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Abstract

We construct the most general perturbatively long-range integrable
spin chain with spins transforming in the fundamental representation
of gl(N) and open boundary conditions. In addition to the previously
determined bulk moduli we find a new set of parameters determining
the reflection phase shift. We also consider finite-size contributions and
comment on their determination.ar
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1 Introduction

During the past few years a long list of evidence has been collected that the spectrum
of planar anomalous dimensions in N = 4 supersymmetric gauge theory is equivalent to
the energy spectrum of a certain integrable spin chain [1–3]. The spectrum of this spin
chain is described efficiently by Bethe equations, see [4] and references therein, at least
for sufficiently long chains. This spin chain model is special in many respects. Most
importantly the interactions are genuinely non-local and between multiple sites of the
chain [2].

Our knowledge of such integrable long-range chains is still very limited. The best
known exception is the Inozemtsev chain which is similar to the Haldane–Shastry chain
but with elliptic rather than trigonometric dependence on the separation of spins. The
situation for the Inozemtsev chain is similar to the N = 4 gauge theory chain: The
asymptotic spectrum (for long chains) is described by Bethe equations while determina-
tion of equations for the exact (finite-length) spectrum remains a challenge.

Although the N = 4 gauge theory chain is similar to the Inozemtsev chain [5], it
belongs to a more general class of long-range chains with simultaneous interactions be-
tween more than two spins. In the full N = 4 gauge theory chain the interactions can
even change the number of spin sites [6], but here we shall focus on the su(2) sector
of the model where the length-fluctuations are frozen out. The setup for such pertur-
batively long-range1 chains was outlined in [2]. In the simplest case, it is a chain with
spins transforming in the fundamental (spin-1

2
) representation of su(2). More degrees

1The name long-range spin chain actually refers to the fact that for finite coupling λ the interactions
are indeed of infinite, i.e. long range. However, considering the problem within perturbation theory all
relevant contributions have finite, i.e. short range. Even though it might therefore be more appropriate
to speak of short-range chains we stick to the notion of long-range chains for historical reasons.
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of freedom corresponding to a deformation [7] of the overall magnon scattering phase
were later discovered in [8]. A full treatment of all deformation parameters in the more
general setting of gl(N) with fundamental spins and up to interactions of range 6 was
conducted in [9]. It showed that, independently of the rank N , there are four types of
deformation parameters: The parameters α`(λ) govern deformations of the dispersion
relation. The parameters βr,s(λ) correspond to deformations of the overall magnon scat-
tering phase. The parameters γr,s(λ) fix the linear combinations of commuting charges in
terms of some canonical basis. And finally the parameters ε`,n(λ) correspond to similar-
ity transformations of the integrable system without impact on the spectrum. Here the
coupling constant λ ≈ 0 controls the range of the Hamiltonian: A contribution at order
λ` is allowed to have interactions among `+ 2 neighboring sites. Complete integrability
of this system was initially only a conjecture based on the existence of one conserved
charge. Later it was shown that the Hamiltonian possesses Yangian symmetry which
constitutes a formal proof of integrability [10].

In this paper we shall consider open spin chains which is a natural generalization of
the above closed chains. In the original gauge theory setup open boundaries correspond
most naturally to “quarks”, i.e. to fields transforming in the fundamental (as opposed
to adjoint) representation of the gauge group [11]. On the string theory side of the
AdS/CFT correspondence, the quarks are represented by strings ending on D-branes [12].
However, even in a gauge theory with adjoint fields only, such as N = 4 SYM, open spin
chains make an appearance: For example one can turn gauge covariant local operators
representing open chains into a non-local gauge invariant object by means of a Wilson
loop [13]. Alternatively an open chain (open string) can end on a determinant-like local
operator (giant graviton) [14].

