞ
20 ð0Þ � 0. This is consistent with

the choice of initial data we made, that is, a perturbation
that appears instantaneously at t ¼ 0 without any radiative
field obtained from the solution of the momentum con-
straint (since we use time-symmetric initial perturbations,

for which _k20 ¼ _�20 ¼ 0).
We tested the robustness of the quadratic fit by adding a

cubic term Q3t
3 to PðtÞ and then fitting again. In Fig. 11,

we compare the 3D �ðeÞ
20 waveform corrected with a cubic

fit (dashed line) with the one corrected with a quadratic fit
(dashed-dotted line) and with the exact 1D metric wave-
form (solid line) output by the PERBACCO code. Note that
the 1D waveform has been suitably time shifted in order to
be visually in phase with the others at the beginning of the
simulation. The figure suggests that the effect of the cubic
correction is almost negligible (one only finds slight
changes in the very early part of the waveform). The values
of the fitting coefficients Qi are Q0 ¼ �1:0096� 10�5,
Q1 ¼ �6:3331� 10�9, Q2 ¼ �4:747� 10�8, Q3 ¼
6:7114� 10�14. The fact that Q3 is many orders of mag-
nitude smaller than the other coefficients is a good indica-
tion that the quadratic behavior is indeed the best choice
here. Consistently with the curvature waveform of Fig. 8,
we note the excellent agreement between 1D and 3D
(integrated) metric waveforms also in the initial part of
the waveform, i.e. up to t ’ 200 (corresponding to the
high-frequency oscillation in rc 20

4 ). Evidently, this is in
contrast with the Abrahams-Price metric waveform in the
top-left panel of Fig. 6 (we will elaborate more on this in
the next section).

Finally, we point out that the coefficientQ2ðrÞ shows, as
expected, a clear trend towards zero for increasing values
of the extraction radius.

D. Advantages and disadvantages of the Abrahams-
Price metric wave-extraction procedure

The analysis carried out so far suggests that both the
Regge-Wheeler-Zerilli metric-based and the Newman-
Penrose c 4-curvature-based wave-extraction techniques
can be employed to extract reliable gravitational wave-
forms from simulations of compact self-gravitating sys-
tems. For the particular case of an oscillating neutron star
as considered here, both extraction methods allow to obtain
waveforms that are in very good agreement with the linear
results. Despite this success, the two approaches are not
free from drawbacks. Let us first focus on rc ‘m

4 curvature
waveforms. The comparison between 1D and 3D rc 20

4

waveforms in Fig. 8 (as well as between integrated metric
waveforms in Fig. 11) shows good consistency between the
two (as long as the effects of numerical viscosity on the
evolution of the system remain negligible). As we men-
tioned above, we think that the most important information
enclosed in Fig. 8 is that the differences between the high-
frequency oscillations in the initial part of the waveforms

(where w- modes are probably present in the 3D case) are
small. This fact makes us confident that the violation of the
3D Hamiltonian constraint at t ¼ 0 (due to its approximate
solution7) as well as the violation of the conformally flat
condition are sufficiently small to avoid pathological be-
havior during evolution. A further confirmation of the
accuracy of the evolution and of the curvature extraction
is given by Fig. 12: The quantities rc 20

4 extracted at

various radii ( �r 2 f30; 60; 90; 110g) and plotted versus re-
tarded time are all superposed. This confirms the theoreti-
cal expectations of the peeling theorem [95] and indicates
(once more) that the quantity rc 20

4 is accurately computed.

In Fig. 12, r is obtained from �r via Eq. (59). The retarded
time is approximated with the standard r�, where the
constant mass M ¼ 1:4 has been used. In our setup, the
only subtle issue about rc ‘m

4 seems to be the computation

of the corresponding metric waveform via a double time
integration. Although we were able to obtain a rather
accurate metric waveform, the time-integration procedure
(including the evaluation of the integration constants) may
not be likewise straightforward in other physical settings.
By contrast, the Abrahams-Price wave-extraction proce-
dure directly produces the metric waveform and no time
integrations are needed. For this reason, it looks a priori
more appealing than c 4 extraction. Unfortunately, the
results that we have presented so far (notably our Fig. 6)
indicate that this computation can be very delicate and can
give unphysical results even in a very simple system like an

oscillating polytropic star: we have found that �ðeÞ
20 ex-
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FIG. 12 (color online). The quantities rc 20
4 extracted at differ-

ent radii are superposable (as expected from the ‘‘peeling’’
theorem). See text for further explanation.

