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1. Introduction

We consider linear and nonlinear wave equations with a potential term

�u + λV u = F (u), � = ∂2
t − ∆, (1.1)
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in three spatial dimensions for spherically symmetric initial data

u(0, r) = f(r), ∂tu(0, r) = g(r), r := |x| (1.2)

with f, g of compact support. The spherical symmetry of the initial data is preserved
in evolution so u = u(t, r). We are interested in the asymptotic behavior of u(t, r)
for late times t � r.

Our approach is based on the perturbative calculation which has been developed
by the last three authors in concrete physical applications [2–4] and recently put on
the rigorous ground by the first author in [7] (below referred to as Part I). In Part I,
the convergence of the perturbation scheme was proved in a weighted space-time
L∞-norm which provided pointwise estimates on the solution u(t, r) in the whole
spacetime. Moreover, upper bounds on the errors (remainders of the perturbation
series) for every perturbation order were obtained. Here, we are going to combine the
qualitative global weighted-L∞ estimates with the quantitative perturbation scheme
in order to obtain precise late-time asymptotics of solutions. To this end, we first
solve the linear perturbation equations analytically up to the second (nontrivial)
order (in spherical symmetry this can be done explicitly) and show that our decay
estimate is optimal. Then, we prove that the sum of all higher-order perturbations
does not modify the dominant asymptotics, hence the second order perturbation
gives the precise approximation of the tail of the solution u. Along the way, we
illustrate our analytical results with numerical solutions of the initial value problem
(1.1)–(1.2).

The basis of our analysis is given by the theorem of Strauss and Tsutaya [6],
recently generalized by one of us [9], which states that

|u(t, x)| ≤ C

(1 + t + |x|)(1 + |t − |x||)q−1
∀(t, x) ∈ R

1+3
+ (1.3)

with q := min(m − 1, k, p − 1) provided that the potential V and the initial data
f, g satisfy pointwise bounds

|V (x)| ≤ V0

(1 + |x|)k
, k > 2, (1.4)

|f(x)| ≤ f0

(1 + |x|)m−1
, |∇f(x)| ≤ f1

(1 + |x|)m
, |g(x)| ≤ g0

(1 + |x|)m
,

m > 3,

(1.5)

with small V0, f0, f1, g0 and the analytic nonlinearity satisfying for p > 1 +
√

2

|F (u)| ≤ F1|u|p, |F (u) − F (v)| ≤ F2|u − v|max(|u|, |v|)p−1 for |u|, |v| < 1.

(1.6)

This is true for classical solutions [6], i.e. for (f, g) ∈ C3 × C2, V ∈ C2 and F ∈ C2,
leading to u ∈ C2 and remains true also for weak solutions [9].

Here, for simplicity, we consider initial data of compact support so the decay
rate q is determined solely by the spatial decay rate of the potential k and the
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leading power of the nonlinearity p. Generalization of these results to the initial
data with the fall-off (1.5) is straightforward.

The paper is organized as follows. We first study the purely linear situation with
the potential term only. Then, we repeat the calculations for the purely nonlinear
case without the potential. Finally, we combine both results in the general case (1.1).

1.1. Notation

We use the symbol 〈x〉 := 1 + |x| to denote the spatial weighted-L∞ norm

‖f‖L∞
m

:= ‖〈r〉mf(r)‖L∞(R+). (1.7)

We also define a space-time weighted-L∞ norm

‖u‖L∞
s,q

:= ‖〈t + r〉s〈t − r〉q−su(t, r)‖L∞(R+×R+). (1.8)

We will frequently use the fact that the finiteness of ‖u‖L∞
1,q

guarantees the decay
of u like 1/t on the lightcone t ∼ r and like 1/tq for fixed r as well as 1/rq for fixed
t. Note that functions with compact support in R+ belong to all spaces L∞

m with
any m > 0, what we will denote by L∞

∞. Analogously L∞
1,∞ will stand for functions

that belong to L∞
1,q for any q.

We introduce the following notation for solutions of the wave equations. Let IV

be a linear map from the space of initial data to the space of solutions of the wave
equation (1.1)–(1.2) with F (u) = 0, so that u = IV (f, g). For the wave equation
with a source term and zero initial data

�u + V u = F, u(0, r) = 0, ∂tu(0, r) = 0, (1.9)

we denote the solution by u = LV (F ), where LV is a linear map from the space of
source functions to the space of solutions to the above problem. Note that, due to
linearity, the solution u of a wave equation with source F and nonzero initial data
f, g is the sum of these two contributions

u = LV (F ) + IV (f, g). (1.10)

Observe that if we put the potential term on the right-hand side, we obtain

�u = −V u + F, (1.11)

which, treated as a wave equation without potential (on the left-hand side), is
formally solved by

u = −L0(V u) + L0(F ) + I0(f, g). (1.12)