Here we would like to perform an exhaustive study of open perturbatively long-range
integrable spin chains with gl(N) symmetry analogously to the one for closed chains
in [9]. Our aim is to understand how the long-range interactions can deform the boundary
conditions as well as what the restrictions for the bulk Hamiltonian are. For practical
reasons we will not study the most general boundary conditions, but only those which
preserve manifest gl(N) invariance. Note that in many physical models, such as most
of the systems discussed above, the bulk symmetry is actually broken by the boundary
conditions, e.g. gl(N)→ gl(M)×gl(N−M). Therefore our results do not apply directly
to these models, but we expect that the qualitative picture will be roughly the same as
for our symmetry-preserving boundary conditions. Indeed previous results on concrete
open perturbatively long-range chain models [15] confirm this expectation.

Our procedure is the same as in [9]: We will make a general ansatz for two long-
range spin chain operators including open boundary terms. By demanding that the two
commute we obtain a tentatively integrable system. Unfortunately, Yangian symmetry
is broken by the boundary conditions in nearest-neighbor spin chains even if they are
integrable. Therefore we cannot use Yangian symmetry to provide a formal proof of inte-
grability of our boundary terms. We will then perform the coordinate Bethe ansatz and
obtain asymptotic Bethe equations for long-range open chains. These describe the spec-
trum of the perturbatively long-range Hamiltonian (if indeed the assumed integrability
holds).
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2 The Spin Chain Model

We consider an open spin chain with spins transforming in the fundamental representa-
tion of gl(N). A spin chain state of given length L is an element of the tensor product
space (CN)⊗L. A basis for such states is given by

|a1, . . . , aL〉, ak = 1, . . . , N, (2.1)

where each ak represents one basis vector of CN . Each homogeneous gl(N) invariant local
operator can be built from permutations of adjacent sites. We write these permutations
in the form [a1, . . . , an] acting homogeneously on a spin chain of length L by

[a1, . . . , an]|b1, . . . , bL〉 =
L−n+1∑
k=1

|b1, . . . , bk, bk+a1 , . . . , bk+an , bk+n+1, . . . , bL〉. (2.2)

For example each spin chain state is an eigenstate of the operator [1] with eigenvalue L.
Note that for a closed chain, the operator [1, 2] would have the same property. For an
open chain its eigenvalue is L− 1 instead as will be explained below.

We can thus introduce the length operator L counting the number of spin sites in
the chain. Furthermore we define the operator B to measure whether the chain has a
boundary or not, i.e. to vanish on a space of closed spin chain states and to equal 1 on
a space of open chains. In our notation we have

L = [1],

B = [1]− [1, 2]. (2.3)

These operators commute with all local operators.

Boundary Terms. The new feature of open spin chains as compared to the closed
chains are boundary terms enlarging the set of building blocks for the gl(N) invariant
operators. This stems from the fact that spectator legs may not be dropped by identifying
certain states since these states act differently on the boundaries as illustrated in Figure 1

[1, a1 + 1, . . . , an + 1] 6= [a1, . . . , an] 6= [a1, . . . , an, n+ 1]. (2.4)

Curiously these boundary terms can be encoded into homogeneous bulk terms, i.e. struc-
tures of the form

[1, a1 + 1, . . . , an + 1]− [a1, . . . , an],

[a1, . . . , an, n+ 1]− [a1, . . . , an], n > 1, (2.5)

only act on the boundaries and vanish identically in the bulk.

3



1

1

a1 + 1

n

. . .

. . .

an + 1

2 1

a1

n

. . .

. . .

an

1

a1

n

. . .

. . .

an

= −

Figure 1: The two interactions contributing to a boundary term act differently only at the
boundaries.

Type of structures Bulk Boundary Finite Length All

Number of structures R!− (R− 1)! + 1 2(R− 1)!− 1
R∑
l=3

(l − 2)!
R∑
l=1

l!

Table 1: Numbers of the different kinds of building blocks with interaction range R in the
ansatz for a generic local operator in this problem.