7We recall that the 3D Hamiltonian constraint is solved at the
linearized level on an isotropic grid and then the resulting metric
perturbation is interpolated on the Cartesian grid. Typically, this
procedure leads to larger errors than if solving the constraints
directly on the Cartesian grid.
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tracted in this way is unreliable at early times, because of
the presence of high-frequency, highly damped oscilla-
tions, that are instead absent in both the 1D linear metric
waveforms and the 3D metric waveforms time integrated
from rc 20

4 . The unphysicalness of this initial ‘‘burst’’ of

radiation is evident from Fig. 13, where the extractions at

various radii �r 2 f30; 60; 90; 110g of the quantity �ðeÞ
20 are

compared: The amplitude grows with �r, instead of decreas-
ing progressively to approach a constant value (as it is the
case for the f-mode–dominated subsequent part of the
waveform).8 The weird behavior at early times of the

extracted �ðeÞ
20 indicates that this function does not satisfy

the Zerilli equation in vacuum. Consistently, the perturba-
tive Hamiltonian constraint in vacuum, Eq. (64) with
H20 ¼ 0, constructed from the 3D metric multipoles
ð�20; k20Þ, must be violated of some amount in correspon-
dence of the ‘‘junk’’.9 This reasoning suggests that the junk
may be the macroscopic manifestation of the inaccuracy in
the initial-data setup at t ¼ 0 (i.e. of solving the linearized
Hamiltonian constraint first and then interpolating), possi-
bly further amplified by the wave-extraction procedure.
This statement in itself looks confusing, because we have
learned, from the analysis of c 4, that the Einstein (and
matter) equations are accurately solved and that the errors
made around t ¼ 0 due to the violation of the Hamiltonian

constraint are relatively negligible. The relevant question is
then: Is it possible that small numerical errors, almost

negligible in rc 20
4 , may be amplified in �ðeÞ

20 at such a

big level to produce totally nonsensical results? The fol-
lowing discussion proposes some heuristic explanation.
To clarify the setup of our reasoning, let us first remind

the reader of the basic elements of the Abrahams-Price
metric wave-extraction procedure and, in particular, the
role of Eq. (4). At a certain evolution time t, the numerical
metric g��ðtÞ is known at a certain finite accuracy on the

Cartesian grid. One selects coordinate extraction spheres of

coordinate radius �r ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
on which the metric

is interpolated via a second-order Lagrangian interpola-
tion. Isotropic-coordinate systems ð �r; 
;
Þ naturally live
on these spheres and thus one defines spherical harmonics.
Then, the metric g�� is formally decomposed in a

Schwarzschild ‘‘background ‘‘ g0�� plus a perturbation

h��. The next step is to choose a coordinate system in

which the background metric is expressed. The standard
approach is to use Schwarzschild coordinates, although
this choice actually introduces systematic errors that may
relevantly affect the waveforms. This has been recently
demonstrated in Ref. [6]. Although we are aware of this
fact, we prefer to neglect this source of error, on which we
will further comment below. Choosing Schwarzschild co-
ordinates means that one needs to compute a
Schwarzschild radius r. This is given by the areal radius
of the extraction two-spheres. Proceeding further, h�� is

decomposed into seven (gauge-dependent) even-parity

ðH0; H1; H2; h
ðeÞ
0 ; hðeÞ1 ; G; KÞ and three (gauge-dependent)

odd-parity multipoles (that we do not consider here).
From combinations of the seven even-parity multipoles
and of their radial derivatives, see Eqs. (41) and (42) of
Ref. [19], one obtains the gauge-invariant functions k‘m
and �‘m, as well as the derivative @rk‘m. The last step is the
computation of the Zerilli-Moncrief function via Eq. (4).
Various sources of errors are present. In particular, we
mention the errors originating from: (i) the discretization
of g�� (and its derivatives), from the numerical solution of

Einstein’s equations; (ii) the interpolation from the
Cartesian grid to the isotropic grid; (iii) the computation
of the metric multipoles via numerical integration over
coordinate (gauge-dependent) two-spheres. Our aim is to
investigate how these inaccuracies on ð�‘m; k‘m; @rk‘mÞ
can show up in �ðeÞ

‘m at large extraction radii. In the limit

r 	 M, Eq. (4) reads

�ðeÞ
‘m ¼ 2r

�ð�� 2Þ
�
�‘m � r@rk‘m þ�

2
k‘m

�
; (75)

that is

�ðeÞ
‘m / rZ‘m; (76)

where Z‘m ¼ �‘m � r@rk‘m þ�=2k‘m and r is the areal
radius of the coordinate two-spheres. The Abrahams-Price
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FIG. 13. Metric waveforms computed via the Abrahams-Price
procedure and extracted at different radii, for a 3D evolution
with perturbation � ¼ �0. Note how the amplitude of the initial
burst grows linearly with �r.