Here the solution u appears on both sides what seems to make the formula useless,
but it will allow us to formulate various iteration schemes, e.g.

un+1 = −L0(V un) + L0(F (un)) + I0(f, g) (1.13)

for which we will study convergence in suitable L∞
1,q norms.
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Finally, we define constants which arise from estimates proved in [9] and
improved in [8]

Cm := max
(

9
2(m − 2)

, 5
)

, (1.14)

Cp,q := 2 +
8

p − 1
+

2
q − 1

. (1.15)

The latter will be referred to as a bound on the allowed strength of the potential. We
wish to emphasize that this bound, although not optimal, is not arbitrarily small
but finite, which is crucial in applications (like, for instance, the Regge–Wheeler
equation describing waves propagating on Schwarzschild geometry).

We recall some standard definitions of asymptotic calculus. The notation f(t) =
O (g(t)) for t → ∞ means that there exist constants C, T > 0 such that

|f(t)| ≤ C|g(t)| (1.16)

for all t > T . The notation f(t) = o(h(t)) for t → ∞ means that

lim
t→∞

f(t)
h(t)

= 0. (1.17)

We will also use the symbol f(t) ∼= g(t) for an asymptotic approximation, as a
shorthand to f(t) = g(t)[1+ o(1)] as t → ∞. In case when we write f(t) ∼= ct−q and
the constant c may become zero, this notation should be read as f(t) = ct−q+o(t−q).

2. Linear Case with Potential

First, we consider the linear wave equation

�u + λV (r)u = 0 (2.1)

with initial data (1.2), where f(r) and g(r) are supported on the interval r ∈ [0, R].
We assume that V (r) ∼= V0/rk for r � 1 and λ > 0 is a small parameter, bounded
by some finite constant CV > 0 (which will be defined later). Moreover, we assume
that the potential V and the initial data f,∇f, g are (at least) continuous and
satisfy

‖V ‖L∞
k

= 1 (2.2)

and

f0 := ‖f‖L∞
k

, f1 := ‖∇f‖L∞
k+1

, g0 := ‖g‖L∞
k+1

(2.3)

with f0, f1, g0 < ∞ for some k > 2.

2.1. Perturbation series

We define the perturbation series

u =
∞∑

n=0

λnvn. (2.4)
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Inserting (2.4) into Eq. (2.1), we get the following perturbation scheme

�v0 = 0, (v0, v̇0)(0) = (f, g) → v0 = I0(f, g), (2.5)

�vn+1 = −V vn, (vn+1, v̇n+1)(0) = (0, 0) → vn+1 = −L0(V vn). (2.6)

Due to linearity of (2.1), it turns out that the partial sums

un :=
n∑

k=0

λkvk, n ≥ 0 (2.7)

satisfy the following iteration scheme

u−1 := 0 (2.8)

un := I0(f, g) − λL0(V un−1), n ≥ 0. (2.9)

Then, from Part I, we have the following

Theorem 2.1. For f, g and V as above and any k > 2, the sequence un converges
(in norm) in L∞

1,k provided that λ < C−1
k,k. The limit u := limn→∞ un satisfies

|u(t, r)| ≤ C

〈t + r〉〈t − r〉k−1
, ∀(t, r) (2.10)

where a positive constant C depends only on f0, f1, g0, λ and k.

From the proof of Theorem 2.1, it follows that

‖vn‖L∞
1,k

=
‖un − un−1‖L∞

1,k

λn
≤ (Ck,k)n‖I0(f, g)‖L∞

1,k
, (2.11)

hence vn ∈ L∞
1,k for all n ≥ 0. At the lowest order v0 = u0, we have an arbitrarily

fast decay estimate, v0 ∈ L∞
1,∞, as follows from Huygens’ principle. All higher-

order terms vn(n = 1, 2, . . .) contain contributions from the backscattering off the
potential and are only in L∞

1,k. Since u ∈ L∞
1,k, we expect that all un starting from

u1 ∈ L∞
1,k predict qualitatively correct asymptotic behavior of u.

2.2. Optimal decay estimate

Theorem 2.2. Under the above assumptions, for t � r + R, we have

v1(t, r) ∼= c1t
−k, (2.12)

where the constant c1 is given by (2.22).