Finite Length Terms. When spectator legs occur on both sides of the operator we
find another interesting structure. Operators of the form

[1, a1 + 1, . . . , an + 1, n+ 2]− [1, a1 + 1, . . . , an + 1]

− [a1, . . . , an, n+ 1] + [a1, . . . , an], n > 2, (2.6)

exclusively act on states of length n and vanish identically on the rest of the space of
states. We are not going to include these terms into our considerations, i.e. we replace
terms of the form [1, a1 +1, . . . , an+1, n+2] by terms of shorter range according to (2.6)
at every point of our computation.

Note however that these structures provide a notation for operators acting on chains
of one specific length only and are therefore useful for addressing the problem of finite
length effects in perturbative long-range chains. We analyze this issue in Section 7.

Parity. We introduce a parity operation acting on fundamental interactions as

P [a1, . . . , an]P−1 = [n− an + 1, n− an−1 + 1, . . . , n− a1 + 1]. (2.7)

It is useful to classify the interactions according to their parity, e.g. if one is interested
in a parity conserving model.

3 Constructing Conserved Charges

The integrability of a spin chain model is expressed by the existence of an infinite tower
of conserved charges, all commuting among each other. The idea of a perturbatively
integrable spin chain is that these commuting charges are expressible as a perturbation
series in a small parameter λ [2]

Qr =
∞∑
k=0

λkQ(k)
r , r = 1, 2, . . . . (3.1)
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Here the Q(k)
2r have maximal interaction range 2r+k, i.e. with each power of λ the range

of the charge increases by one.2

It is well known that for open spin chains only half of the integrable charges present
for closed chains are conserved. It turns out that the odd charges Q2r+1 commute with
the even charges Q2s only up to boundary terms. Therefore the tower of commuting
charges can only be constructed of the even charges Q2r with an even interaction range
2r at zeroth order in λ.

Making the most general ansatz for the charges with index 2r, i.e. a linear combination
of all local operators of length ≤ 2r + k with arbitrary coefficients, we require that

[Q2r,Q2s] = O(λk+1), r, s = 1, 2, . . . (3.2)

and solve order by order for the coefficients in the ansatz. In this paper we explicitly
construct the first two commuting charges Q2 and Q4, where Q2 is defined to be the
Hamiltonian of the system. Note that technically this is merely a necessary but not
a sufficient condition for integrability. For a closed chain, however, the existence of
one conserved charge Q3 has experimentally turned out to be a sufficient condition for
integrability [9, 10]. The reason for this behavior is unclear, but we expect the same to
be true for open chains.

The construction is analogous to the one for closed chains in [9]. It is somewhat
more challenging because the range of Q4 is one step longer than the one of Q3 and
consequently the ansatz contains many more structures at a given perturbative order.
We present the result for the Hamiltonian Q2 up to second order in Table 5 at the end
of the paper. We have also constructed Q2 and Q4 up to third order, but the resulting
expressions are too lengthy (and not enlightening) to be presented here. Our result agrees
with the one for closed chains [9, 10] when projecting out the boundary contributions.
Note however that some of the closed chain parameters are not present for open chains
because they are incompatible with the boundary conditions.

4 Asymptotic Bethe Ansatz

We now perform the asymptotic Bethe ansatz for the open gl(N) spin chain. For closed
chains the general ansatz was presented in [16]. There the idea was to construct eigen-
states of the Hamiltonian for an infinitely long chain as a superposition of asymptotic
n-particle states. The zero-particle states yield the vacuum energy while the one-particle
states determine the dispersion relation E(p). Two-particle states with momenta p and
q then fix the scattering matrices S(p, q) in flavor space such that one ends up with a
two-particle eigenstate of the Hamiltonian. Integrability implies that the scattering of
several particles with many different flavors reduces to the two situations where particles
of either different or the same flavor scatter with each other. Considering a perturbatively
long-range Hamiltonian H(λ) the particles can see each other already at finite distances.
This leads to a scattering matrix which depends on the distance of the magnons in
contrast to a sharp change of phase for the zero-order Hamiltonian.