8To assess this statement we have also performed simulations
with extraction radii up to �r ¼ 200.

9The Zerilli equation, and thus the Zerilli-Moncrief master
function, is obtained by combining together the perturbative
Einstein equations, one of which is precisely the perturbative
Hamiltonian constraint in vacuum. The Zerilli equation is sat-
isfied if and only if the perturbative Hamiltonian constraint is
satisfied too. See, for example, Ref. [16] for details.
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wave-extraction procedure introduces then errors both on r
and Z‘m. In particular, the errors on the (gauge-invariant)
multipoles ð�‘m; k‘m; @rk‘mÞ conspire in a global error on
Z‘m. In a numerical simulation one has Z‘m ¼ ZExact

‘m þ
�Z‘m and r ¼ rSchw þ �r. Here ZExact

‘m is computed from

ð�Exact
‘m ; kExact‘m Þ, that are solutions of the perturbation equa-

tion on a Schwarzschild background, and rSchw is the radial
Schwarzschild coordinates; �Z‘m encompasses all possible
errors due to the multipolar decomposition procedure, and
�r various inaccuracies related to the determination of the
areal radius (e.g., those related to gauge effects). As a
result, for the ‘‘extracted’’ Zerilli-Moncrief function we
can write

�ðeÞ
‘m � �Exact

‘m þ rSchw�Z‘m þ �rZExact
‘m : (77)

This equation shows that, if �Z‘m is not zero at a certain
time (and does not decrease in time like 1=rSchw) there is a

contribution to the global error on �ðeÞ
‘m that grows linearly

with the extraction radius. This qualitative picture is con-
sistent with what we observe in the 3D waveforms: A small
error on �Z20 introduced at t ¼ 0, because of the approxi-
mate solution of the constraints (as indicated by the analy-
sis of rc 20

4 curvature waveforms), can show up as a burst of

radiation whose amplitude increases linearly with the ob-
server location. Note that what really counts here is the
error budget at the level of ð�20; k20; @rk20Þ and the related
violation of the perturbative Hamiltonian constraint, Eq.
(64). Indeed, it might occur that, even if the three-metric
�ij is very accurate and the constraints are well satisfied at

this level, the extraction procedures add other errors (for
example, due to the multipolar decomposition, computa-
tion of derivatives, etc.) that may be eventually dominating
in �Z20. This observation may partially justify why rc 20

4 is

well behaved, while�ðeÞ
20 is not. Finally, we note that in our

evolution �r is typically very small, so that we have
rSchw � r with good accuracy.

Because of the complexity of the 3D wave-extraction
algorithm, we were able neither to push forward our level
of understanding, nor to precisely diagnose the cause of the
aforementioned errors.10 This is now beyond the scope of
the present work and will deserve more attention in the
future. By contrast, we can exploit the simpler computa-
tional framework offered by the 1D PERBACCO code to
‘‘tune’’ the error �Z‘m in order to produce some initial
‘‘spurious’’ burst of radiation, and then possibly observe
that its amplitude grows linearly with �r. In the 1D code �r
is zero by construction, so that all errors are concentrated
on �Z‘m. The constrained scheme adopted in the perturba-
tive code (which is second-order convergent) allows to
accurately compute the multipoles ð�‘m; k‘mÞ at every

time step, and the Hamiltonian constraint is satisfied by
construction. Then, @rk‘m is obtained via direct numerical
differentiation of k‘m. Consequently, the error �Zlm de-
pends on the resolution �r as well as on the order of the
finite-differencing representation of @rk‘m.
In the following, we shall analyze separately the effect

of resolution and of the approximation scheme adopted for
the numerical derivatives. First, we approximate @rk‘m
with its standard first-order finite-differencing representa-
tion, i.e. @rk‘m � ðk‘mjþ1 � k‘mj Þ=�r and we study the be-

havior of the extracted �ðeÞ
‘m, computed using Eq. (4),

versus extraction radius and resolution. Second, we use a
fixed �r, but we vary the accuracy of the finite-
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FIG. 14 (color online). Metric waveforms from linear 1D
evolutions. Top panel: low resolution simulation. A burst of
junk radiation at early times is present and its amplitude grows
linearly with the extraction radius. Bottom panel: by increasing
the resolution, the initial junk disappears.