Proof. For v0 satisfying (2.5) from Lemma A.1, we have

u0(t, r) = v0(t, r) =
h(t − r) − h(t + r)

r
, (2.13)
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where h is given by (A.3). To solve Eq. (2.6), we use the Duhamel representation
for the solution of the inhomogeneous equation �v = N(t, r) with zero initial data

v(t, r) =
1
2r

∫ t

0

dτ

∫ t+r−τ

|t−r−τ |
ρN(τ, ρ)dρ. (2.14)

This formula can be easily obtained by integrating out the angular variables in the
standard formula φ = Gret ∗ N where Gret(t, x) = (2π)−1Θ(t)δ(t2 − |x|2) is the
retarded Green’s function of the wave operator in 3+1 dimensions. It is convenient
to express (2.14) in terms of null coordinates ξ = τ + ρ and η = τ − ρ

v(t, r) =
1
4r

∫ t+r

|t−r|
dξ

∫ t−r

−ξ

dη
(ξ − η)

2
Ñ(ξ, η), (2.15)

where Ñ(ξ, η) := N
(

ξ+η
2 , ξ−η

2

)
= N(τ, ρ). Using this representation, we get

from (2.6)

v1(t, r) = − 1
4r

∫ t+r

|t−r|
dξ

∫ t−r

−ξ

dη
(ξ − η)

2
V (ρ(ξ, η))ṽ0(ξ, η). (2.16)

Since the initial data f, g are supported on [0, R], the function h(x) is supported on
[−R, R]. Then, for t > r + R, Eq. (2.16) simplifies to

v1(t, r) = − 1
4r

∫ +R

−R

dη h(η)
∫ t+r

t−r

dξ V (ρ(ξ, η)). (2.17)

Next, we write the potential in the form V (r) = r−k[V0 + w(r)] with w(r) → 0 as
r → ∞ at any rate (i.e. w(r) = o(1) for r � 1). Then

v1(t, r) = − 1
4r

∫ +R

−R

dη h(η)
∫ t+r

t−r

dξ
2k

(ξ − η)k
[V0 + w(ξ − η)]

≡ v̂1(t, r) + ṽ1(t, r), (2.18)

where

v̂1(t, r) = −2k−2

r
V0

∫ +R

−R

dη h(η)
∫ t+r

t−r

dξ (ξ − η)−k, (2.19)

ṽ1(t, r) = −2k−2

r

∫ +R

−R

dη h(η)
∫ t+r

t−r

dξ (ξ − η)−kw(ξ − η). (2.20)

Using Lemma A.2 for t � r + R and k > 2, we get

v̂1(t, r) =
c1

tk
+ O

(
r + R

tk+1

)
, (2.21)

with

c1 = −2k−1V0

∫ +R

−R

h(η) dη. (2.22)
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Using Lemma A.2 again, we get an estimate for ṽ1

|ṽ1(t, r)| ≤ 2k−2

r

∫ +R

−R

dη |h(η)| sup
t−r≤ζ≤t+r

|w(ζ − η)|
∫ t+r

t−r

dξ (ξ − η)−k

≤ sup
t−r−R≤ζ≤t+r+R

|w(ζ)|2
k−2

r

∫ +R

−R

dη |h(η)|
∫ t+r

t−r

dξ (ξ − η)−k

= sup
t−r−R≤ζ≤t+r+R

|w(ζ)|
[
c̃1

tk
+ O

(
r + R

tk+1

)]
, (2.23)

where

c̃1 = −2k−1

∫ +R

−R

|h(η)| dη. (2.24)

Note that the prefactor in (2.23) vanishes asymptotically for large t

lim
t→∞ sup

t−r−R≤ζ≤t+r+R
|w(ζ)| = 0, (2.25)

hence, for t � r + R, we have

v1(t, r) =
c1

tk
+ O

(
r + R

tk+1

)
+ o(1) ·

[
c̃1

tk
+ O

(
r + R

tk+1

)]
=

c1

tk
+ o

(
1
tk

)
. (2.26)

If the potential behaves like V (r) = V0r
−k + W (r) with W (r) = O (

r−k−1
)

for
r � 1, it follows from (2.21) that

v1(t, r) =
c1

tk
+ O

(
r + R

tk+1

)
+ O

(
c̃1

tk+1

)
+ O

(
r + R

tk+2

)
=

c1

tk
+ O

(
1 + r + R

tk+1

)
, (2.27)

which gives the more detailed information about the sub-leading term.

Theorem 2.3. Under the assumptions of Theorem 2.2, for t � r + R, we have

u(t, r) ∼= λv1(t, r)[1 + O (λ)], (2.28)

hence

u(t, r) ∼= Ct−k, C = λc1 + O (
λ2

)
. (2.29)

Proof. Knowing that the perturbation series converges for some λ, we can bound
the error in the nth order relative to the exact solution by estimating the sum of
all higher order terms. For the convergent sequence un, we get from the proof of
Theorem 2.1 that

‖u − un‖L∞
1,k

≤ (Ck,kλ)n+1

1 − Ck,kλ
‖I0(f, g)‖L∞

1,k
, (2.30)

what provides the pointwise bound on the error

|u(t, r) − un(t, r)| ≤ (Ck,kλ)n+1

1 − Ck,kλ
· Ck+1 · (f0 + f1 + g0)

〈t + r〉〈t − r〉k−1
∀t, r ≥ 0. (2.31)
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For n = 1 with u1 = v0 + λv1, we have

|u(t, r) − v0(t, r) − λv1(t, r)| ≤ (Ck,kλ)2

1 − Ck,kλ
· Ck+1 · (f0 + f1 + g0)

〈t + r〉〈t − r〉k−1
=: ∆1(t, r).