2We assume the length of the spin chain to exceed the length of the considered operators. Hence,
our analysis will not necessarily apply to short chains giving rise to spanning interactions, see Section 7.
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Figure 2: Boundary Bethe equations: A particle of momentum pk scatters with an excitation
of momentum qj and qi. The particle is reflected at the left boundary where its momentum
changes to p̄k and it picks up a boundary scattering phase. Having scattered with the particles
i and j again, this time with a different momentum p̄k, the particle acquires another phase
factor at the right boundary and the momentum changes back p̄k → pk. After this period of
2L sites, associated with a phase factor of ei(pk−p̄k)L, the magnon has returned to its original
position, moving in its original direction.

Imposing closed periodicity conditions, i.e. the closed Bethe equations, on the in-
finitely long chain then requires that shifting a particle by L sites yields a phase factor
eipL which is to be equal to the product of scattering matrices corresponding to the
interactions with the other excitations on the chain.

For the open spin chain these periodicity conditions change: In order for the particle
to arrive at the same position on the chain, moving in the same direction, it has to be
shifted by 2L sites. On this way the magnon is reflected at the two boundaries and
passes all other excitations on the chain twice. Each boundary gives rise to a boundary
scattering phase such that the difference of these phases is part of the Bethe equations.
Furthermore the momentum p of the ingoing particle changes to p̄ after reflection.3 The
two momenta are the two solutions of the equation E(p) = E(p̄) related by the reflection
map. For periodicity we therefore have to require that the phase factor ei(p−p̄)L equals
the product of scattering matrices S(p, qj) and S(p̄, qj) with the boundary phase factor
e2iφ(p) as illustrated in Figure 2.

Again, integrability implies that the multi-particle problem reduces to two-particle
scattering and single particle interactions with the boundaries. Therefore it suffices
to consider a one-particle state, with a single flavor due to gl(N) invariance, in order
to determine the boundary scattering phase and the reflection map p̄(p). The bulk
scattering matrices S(p, q) can be computed in the same fashion as for the closed spin
chain.

To determine the boundary quantities we require the state

|ΦL/R〉 =
L∑
x=1

ΦL/R(x)|x〉, (4.1)

3Note that we have p̄ 6= −p since the considered Hamiltonian does in general not preserve parity.
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with

ΦL(x) = eipx + e2iφL(p)eip̄(x−1) + aL(x),

ΦR(x) = eip(x−L) + e2iφR(p)eip̄(x−1−L) + aR(x), (4.2)

to be an eigenstate of the Hamiltonian close to either the left or the right boundary.
That is to say that we project the eigenvalue equation

H|ΦL/R〉 = E(p)|ΦL/R〉 (4.3)

on all states within the interaction range of the boundary at current perturbative order
in λ and solve the resulting system of equations. This defines the boundary scattering
phases φL/R(p) as well as the reflection map p̄(p) as a perturbation series in λ. Fur-
thermore we have to solve for the local boundary parameters aL(x) and aR(x) which,
however, represent UV physics and will not be of further interest in this paper

aL(x) = O(λx), aR(x) = O(λL−x+1). (4.4)

After determining all physically relevant scattering factors for the problem, we can
impose the periodicity conditions for the considered spin chain type. We first present
the Bethe equations for the open gl(N) spin chain and afterwards discuss the different
kinds of free parameters of the system. Each state is described by a set of Bethe roots
u`,k. The label ` = 1, . . . , N − 1 indicates the flavor of the Bethe root whereas the label
k = 1, . . . , K` indexes the set of Bethe roots of flavor `. The main Bethe equation at
level ` = 1 reads

1 =

(
x−1,k
x+

1,k

)L K1∏
j=1
j 6=k

(
u1,k − u1,j + i

u1,k − u1,j − i
exp
(
2iθ(u1,k, u1,j)

)) K2∏
j=1

u1,k − u2,j − i
2

u1,k − u2,j + i
2

× exp
(
2iφ(u1,k)

)( x̄+
1,k

x̄−1,k

)L K1∏
j=1
j 6=k

(
ū1,k − u1,j − i
ū1,k − u1,j + i

exp
(
−2iθ(ū1,k, u1,j)

)) K2∏
j=1

ū1,k − u2,j + i
2

ū1,k − u2,j − i
2

.