10For example, we mention, in passing, that we have also tried
fourth-order Lagrangian interpolation, without any visible im-
provement on the waveform.
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differencing representation of @rk‘m, contrasting first-
order, second-order, and fourth-order stencils. The results
of these two analyses, for ‘ ¼ 2, m ¼ 0, are shown in
Figs. 14 and 15, respectively. In the top panel of Fig. 14,
@rk20 is approximated at first-order, with a resolution of 10
points inside the star (�r� 0:9). This resolution approxi-
mately corresponds to the resolution of the coarsest refine-
ment level used in the 3D code. The extracted waveform

�ðeÞ
20 is shown at different observers, �r 2 f30; 60; 90; 110g:

An initial burst of junk radiation develops at early times
and its amplitude grows linearly with the extraction radius
(and it keeps growing for �r > 110). This behavior looks
identical to that found in the 3D simulations. In the bottom
panel of Fig. 14, we focus on �r ¼ 110 only, but vary the
number of radial points Nr inside the star, namely, Nr 2
f10; 20; 30; 40; 50; 100g. The figure shows that the initial
junk is not present at higher resolutions (Nr � 20) and that
the waveform converges to the exact profile.11 But varying
the resolution only shifts the occurrence of the burst at
farther radii: Observers at �r 	 110 still see this burst
appear and grow linearly with �r.

A complementary analysis is shown in Fig. 15, where we
fix the resolution at Nr ¼ 10 (for �r ¼ 110), but we change
the accuracy of the numerical derivative @rk20. As ex-
pected, the initial junk disappears when the accuracy of
the numerical differential operator is increased: A second-
order operator produces only a small amplitude bump, that
is not present when the fourth-order operator is employed.

At this stage, the conclusion is clear: The convergence of
the Zerilli-Moncrief function computed from the separate
knowledge of the multipoles k‘m and �‘m is a delicate issue
that must be analyzed with care according to the physical
problem under consideration. The violation of the pertur-
bative Hamiltonian constraint and, in particular, the accu-
racy of the numerical derivative @rk‘m (note that we refer
to the induced violation at the level of the wave extraction
and not at that of the solution of the perturbation equations)
seems to play an important role in the convergence prop-
erties of the waveforms. The main conclusions of the

aforementioned numerical tests are: (i) The errors in �ðeÞ
20

seem to behave like suggested in Eq. (77); (ii) The phe-
nomenon occurs in the same way in both the 1D and 3D
code, although the fine details of the oscillation are
different.

Focusing on the 1D PERBACCO code, an accurate �ðeÞ
‘m is

obtained using sufficiently high resolution (Nr ¼ 300) as
well as a fourth-order representation for @rk‘m. These
prescriptions are accurate enough for the problem ad-
dressed in this work, although they may not be sufficient
for other stellar models or other initial perturbations. For
example, using the PERBACCO code, with the same initial-
data setup discussed here, in order to study the time evo-
lution of perturbations of stars with realistic EOS proved
that higher resolutions are typically needed to produce
convergent waveforms of comparable accuracy [10].
Likewise, for a polytropic EOS and initial data given by

a Gaussian pulse in�ðeÞ
20 , the same Ref. [10] showed that at

least fourth-order accuracy in @rk20 is needed in order to

have a consistent extraction of �ðeÞ
20 already at t ¼ 0 (see

Appendix A of Ref. [10]). This suggests that the presence
of linearly growing junk radiation in the computation of

�ðeÞ
‘m from the multipoles ðk‘m; �‘mÞ can appear ubiqui-

tously in the time evolutions of the perturbation equations

with the PERBACCO code. The presence of this junk in�ðeÞ
‘m

is the macroscopic manifestation of the violation of the
perturbative Hamiltonian constraint due to errors (notably,
in the discretization of the derivatives) introduced in the
wave-extraction procedure. These (typically small) nu-
merical errors are eventually magnified by the presence
of an overall r factor in Eq. (75). Note that this phenome-
non occurs even if the computation of the multipoles
ðk‘m; �‘mÞ is very accurate and the Hamiltonian constraint
is satisfied by construction in the evolution algorithm. The
analysis that we have presented here suggests that either
increasing the resolution or, more reasonably, implement-
ing higher-order differential operators in the perturbative
‘‘extraction’’ procedure are viable proposals to compute
convergent waveforms.
In the 3D case the situation is more involved and we

have not succeeded in making statements as solid as in the
1D case. We can only rely on analogies: (i) The appearance
of the junk occurs in a way similar to the 1D case when the
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FIG. 15. The amount of junk radiation present in the wave-
forms extracted in the 1D code is smaller when higher-order
differential operators are used in Eq. (4) to compute the Zerilli-
Moncrief function.