(2.32)

A simple inequality (which follows immediately from Bernoulli’s inequality)
1

(1 − ζ)σ
≤ 1

1 − σζ
= 1 +

σζ

1 − σζ
≤ 2, ∀ζ ≤ 1/(2σ), σ >, (2.33)

implies that
1

〈t − r〉q =
1

(1 + t)q
(
1 − r

1+t

)q ≤ 2
(1 + t)q

(2.34)

for ζ := r/(1 + t) ≤ 1/(2q), hence it holds for all t ≥ 2qr. The error term can then
be estimated by

∆1(t, x) ≤ 2 (Ck,kλ)2
2 Ck+1 · (f0 + f1 + g0)

(1 + t)k
O

(
λ2

tk

)
, (2.35)

where we have used twice the inequality (2.33) for t ≥ 2(k−1)r and λ ≤ 1/(2 Ck,k).
From Huygens’ principle for (2.5) with initial data of compact support, it follows

that v0(t, r) = 0 for t > r + R, hence for every r ≥ 0 and sufficiently large t >

max[r + R, 2(k − 1)r], we have

|u(t, r) − λv1(t, r)| ≤ |u(t, r) − v0(t, r) − λv1(t, r)| + |v0(t, r)| = O
(

λ2

tk

)
, (2.36)

and ∣∣∣u(t, r) − λ
c1

tk

∣∣∣ ≤ |u(t, r) − λv1(t, r)| + λ
∣∣∣v1(t, r) − c1

tk

∣∣∣
= O

(
λ2

tk

)
+ o

(
λ

tk

)
, (2.37)

where we have used the result of Theorem 2.2, Eq. (2.21). Therefore

u(t, r) ∼= C

tk
, C = λc1 + O (

λ2
)
. (2.38)

This gives the precise quantitative information about the late-time tail of u(t, r)
and shows that the estimate in Theorem 2.1 is optimal (for t � r) (see Table 1 and
Fig. 1 for the numerical verification).

3. Nonlinear Case Without a Potential Term

Now, we consider the nonlinear wave equation of the form

�u = F (u) (3.1)

with initial data (f, g) supported on the interval r ∈ [0, R] and satisfying (2.3)
with f0, f1, g0 < ε. The nonlinear term obeys |F (u)| ≤ F1|u|p for |u| < 1 and
|F (u)−F (v)| ≤ F2|u− v|max(|u|, |v|)p−1. The second condition is satisfied, e.g. for
F (u) = up with F2 = p or for F ∈ C1 such that |F ′(u)| ≤ F2|u|p−1 for |u| < 1.
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Table 1. Linear case with a potential term λV (r) = λV0
tanhk+2(r)

rk . The values of V0 follow
from the normalization condition (2.2). The results are obtained for the initial data of the form:
f(r) = 0, g(r) = 4(r2 − 1) exp(−r2), which corresponds to h(z) = z2 exp(−z2) (see (A.3)). The
number at the Theory–Amplitude entry gives the value of λc1 with c1 defined in (2.22). Note that
for λ V0 = 10−1 the values of λ are actually greater than the convergence radius of perturbation
series obtained in Theorem 2.1, but still, the formula (2.38) seems to work very well.

λV0 = 10−1 λV0 = 10−3 V0

Theory Numerics Theory Numerics

k = 3 Exponent 3.0 2.9996 3.0 3.0000 0.3485
Amplitude −3.5449 × 10−1 −3.0429 × 10−1 −3.5449 × 10−3 −3.5394 × 10−3

k = 4 Exponent 4.0 4.00001 4.0 4.00000 0.2339
Amplitude −7.0898 × 10−1 −6.6885 × 10−1 −7.0898 × 10−3 −7.0856 × 10−3

k = 5 Exponent 5.0 5.00000 5.0 5.00000 0.1560
Amplitude −1.4179 −1.3745 −1.4179 × 10−2 −1.4175 × 10−2

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 1e-04

 0.01

1

 0.1 1  10  100  1000

|u
(t

,r
=

1)
|

t

u

v0

λ v1

λ2 v2

Fig. 1. We plot (on log-log scale) the numerical solution u(t, r = 1) of Eq. (2.1) for λV (r) =
0.1 tanh7 r/r5 (this corresponds to λ = 0.64). The initial data are: f(r) = 0, g(r) =
4(r2 − 1) exp(−r2), which corresponds to h(z) = z2 exp(−z2) (see (A.3)). The first three terms
in the perturbation expansion (2.4) are superimposed. In agreement with Theorem 2.3, the tail is
perfectly approximated by λv1 (cf. Table 1).