(4.5)

Here we have

x+
`,k = x(u`,k + i

2
),

x−`,k = x(u`,k − i
2
), (4.6)

and the bar represents the reflection map. For the levels ` = 2, . . . , N − 2 the auxiliary
Bethe equations take the standard form for gl(N)

1 =

K`−1∏
j=1

u`,k − u`−1,j − i
2

u`,k − u`−1,j + i
2

K∏̀
j=1
j 6=k

u`,k − u`,j + i

u`,k − u`,j − i

K`+1∏
j=1

u`,k − u`+1,j − i
2

u`,k − u`+1,j + i
2

×
K`−1∏
j=1

ū`,k − u`−1,j + i
2

ū`,k − u`−1,j − i
2

K∏̀
j=1
j 6=k

ū`,k − u`,j − i
ū`,k − u`,j + i

K`+1∏
j=1

ū`,k − u`+1,j + i
2

ū`,k − u`+1,j − i
2

(4.7)
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and for the final level ` = N − 1

1 =

KN−2∏
j=1

uN−1,k − uN−2,j − i
2

uN−1,k − uN−2,j + i
2

KN−1∏
j=1
j 6=k

uN−1,k − uN−1,j + i

uN−1,k − uN−1,j − i

×
KN−2∏
j=1

ūN−1,k − uN−2,j + i
2

ūN−1,k − uN−2,j − i
2

KN−1∏
j=1
j 6=k

ūN−1,k − uN−1,j − i
ūN−1,k − uN−1,j + i

. (4.8)

Note that the parameters u`,k do not depend on the coupling λ. Therefore the Bethe
equations are deformed only by means of the rapidity map x, the dressing phase θ and
the reflection phase φ. These deformation functions are in turn characterized by the free
parameters α`(λ), βr,s(λ) and δ2s+1(λ), respectively, which are described below.

5 Degrees of Freedom

To decode the role of the different types of free coefficients in this spin chain model it is
helpful to understand how their numbers increase with the order of λ. Constructing the
conserved charges at order λk we solved the equation

k∑
l=0

[H(l),Q(k−l)
4 ] = 0 (5.1)

for the undetermined parameters, i.e. the parameters in H(k) and Q(k). However, to
determine the overall number of the characteristic coefficients and their parity, it suffices
to count the constraints imposed by the homogeneous equation

[δH(k),Q(0)
4 ] + [H(0), δQ(k)

4 ] = 0, (5.2)

since they determine the dimension of the space of solutions. To identify the parity of
the parameters we simply project out the parity even or odd part of the solutions to
(5.2) and count the remaining linearly independent structures. These coefficients can be
classified into certain categories which are described in the following. The numbers of
free parameters in each category are summarized in Table 2.

Rapidity Map. The rapidity map x(u) shall be defined implicitly by its inverse

u(x) = x+
∞∑
`=0

α`(λ)

x`
. (5.3)

Here the parameter functions α`(λ) start at order O(λ`)

α`(λ) =
∞∑
k=`

λkα
(k)
` . (5.4)
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Note that the leading order parameters with even indices α
(2r)
2r are not free but fixed by

the parameters of the previous orders in λ

α
(0)
0 = 0,

α
(2)
2 = −α(1)

0 α
(1)
1 . (5.5)

We believe this pattern to hold for the higher orders as well even though we do not have
a proposal for how these parameters are fixed precisely in terms of the lower orders. Note
that the coefficients α2` have odd parity whereas the parity of the α2`+1 is even. Hence,
if the system is to conserve parity, then one must set α` = 0 for all even `.

The inverse map from the u-plane to the x-plane has the form

x(u) =
u

2
+
u

2

√√√√1− 4
∞∑
`=0

α̃`(λ)

u`+1
. (5.6)

The parameters α̃`(λ) are fixed uniquely by the components of αk(λ) in (5.4). Here
α̃0(λ) starts at order O(λ) and α̃`≥1(λ) at O(λ[l/2]+1). The coefficients α`(λ) govern the
propagation of spin flips in the ferromagnetic vacuum.