11As discussed in Ref. [11] we cross-checked things also by
matching the Zerilli-Moncrief function at the surface and evolv-
ing it with the Zerilli equation outwards. We found good agree-
ment between the ‘‘matched’’ and the ‘‘computed’’ waveforms.
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accuracy of the 1D Zerilli function is low; (ii) The two time
evolutions look qualitatively very similar. Yet, it is not
technically possible to use in the 3D code resolutions
equivalent to those of the 1D code. By analogy with our
perturbative results, we can only conclude that it is not
unreasonable that the junk in the 3D waveforms is the
macroscopic manifestation of inaccuracies hidden in the
implementation of the Abrahams-Price wave-extraction
procedure. The analysis presented here points out that
such metric wave-extraction procedures require typically
more subtle care than expected and these subtleties must be
kept in mind in developing more modern wave-extraction
routines.

The PSD of �ðeÞ
20 in both the 1D case (solid line) and 3D

case (dashed line) is displayed in Fig. 16. The perturbation
is � ¼ �0 and the extraction radius is �r ¼ 110. The spec-
trum of the 3D Zerilli waveform is consistent with what we
observed in rc 20

4 below 10 kHz, but it looks different at

higher frequencies (compare it with that of the ‘‘inte-

grated’’ �ðeÞ
20 in Fig. 9): Here the PSD shows broad peaks

attributable to the initial part of the waveform. Recovering
the reasoning started in the previous section about the
presence of the w modes, we can observe that the frequen-
cies contained in the junk are compatible with the w-mode
frequencies �w1

and �w2
(indicated by dashed vertical lines

in Fig. 16). However, since such frequencies belong to an
unphysical part of the waveform, we prefer to consider
them unphysical as well.

We conclude by mentioning, in passing, that the initial
junk radiation is essentially not related to the systematic

error introduced by fixing Schwarzschild coordinates for
the background metric g0��. This fact is suggested by

Fig. 17, where we contrast the standard Zerilli-Moncrief

function �ðeÞ
20 (which assumes Schwarzschild coordinates

for the background) with the generalized�STMP
20 one based

on the Sarbach-Tiglio [56] and Martel-Poisson [55] per-
turbation formalism, which does not require any gauge-
fixing condition for the background submanifold M2. This
particular simulation was performed over a grid with three
refinement levels and cubic boxes with limits ½�120; 120�,
½�24; 24�, and ½�12; 12�. The resolution of each box is
coarser than in the previous simulations, namely, �xyz ¼
1:875, 0.9375, and 0.46875, respectively. Evidently, with
this resolution the waveforms are less accurate, but we do
not mind at this stage, since we are interested in an intrinsic
comparison between extraction procedures at fixed resolu-
tion. The function �STMP

‘m that we use is given by the

straightforward12 implementation of Eq. (4.23) of
Ref. [55]. Note that this expression is equivalent to the
combination of Eqs. (20), (25), (26), and (27) of Ref. [56].

The top panel of Fig. 17 displays �ðeÞ
20 (lines) and �STMP

20

(point markers) for observers at �r 2 f30; 60; 90; 110g. It
highlights that the differences in the early-time part of
the waveforms are very small. By contrast, the bottom
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FIG. 16 (color online). PSD of the 3D metric waveforms
(dashed line) extracted á la Abrahams-Price (at �r ¼ 110) and
the corresponding 1D waveform (solid line) for a simulation
with perturbation � ¼ �0. The Fourier spectrum of the junk
radiation is compatible with some w-mode frequencies.
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FIG. 17 (color online). The top panel compares the standard

Zerilli-Moncrief �ðeÞ
20 (depicted with lines) and the generalized

�STMP
20 (depicted with point markers) for the first part of the

gravitational-wave signal in a simulation with perturbation � ¼
�1. The waves extracted at four radii �r 2 f30; 60; 90; 110g are
shown. The bottom panel shows that the present junk radiation
negligibly depends on the choice of the coordinates of the
background metric.