3.1. Perturbation series

In order to construct a well-defined perturbation scheme to all orders, we have to
assume additionally that F (u) is analytic at u = 0 and its Taylor series starts at
power p ≥ 3

F (u) = up
∞∑

n=0

bnun, b0 �= 0. (3.2)
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Then, for small initial data

(u, u̇)(0) = (εf, εg), (3.3)

we introduce the perturbation series for the solution of (3.1)

u =
∞∑

n=1

εnvn. (3.4)

Inserting this series into (3.1) and collecting terms according to powers of ε, we
obtain the following perturbation scheme

�v1 =0, (v1, v̇1)(0)= (f, g) → v1 = I0(f, g) (3.5)

�vn+1 =Fn(v1, . . . , vn), (vn+1, v̇n+1)(0) = (0, 0) → vn+1 = L0(Fn(v1, . . . , vn)),
(3.6)

for n ≥ 1, where Fn result from collecting the nonlinear terms with the same
powers of ε

Fn(v1, . . . , vn)
∑

k

an
kv

αn,1
k

1 · · · vαn,n
k

n , (3.7)

where αn,m
k ∈ N satisfy

∑n
m=1 mαn,m

k = n + 1 and
∑n

m=1 αn,m
k ≥ p for every n, k.

The coefficients an
k are functions of bm only (see [7] for the explicit formula).

We call this expansion the “zero background” case because the zero-order term
v0 is absent. If a v0 term was present in the series above (i.e. the summation started
at n = 0), we would have an additional equation �v0 = F (v0) which is genuinely
nonlinear (in contrast to the above system of linear wave equations with source
terms). Its solution v0 represents a “background” around which the perturbations
vn are calculated.

From Part I, we have the following

Theorem 3.1. With f, g and F (u) as above for any p ≥ 3 and sufficiently small
ε, the series defined in (3.4)–(3.6) converges (in norm) in L∞

1,p−1 to the solution of
Eq. (3.1) with initial data (3.3).

Since the introduction of the auxiliary parameter ε in the perturbation series
expansion serves only to generate a system of linear equations equivalent to the
original nonlinear equation, we can eventually remove the parameter ε and assume
that the initial data are such that f0, f1, g0 are sufficiently small. Then, solving the
system (3.5)–(3.6) and summing up the convergent series

∑∞
n=1 vnu, we obtain a

solution of the nonlinear wave equation (3.1).

3.2. Optimal decay estimate

The perturbation scheme (3.5)–(3.6) can be written as

v1 = I0(f, g), (3.8)

v2 = v3 = · · · = vp−1 = 0, (3.9)
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vp = L0(Fp−1(v1, . . . , vp−1)) = b0L0((v1)p), (3.10)

vn+1 = L0(Fn(v1, . . . , vn)), n ≥ p. (3.11)

We have v1 = I0(f, g) ∈ L∞
1,∞ and vn ∈ L∞

1,p−1 for n ≥ 2.

Theorem 3.2. Under the above assumptions, for t � r + R, we have

vp(t, r) ∼= dp t−(p−1), (3.12)

where the constant dp is given by (3.17).

Proof. In analogy with Eqs. (2.13)–(2.15), we have from Lemma A.1

v1(t, r) =
h(t − r) − h(t + r)

r
(3.13)

and from (3.10)

vp(t, r) =
1
8r

∫ t+r

|t−r|
dξ

∫ t−r

−ξ

dη (ξ − η)f0(v1(η, ξ))p. (3.14)

As before, interchanging the order of integration we get for t > r + R

vp(t, r) =
2p−3f0

r

∫ +R

−R

dη (h(η))p

∫ t+r

t−r

dξ (ξ − η)−p+1. (3.15)

Using Lemma A.2 we get for t � r + R and p ≥ 3

vp(t, r) =
dp

tp−1
+ O

(
r + R

tp

)
, (3.16)

where

dp = 2p−2b0

∫ +R

−R

dη (h(η))p. (3.17)

Now, we will show that vp dominates the perturbation series for large times and
small ε and has the same decay rate as the full solution u of the nonlinear wave
equation (see Table 2 and Fig. 2 for the numerical verification).