Reflection Map. When a particle is reflected at one of the boundaries, its momentum
changes from p to p̄(p). For the first perturbative orders we find

p̄(p) = −p+ 8λα
(1)
0 sin2 p

2
+ 8λ2 sin2 p

2

(
α

(2)
0 − 4α

(1)
0 α

(1)
1 sin2 p

2
− 2(α

(1)
0 )2 sin p

)
+O(λ3).

(5.7)
Note that the momentum does not simply reverse its sign but receives nontrivial correc-
tions at higher orders in λ. Due to the parity breaking Hamiltonian this is a necessary
condition for constructing an eigenstate of Q2. Therefore the reflection map (5.7) is char-
acterized by the parity odd coefficients α2r. The in- and outgoing momentum represent
the two solutions of the equation E(p) = E(p̄). In our notation the reflection map p→ p̄
is simply given by

ū = −u. (5.8)

Note that the Bethe equations invert under u`,k → ū`,k whereas they are invariant under
u`,j → ū`,j for each j separately.

Recalling the definition of the elementary magnon charges for the closed gl(N) spin
chain [9]

qclosed
r (u) =

i

r − 1

(
1

x(u+ i
2
)r−1
− 1

x(u− i
2
)r−1

)
, (5.9)

we define the elementary magnon charges for the open gl(N) chain by

qr(u) =
1

2

(
qclosed
r (u) + (−1)rqclosed

r (−u)
)
. (5.10)

This definition is motivated by the transformation behavior under the reflection map

q2r(u) = q2r(−u),

q2r+1(u) = −q2r+1(−u). (5.11)
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Dressing Phase. The dressing phase, a common phase factor of the bulk and bound-
ary scattering matrices, is defined by

θ(u1, u2) =
∞∑
r=2

∞∑
s=r+1

βr,s(λ)
(
qr(u1)qs(u2)− qs(u1)qr(u2)

)
. (5.12)

Here the free parameters starting at order O(λs−1) are given by

βr,s(λ) =
∞∑

k=s−1

λkβ(k)
r,s . (5.13)

The dressing phase occurs in the open Bethe equations only in form of the difference

θ(u1,k, u1,j)− θ(ū1,k, u1,j). (5.14)

Note that this combination inverts its sign under u1,k → ū1,k whereas it must remain
invariant for u1,j → ū1,j. The products of two odd elementary charges q2r+1q2s+1 are not
invariant under u1,j → ū1,j and are therefore not allowed

β2r+1,2s+1 = 0. (5.15)

In fact one can convince oneself that these terms are incompatible with the boundary
Yang–Baxter equation. Furthermore, products of even elementary charges q2rq2s drop
out in the combination (5.14), i.e. the parameters β2r,2s with even index pairs do not
appear in the Bethe equations. This fact is related to the appearance of bilocal similarity
transformations which are described below.

Reflection Phase. The reflection phase as it appears in the above Bethe equations is
defined by

φ(u) =
∞∑
s=1

δ2s+1(λ)q2s+1(u)− θ(ū, u). (5.16)

The related intrinsic parameters δ2s+1(λ) starting at O(λs) are then given by

δ2s+1(λ) =
∞∑
k=s

λkδ
(k)
2s+1. (5.17)

These coefficients govern the scattering of particles at the boundaries. Only the difference
2φ of the right and left boundary phase φR and φL appears as a physical parameter in
the Bethe equations. Note that the dressing part of the reflection phase can be regarded
as a j = k contribution to the second line of the ` = 1 Bethe equations. Due to the
transformation rules for the elementary magnon charges we find

φ(ū) = −φ(u). (5.18)
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Eigenvalues of the Charges. If we define the bare charges by

Q̄2s =

K1∑
k=1

q2s(u1,k), (5.19)

the eigenvalues of the spin chain charges are determined by the formula

Q2r = γ2r,−2(λ)B + γ2r,0(λ)L+
∞∑
s=1

γ2r,2s(λ)Q̄2s. (5.20)

The functions γ2r,2s(λ) are given by

γ2r,2s(λ) =
∞∑

k=2 max(s−r,0)

λkγ
(k)
2r,2s. (5.21)

They correspond to the linear coefficients in the mixing of the bare charges Q̄2s form-
ing the spin chain charges Q2r. Since all bare charges commute with each other, the
coefficients γ2r,2s(λ) are not shared between the spin chain charges. All other types of
coefficients are shared between the charges.