12With this we mean that we do not take into account any time
dependence of the background metric due to coordinate effects.
This possibility can be anyway easily taken into account by the
formalism. We postpone to a future work the related discussion
[71].
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panel of the figure, showing the difference �ðeÞ
20 ��STMP

20 ,

indicates that removing (part of) the systematic errors
generates some improvement, but this is too small to be
of any relevance. This analysis suggests that the inaccura-
cies in the early-time part of the waveform are essentially
not related to the specific computation of the (generalized)
Zerilli function, but rather connected to the underlying
multipolar extraction infrastructure (grid setup, approxi-
mate solution of the constraints, interpolation procedures,
computation of the derivatives of the metric, etc.), on
which we have relatively little control. A comprehensive
analysis of the problems related to the generalized extrac-
tion procedure will be presented elsewhere [71]. We re-
mark, however, that systematic effects that are very small
in our physical system, as emphasized by our Fig. 17, may
be not small in other situations, as found in Ref. [6]. For
this reason, we emphasize that the formalism of
Refs. [55,56] is the actual correct metric formalism to
extract waveforms out of a numerical space-time that can
be considered a small deformation of the Schwarzschild
one. As such, it must be taken into account properly in
numerical codes.

E. Generalized quadrupole-type formulas

Finally, we study the performances of the various gen-
eralized quadrupole-type formulas that we have introduced
in Sec. II C. The results of our analysis are shown in
Fig. 18. The left panel of the figure displays rh20 wave-
forms obtained via the SQF1, SQF2, SQF3, and SQF4 [see
Eqs. (52)–(55)] for perturbation � ¼ �0. The right panel
complements this information by showing (for several
perturbation magnitudes �) the relative difference in am-

plitude between the various SQFs and the corresponding

gauge-invariant Zerilli-Moncrief function�ðeÞ
20 . This analy-

sis highlights that the quadrupole formula gives an excel-
lent approximation to the phasing of the actual signals. By
contrast, there is a systematic over or under estimation of
the amplitude depending on the choice of SQF.
A related observation is that the discrepancy between the

quadrupole formula and the gauge-invariant waveform is
not due to the fact that waveforms are extracted at a finite
radius. Our results are consistent with those of Shibata and
Sekiguchi [5], who performed an analysis similar to ours
(and also considered uniformly rotating stars), but without
the possibility of contrasting their results with linear evo-
lutions. In this respect, the main conclusion of Ref. [5] was
that, although the amplitude of the waveform is systemati-
cally underestimated by the quadrupole formula (47), it is
however sufficiently accurate to capture both the frequency
and the phasing (that are the most important quantities for
detection) of the waveforms in a proper way. These results
are fully confirmed here using totally different codes.

F. Nonlinearities

In this section, we comment on the onset of nonlinear
effects for high values of the initial perturbation amplitude
�, showing, for the first time using full GR simulations,
evidences for mode couplings and for the appearance of
nonlinear harmonics.
In the linear regime (� ¼ �0) the star is oscillating at,

essentially, the frequency of the fundamental quadrupolar
proper fluid (quasinormal) mode of pulsation. The princi-
pal linear modes excited are thus the ð‘;mÞ ¼ ð2; 0Þ one
and its overtones. For growing values of the initial pertur-
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bation, we observe that in 3D simulations, differently from

the linear ones, the amplitude of the multipole �ðeÞ
20 does

not increase proportionally to � but, instead, is progres-
sively reduced (see Fig. 7). This fact could be interpreted as
the results of a typical phenomenon in nonlinear systems in
which linear modes couple, generating nonlinear harmon-
ics. Naively, one could think that the ‘‘energy’’ associated
to the ‘ ¼ 2 mode is redistributed to the others while the
system departs from the linear regime.13 As we saw in
Sec. IVA, radial modes of oscillation are already present in
the evolution of the equilibriummodels. As a consequence,
we expect to reveal couplings between nonradial and radial
modes (F and its overtones H1; H2; . . . ) as a result of the
onset of some nonlinear effect. In addition, we detect

signals in multipoles of �ðeÞ
‘m with ‘ ¼ 4, 6 and m ¼ 0, 4,

that are even-parity axisymmetric modes and nonaxisym-
metric modes triggered by the Cartesian grid. The ampli-
tudes are very weak compared to those of the f mode for
any value of �, typically 2 orders of magnitude smaller for
‘ ¼ 4,m ¼ 0 and 3 orders of magnitude for the others, but
in principle they are present and must be considered. As far
as the odd-parity modes with m ¼ 1, 2, 3, and ‘ ¼ 3, 5 are
concerned, they are all forbidden by the symmetry imposed
on the computational domain (octant).