Theorem 3.3. Under the assumptions of Theorem 3.2, for small ε and t � r + R,

we have

u(t, r) ∼= εpvp(t, r)[1 + O (ε)], (3.18)

hence

u(t, r) ∼= Dt−p+1, D = dpε
p + O (

εp+1
)
. (3.19)

Proof. We need to show that εI0(f, g) and εn+1L0(Fn(v1, . . . , vn)) for n ≥ p are
small relative to εpdp(x)t−(p−1). As before, for v1 = I0(f, g) ∈ L∞

1,∞ Huygens’ prin-
ciple and compact support of the initial data imply that v1(t, r) = 0 for sufficiently
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Table 2. Nonlinear case: F (u) = up, without a potential term. The initial data are the
same as for Table 1 and Fig. 1. The number at the Theory–Amplitude entry gives the
value of εpdp, with dp defined in (3.17) (with b0 = 1).

ε = 1 ε = 10−1

Theory Numerics Theory Numerics

p = 3 Exponent 2.0 2.0009 2.0 2.0008
Amplitude 0.1421 0.1265 0.1421 × 10−3 0.1427 × 10−3

p = 4 Exponent 3.0 3.0013 3.0 3.0012
Amplitude 9.0873 × 10−2 8.4433 × 10−2 9.0873 × 10−6 9.1631 × 10−6

p = 5 Exponent 4.0 4.0015 4.0 4.0015
Amplitude 5.9925 × 10−2 6.1192 × 10−2 5.9925 × 10−7 6.0597 × 10−7

 1e-14

 1e-12
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 0.01

 1

 0.1  1  10  100  1000
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(t
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t

 u

ε  v1

ε3 v3

ε5 v5

Fig. 2. We plot (on log-log scale) the numerical solution u(t, r = 1) of Eq. (3.1) with F (u) = u3.
The initial data are the same as in Fig. 1 and ε = 0.1. The first three terms in the perturbation
expansion (3.2) are superimposed. In agreement with Theorem 3.2, the tail is perfectly approxi-
mated by ε3v3 (cf. Table 2).

large t (and fixed r). From the convergence proof for the perturbation series, we
know that there exist constants M, ρ > 0 such that ‖vn‖L∞

1,p−1
≤ Mρn for all

n ≥ 1. Hence, for sufficiently small ε < 1/ρ, we can estimate the remainder of the
perturbation series∥∥∥∥∥

∞∑
m=p+1

εmvm

∥∥∥∥∥
L∞

1,p−1

≤ M

∞∑
m=p+1

εmρm ≤ Mεp+1ρp+1

1 − ερ
≤ Cεp+1. (3.20)

This implies that for t � r∣∣∣∣∣
∞∑

m=p+1

εmvm(t, r)

∣∣∣∣∣ ≤ Cεp+1

〈t + r〉〈t − r〉p−2
= O

(
εp+1

tp−1

)
, (3.21)
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so

|u(t, r) − εpvp(t, r)| ≤ |εv1(t, r)| +
∣∣∣∣∣

∞∑
m=p+1

εmvm

∣∣∣∣∣ = O
(

εp+1

tp−1

)
. (3.22)

From Theorem 3.2, for t � r + R, we have vp = dpt
−(p−1) + O (t−p) , hence∣∣∣∣u(t, r) − dpε

p

tp−1

∣∣∣∣ = O
(

εp+1

tp−1

)
+ O

(
εp

tp

)
, (3.23)

which finally gives

u(t, r) ∼= Dt−p+1, D = dpε
p + O (

εp+1
)
. (3.24)

4. Nonlinear Case with a Potential Term

Finally, let us consider the full nonlinear wave equation (1.1) with a potential with
initial data (f, g) supported on the interval r ∈ [0, R] and satisfying (2.3) with
f0, f1, g0 < ε. The nonlinear term F (u) is the same as in the previous section.

4.1. Perturbation series

Defining the perturbation expansion for the nonlinear wave equation with a
potential (1.1)

u =
∞∑

n=1

εnvn, (4.1)

we encounter the problem of two scales which are given by parameters λ (measuring
the strength of the potential) and ε (measuring the strength of the initial data).
Since these parameters play only an auxiliary role in generating the perturbation
scheme, we make a convenient choice and assign to λ a scale of some power of ε,
say λ = λ̃εa with a ∈ N+.

Then, the power series (4.1) inserted into the wave equation (1.1) gives

v−n := 0, n ≥ 0, (4.2)

v1 := I0(f, g), (4.3)

vn+1 := −λ̃L0(V vn+1−a) + L0(Fn(v1, . . . , vn)), n ≥ 1. (4.4)

In the following we choose a := p−1 because then the lowest-order nontrivial term,
vp (all lower-order terms with 1 < n < p vanish), contains contributions both from
V and F and gives a good approximation to u, as will be shown below.