Note that in contrast to the closed spin chain parity conservation does not impose
further restrictions on the parameters γ2r,2s since only the even elementary magnon
charges q2s contribute to the spin chain charges. The second bare charge Q̄2 is printed
up to second order at the end of this paper.

Local Similarity Transformations. The coefficients εk,l and ζk,l do not appear in
the Bethe equations and therefore they do not influence the spectrum. They correspond
to perturbative bulk or boundary similarity transformations of all operators

Q̄r = T Q̃rT −1, T = 1 +
∞∑
k=1

λkT (k), (5.22)

where T (k) is an arbitrary bulk or boundary interaction of range k+1 parametrized by εk,l
or ζk,l, respectively. Contributions to T which are linear combinations of the commuting
charges do not alter the charges. Thus for counting purposes one has to remove these
trivial similarity transformations.

As indicated above, only the even charges Q2r are conserved quantities for the open
spin chain. The charges with odd indices Q2r+1 can be constructed by requiring that
they commute with the Hamiltonian up to boundary terms. Hence, structures corre-
sponding to these odd charges do correspond to extra similarity transformations which
have to be treated as trivial similarity transformations only in the bulk and there have
to be removed for the counting. For the boundary instead, the odd charges do provide
nontrivial similarity transformations and have to be added for the counting.

As an example we can commute the essential structures corresponding to the zero-
order charges Q2 and Q3 with each other

Q2 ∼ [2, 1],

Q3 ∼ [3, 1, 2]− [2, 3, 1], (5.23)
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to get
[Q2,Q3] ∼ [1, 3, 2]− [2, 1, 3]. (5.24)

The resulting boundary structure is not of interaction range 4 as one might expect but
of range 3. As a consequence Q3 already appears as an extra similarity transformation
at order λ. Similarly the commutator of Q2 and Q5 already appears at order λ2 instead
of λ4 since it is of interaction range 4 instead of the expected range 6.

Bilocal Similarity Transformations. In order to match up the total numbers of
parameters it is important to consider a curious class of bilocal similarity transforma-
tions which exists only for open chains. Bilocal operators can be built from two local
interactions acting at different positions of the spin chain

[a1, . . . , an|b1, . . . , bm]|c1, . . . , cL〉 =

L−n−m+1∑
k=1

L−m+1∑
l=k+n

|c1, .., ck, ck+a1 , .., ck+an , ck+n+1, .., cl, cl+b1 , .., cl+bm , cl+m+1, .., cL〉. (5.25)

In a natural notation we denote by [Q2r|Q2s] the bilocal composition of the two local
chargesQ2r andQ2s whereQ2r acts towards the left ofQ2s. If we commute this particular
bilocal operator with another local even chargeQ2t we get a local operator. This is due to
the fact that contributions to the commutator vanish as long as both parts of the bilocal
operator are well separated. Only if the distance between both parts in the sum above
becomes less than the interaction range of the local charge, the resulting interactions
contribute to the commutator. Therefore these special bilocal similarity transformations
give rise to additional local terms in the commuting charges. The dressing parameters
β2r,2s with even index pairs do not appear in the Bethe equations and hence do not
influence the spectrum.

6 Tests of the Bethe Equations

In the preceding sections we have constructed a tentatively integrable open spin chain
Hamiltonian and asymptotic Bethe equations to diagonalize it. However, we have no
rigorous proof for the integrability of the system and thus we cannot be sure that the
Bethe equations are indeed correct.