As a strategy to study nonlinearities, we consider the
rest-mass–density projections:

h�i‘mðtÞ �
Z

d3x�ðt;xÞY�
‘m (78)

and we apply to them the Fourier analysis. Like all the
global variables, � contains all the frequencies of the
system. Its projections in Eq. (78) allow to separate the
contribution of each mode ð‘;mÞ. Figure 19 shows the
power spectrum of h�i20 for the four different values of
�. The signal for � ¼ �0 contains the 3 frequencies of the
linear modes f, p1, and p2. The same happens for � ¼ �1
and � ¼ �2: The amplitudes of the linear modes grow
linearly with � and some new frequencies are present
with small power for � ¼ �2. In the case of � ¼ �3, which
corresponds to a pressure perturbation of 10% of the
central TOV value, the spectra is rich of nonlinear harmon-
ics. Most of them can be recognized as due to weak
couplings, i.e. sums and differences of linear mode fre-
quencies �1 
 �2, also called combination tones. In par-
ticular, we identify the nonlinear harmonics of the f mode
and its overtone f
 p1 and many frequencies f
 F, f

H1, and p1 
H1 due to the radial and nonradial mode
couplings. Such couplings have been previously and ex-
tensively studied in Refs. [86,89,90] using the Cowling

approximation as well as the conformally flat approxima-
tion to GR. In addition, the couplings between radial and
nonradial modes have been studied in detail in Ref. [96] by
means of a second-order perturbative approach. Note how
our fully general-relativistic results are consistent with all
these studies.
The projection h�i00 describes essentially the radial

mode of pulsations; analyzing this quantity instead of
h�i20 gives analogous results in term of couplings. From
the analysis of higher multipoles we compute the frequen-
cies of the linear modes, finding � ¼ 2404 Hz for ‘ ¼ 4
and � ¼ 2988 Hz for ‘ ¼ 6. No couplings can be clearly
recognized in these data. We stress that frequencies of the
nonaxisymmetric modes (m ¼ 4) are the same as the axi-
symmetric ones because the star is nonrotating and modes
are degenerate in m.

V. CONCLUSIONS

We have compared various gravitational-wave–extrac-
tion methods that are nowadays very popular in numerical-
relativity simulations: (i) the Abrahams-Price [65] tech-
nique based on the gauge-invariant Regge-Wheeler-Zerilli-
Moncrief perturbation theory of a Schwarzschild space-
time; (ii) the extraction method based on Weyl curvature
scalars, notably the c 4 function; (iii) some (variations of)
quadrupole-type formulas. We have applied these methods
to extract gravitational radiation from 3D numerical-
relativity simulations of the very controlled system repre-
sented by a neutron star (with polytropic EOS), that is
oscillating nonradially due to an initial pressure perturba-
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FIG. 19 (color online). PSD of the quantity h�ðtÞi20 [see Eq.
(78)] for different values of the initial perturbation amplitude �.
The spectra of the (‘ ¼ 2, m ¼ 0) mode obtained in simulations
with larger perturbations contain more frequencies, which origi-
nate from the nonlinear couplings with the overtones and with
the radial modes.

13We would like to stress that this picture is not so simple and
rigorous, in particular, there is no proof of the completeness of
the star quasinormal modes (even in the nonrotating case) and
the definition of an energy per mode is definitely not straightfor-
ward. See the discussion in Ref. [93].
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tion. The simulations have been performed via the CACTUS-

CARPET-CCATIE-WHISKY general-relativistic nonlinear

code. This code evolves the full set of Einstein equations
in full generality in the three spatial dimensions. The
accuracy of the waveforms extracted from the simulations,
using the three methods recalled above, has been assessed
(for small perturbations) via a comparison with waveforms
(assumed to be exact) computed by means of the
PERBACCO perturbative code. This code is designed to

evolve, in the time domain, the Einstein equations linear-
ized around a TOV background. It is 1þ 1-dimensional
(i.e. one temporal and one spatial dimension) and adopts a
constrained evolution scheme. The latter choice allows for
the computation of very long and very accurate time series
and similarly accurate waveforms.