In this case, from Part I, we also have a convergence result

Theorem 4.1. With f, g, V and F (u) as above for any k > 2, p ≥ 3, λ < C−1
q,k and

sufficiently small ε the series defined in (4.1)–(4.4) converges (in norm) in L∞
1,q for

q = min(p − 1, k) to the solution of Eq. (1.1) with initial data (3.3).
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4.2. Optimal decay estimate

For a = p − 1, the system (4.2)–(4.4) takes the form

v−n := 0, n ≥ 0, (4.5)

v1 = I0(f, g), (4.6)

v2 = v3 = · · · = vp−1 = 0, (4.7)

vp = −λ̃L0(V v1) + L0(Fp−1(v1, . . . , vp−1)) = −λ̃L0(V v1) + b0L0((v1)p), (4.8)

vn+1 = −λ̃L0(V vn−p+2) + L0(Fn(v1, . . . , vn)), n ≥ p. (4.9)

Theorem 4.2. Under the above assumptions, for t � r + R, we have

vp(t, r) ∼= dp t−q, q := min(k, p − 1), (4.10)

where the constant ep is defined in (4.18).

Proof. vp defined in Eq. (4.8) is a sum of two contributions, from the potential
and from the nonlinear term,

vp(t, r) ≡ vpot
p (t, r) + vnon

p (t, r), (4.11)

where

vpot
p (t, r) := −λ̃L0(V v1), vnon

p (t, r) := b0L0(v
p
1). (4.12)

From Theorem 2.2, we have

vpot
p (t, r) =

cp

tk
+ o

(
1
tk

)
(4.13)

with

cp = −2k−1λ̃V0

∫ +R

−R

h(η) dη, (4.14)

and from Theorem 3.2, we have

vnon
p (t, r) =

dp

tp−1
+ O

(
r + R

tp

)
(4.15)

with

dp = 2p−2b0

∫ +R

−R

dη (h(η))p. (4.16)

Depending on whether k < p− 1 or k > p− 1, the linear vpot
p (t, r) or the nonlinear

vnon
p (t, r) contribution to the tail is dominant, respectively. In the special case k =

p − 1, we have

vp(t, r) =
cp + dp

tp−1
+ o

(
1

tp−1

)
. (4.17)
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Fig. 3. We plot (on log-log scale) the numerical solution u(t, r = 1) of Eq. (1.1) with F (u) = u3.
The potential λV and the initial data (εf, εg) are the same as in Fig. 1 with λ = 0.64 and ε = 0.001.
Superimposed are solutions with the nonlinearity or the potential switched off. The crossover from
the linear tail ∼ t−5 (for intermediate times) to the final nonlinear tail ∼ t−2 is clearly seen.

Thus, the constant in (4.10) is given by

ep =


cp, if k < p − 1,

cp + dp, if k = p − 1,

dp, if k > p − 1.

(4.18)

Now, we will show that vp dominates the perturbation series for large times and
small ε and has the same decay rate as the full solution u of the nonlinear wave
equation with the potential (see Fig. 3 for the numerical verification).

Theorem 4.3. Under the assumptions of Theorem 4.2, for small ε and t � r + R,

we have

u(t, r) ∼= εpvp(t, r)[1 + O (ε)], (4.19)

hence

u(t, r) ∼= Et−q, q := min(k, p − 1), E = epε
p + O (

εp+1
)
. (4.20)

Proof. We can repeat the reasoning from the proof of Theorem 3.3 where we used
the fact that the perturbation series

∑
n=1 εnvn is convergent. Here, Theorem 4.1
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guarantees convergence in L∞
1,q with q := min(k, p − 1). Analogously, we obtain for

t � r ∣∣∣∣∣
∞∑

m=p+1

εmvm(t, r)

∣∣∣∣∣ ≤ Cεp+1

〈t + r〉〈t − r〉q−1
= O

(
εp+1

tq

)
, (4.21)

so (again, v1(t, r) vanishes for t � r by Huygens’ principle)

|u(t, r) − εpvp(t, r)| ≤ |εv1(t, r)| +
∣∣∣∣∣

∞∑
m=p+1

εmvm

∣∣∣∣∣ = O
(

εp+1

tq

)
. (4.22)

From Theorem 4.2, we have vp = ept
−q + o(t−q) for t � r + R, so we get∣∣∣∣u(t, r) − epε

p

tq

∣∣∣∣ = O
(

εp+1

tq

)
+ o

(
εp

tq

)
, (4.23)

which gives

u(t, r) ∼= Et−q, E = epε
p + O (

εp+1
)
. (4.24)

Appendix A. Lemmas

Lemma A.1. The solution of the free wave equation

�u = 0 (A.1)

with spherically symmetric initial data u(0, r) = f(r), ∂tu(0, r) = g(r) has the form

u(t, r) =
h(t − r) − h(t + r)

r
, (A.2)

where

h(r) = − r

2
f(r) +

1
2

∫ ∞

r

r′g(r′)dr′, (A.3)

which is defined for all r ∈ R by the extension f(−r) := f(r), g(−r) := g(r). When
f and g have compact support then h has also compact support on R.