The initial pressure perturbation �p is given as an
‘‘approximate’’ eigenfunction of the star, whose maximum
is a fraction of the central TOV pressure pc. We focused
only on ‘ ¼ 2, m ¼ 0, quadrupolar deformations, but we
analyzed four values of the perturbation in order to cover
the transition from the linear to the nonlinear oscillatory
regimes. We have first presented results of simulations
done using only the 1D PERBACCO code to assess the
accuracy of our exact waveforms. We have performed
very long (about 1 s) and accurate simulations to extract
both mode frequencies and damping times. We have ana-
lyzed finite-radius effects, finding that observers should be
placed at extraction radius r > 200M in order to have
amplitude errors below 1.6%.

In doing 3D simulations in the perturbative regime,
(10�3 & maxð�p=pcÞ & 10�2), we have found that both
metric and curvature wave-extraction techniques generate
waveforms that are consistent, both in amplitude and phas-
ing, with the perturbative results. Each method, however,
was found to have drawbacks. On one hand, the Zerilli-
Moncrief function presents an unphysical burst in the early
part of the waveform; on the other hand, the c 4 scalar
requires a polynomial correction to obtain the correspond-
ing metric multipole. Our conclusion is that, in our setup,
one needs both extraction methods to end up with accurate
waveforms.

For larger values of the initial perturbation amplitude,
nonlinear effects in the 3D general-relativistic simulations
are clearly present. The effective relative amplitude of the
main modes of the extracted gravitational wave is smaller
for larger amplitudes of the initial perturbation, because of
mode couplings. The Fourier spectra of the rest-mass–
density projections [see Eq. (78)] highlight that couplings
between radial and quadrupolar fluid modes are present.
Our study represents the first confirmation, in fully
general-relativistic simulations, of the results of
Ref. [96], obtained via a perturbative approach.

In addition, we have shown that the (non-gauge-
invariant) generalizations of the standard Newtonian quad-
rupole formula that we have considered can be useful tools
to obtain accurate estimates of the frequency of oscillation.

By contrast, amplitudes are always significantly under/
overestimated, consistently with precedent observations
of Refs. [5,85].
Finally, we discussed in detail some systematic errors

that occur in the early part of the waveform extracted á la
Abrahams-Price. These errors show up, in the early part of
the Zerilli-Moncrief function, in the form of a burst of junk
radiation whose amplitude grows linearly with the extrac-
tion radius. We have proposed some heuristic explanation
of this fact and reproduced a similar behavior in low-
accuracy perturbative simulations. Globally, our conclu-
sion is that the extraction of the Zerilli-Moncrief function
from a numerical-relativity simulation can be a delicate
issue: Small errors can conspire to give totally nonsensical
results. Typically, these errors will show up as parts of the
waveform whose amplitude grows with the observer’s
radius. We have also implemented the generalized wave-
extraction approach based on the formalism of
Refs. [6,55,56,70], without any evident benefit. Note, how-
ever, that these kind of problems encountered with the
Abrahams-Price wave-extraction procedure (as well as
with its generalized version) seem to appear specifically
in the presence of matter. In binary black-hole coalescence
simulations curvature and metric waveforms seem to be
fully consistent [32]. This last remark leads us to suggest
that the Abrahams-Price wave-extraction technique, a
‘‘standardized’’ and very basic procedure and infrastruc-
ture that has been developed long ago (and tested at the
time) for specific applications to black-hole physics,
should be rethought and reanalyzed when the Einstein
equations are coupled to matter. For this reason, in the
presence of matter, since systematic errors could be hard to
detect and are present already in the simplest cases, we
strongly encourage the community to make use of both
wave-extraction techniques (curvature as well as metric
perturbations) and to be always prepared to expect inac-
curacies in the metric waveforms. In addition, concerning
the many advantages related to extracting the metric wave-
forms directly from the space-time, we believe that it is
also urgent and important for the community to have
reliable implementations of the Abrahams-Price technique
based on the Sarbach-Tiglio-Martel-Poisson [6,55,56,70]
formalism.
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[39] J.M. Martı́, J.M. Ibáñez, and J. A. Miralles, Phys. Rev. D
43, 3794 (1991).

[40] F. Banyuls, J. A. Font, J.M. Ibáñez, J.M. Martı́, and J. A.
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