Proof. In spherical symmetry the wave equation (A.1) can be written as

∂ξ∂η(ru) = 0, (A.4)

where ξ = t + r and η = t − r. Its most general solution has the form

ru(t, r) = h−(η) + h+(ξ) = h−(t − r) + h+(t + r). (A.5)

We require that u(t, r) be finite at r = 0 what implies

0 = h−(t) + h+(t) ⇒ h(t) := h−(t) = −h+(t). (A.6)
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From the initial conditions, we get

f(r) = u(0, r) =
h(−r) − h(r)

r
, (A.7)

g(r) = ∂tu(0, r) =
h′(−r) − h′(r)

r
. (A.8)

We can write

h(r) =
1
2
[h(r) + h(−r)] +

1
2
[h(r) − h(−r)] ≡ 1

2
S(r) +

1
2
A(r), (A.9)

where we have introduced a symmetric function S(r) := h(r) + h(−r) and an anti-
symmetric function A(r) := h(r) − h(−r). The solutions for A(r) and S′(r) =
h′(r) − h′(−r) can be immediately read off from the initial conditions (A.7)–(A.8):

A(r) = −rf(r), (A.10)

S′(r) = −rg(r). (A.11)

We see that the extension of f and g on all r ∈ R defined by f(−r) := f(r),
g(−r) := g(r) is the consistency condition for Eqs. (A.10)–(A.11). Integrating (A.11)
we get

S(r) − S(0) = −
∫ r

0

r′g(r′)dr′. (A.12)

We use the freedom of choosing the integration constant and set

S(0) :=
∫ ∞

0

r′g(r′)dr′, (A.13)

what gives (A.3). With this choice we obtain h(r) compactly supported on R if f(r)
and g(r) are compactly supported. To see this, assume f(x) = g(x) = 0 for |x| > R

and consider r > R. The function h(r) is obviously zero from (A.3). For negative
arguments

h(−r) =
r

2
f(−r)︸ ︷︷ ︸

=0

+
1
2

∫ ∞

−r

r′g(r′)dr′ =
1
2

∫ R

−R

r′g(r′)dr′ = 0, (A.14)

because the integrand r′g(r′) is an odd function. Thus, supp h ⊂ [−R, +R].

Lemma A.2. Let α > 1. Then∫ +R

−R

h(η) dη

∫ t+r

t−r

dξ

(ξ − η)α
=

2r

tα

∫ +R

−R

h(η) dη + O
(

r(r + R)
tα+1

)
(A.15)

for t > 2α(r + R) and all r ≥ 0.
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Proof. Consider first the inner integral for η ∈ [−R, R]

I(t, r, η) :=
∫ t+r

t−r

dξ

(ξ − η)α
=

∫ +r

−r

dy

(t − η + y)α
=

1
tα

∫ +r

−r

dy(
1 + y−η

t

)α

=
2r

tα
+

1
tα

∫ +r

−r

[
1(

1 + y−η
t

)α − 1

]
dy ≡ 2r

tα
+

1
tα

δ(t, r, η). (A.16)

We have

|δ(t, r, η)| ≤
∫ +r

−r

∣∣∣∣∣ 1(
1 + y−η

t

)α − 1

∣∣∣∣∣ dy (A.17)

and the integrand J can be estimated by

J :=

∣∣∣∣∣ 1(
1 + y−η

t

)α − 1

∣∣∣∣∣ ≤ 1(
1 − r+R

t

)α − 1, (A.18)

what can be shown as follows. Having in mind that −(r + R) ≤ y + η ≤ r + R, we
find for y − η < 0

J =
1(

1 + y−η
t

)α − 1 ≤ 1(
1 − r+R

t

)α − 1 ≡ J1 (A.19)

and for y − η ≥ 0

J = 1 − 1(
1 + y−η

t

)α ≤ 1 − 1(
1 + r+R

t

)α ≡ J2. (A.20)

By simple algebra one can easily show that J2 ≤ J1 what gives (A.18). Further, by
a version of Bernoulli’s inequality,

J ≤ 1
1 − α r+R

t

− 1
α r+R

t

1 − α r+R
t

. (A.21)

Then

|δ(t, r, η)| ≤ α r+R
t

1 − α r+R
t

2r ≤ 4α
r(r + R)

t
(A.22)

for t ≥ 2α(r + R). Finally,∫ +R

−R

h(η) dη

∫ t+r

t−r

dξ

(ξ − η)α
=

∫ +R

−R

h(η) dη

[
2r

tα
+

δ(t, r, η)
tα

]

=
2r

tα

∫ +R

−R

h(η) dη + O
(

r(r + R)
tα+1

)
. (A.23)
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