In order to test the Bethe equations (4.5) we have computed some explicit solutions
for a small number of excitations on short open chains up to second order in λ. Plugging
these Bethe roots into (5.20) we have obtained the energy of the corresponding states.
On the other hand we have diagonalized the combinatorial Hamiltonian in Table 5 on
a suitable basis of states and found the spectrum to be in perfect agreement with the
results from the Bethe equations.

To be more precise, let us consider a state of length L = 4 with K1 = 2 and K2 = 1
Bethe root excitations as an example. It corresponds to the following Young tableau

(6.1)
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=
2 = +

3 = + 2 +

4 = + 3 + 3 + 2 +

5 = + 4 + 6 + 5 + 4 + 5 +

6 = + 5 + 10 + 9 + 10 + 16 + 5

+ 5 + 9 + 5 +

Table 3: Decomposition of tensor products of k fundamental representations of gl(N) into
irreducibles.

from the tensor product decomposition of 4, cf. Table 3. The level two Bethe root u2,1

can be eliminated by solving the level two Bethe equation (4.7). We can then solve the
Bethe equations (4.5) for the Bethe roots u1,1 and u1,2 to find three admissible solutions.
This is done order by order in λ. Substituting the Bethe roots into the energy formula
(5.20) finally yields the energy of the corresponding state.

On the other hand we can apply the Hamiltonian Q2 to a basis of states characterized
by the magnon numbers and flavors we considered when solving the Bethe equations. For
our example one can take this basis to be given by the states resulting from permutations
of the entries in |1, 1, 2, 3〉. Note that this yields twelve eigenvalues of Q2 as opposed to
three values we want to compare to. Nine of them, however, represent energies of the
following Young tableaux in the decomposition of 4, cf. Table 3,

, , . (6.2)

We have compared the energies calculated in these two different ways for all states
corresponding to the following Young tableaux in the tensor product decomposition
illustrated in Table 3:

, 2 , 3 , 3 , 2 , 4 ,

5 , 6 , 5 , 9 . (6.3)

Our tests confirm that the Bethe equations describe the spectrum of Q2 correctly giving
us confidence that the derived spin chain Hamiltonian is indeed integrable.
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7 Finite Length Contributions

Let us discuss briefly the issue of spanning terms (2.6). These span the whole length of
a finite open chain in analogy to the wrapping terms for closed chains, cf. [17,18]. They
can be represented in the same basis of local operators and thus a complete enumeration
of such terms is easily feasible by not identifying any of the interaction terms (2.2). We
have repeated the analysis of Section 3 including the spanning terms. We have found no
restriction on the bulk or boundary terms, but there are additional spanning terms. We
will not specify these terms explicitly, but merely present the number of such terms in
Table 4.

Let us compare the numbers to the set of irreducible representations of gl(N) for a
chain of length L in Table 3 (we assume that N ≥ L). We write the decomposition
formally as

NL =
∑

k
nL,kRL,k, (7.1)

where nL,k are the multiplicities of the irreducible representations RL,k. Now it turns
out that the number of irreducible components of the tensor product∑

k
nL,k = 1, 2, 4, 10, 26, 76, . . . for L = 1, 2, 3, 4, 5, 6, . . . (7.2)

appears to match precisely with the number of independent coefficients affecting the
eigenvalues of Q2,4 in Table 4. This means that starting from a certain perturbative
order the eigenvalue spectrum is freely adjustable. The spanning order for Q2r at length
L is given by λL+2−2r. In other words, our version of perturbative integrability completely
loses its constraining power at finite length. Equivalent claims have been made in Section
6.5.4. of [17] for wrapping interactions in closed chains.

Before we comment on the implications of this result, let us discuss the remaining
finite length parameters labeled by S. These appear first at order λL where the spectrum
of all charges Q2r becomes fully adjustable. In that case, also similarity transforma-
tions of the space of chains of length L are permissible. The number of such similarity
transformations is given by the formula∑

k
nL,k(nL,k−1) = L!−

∑
k
nL,k = 0, 0, 2, 14, 94, . . . for L = 1, 2, 3, 4, 5, . . . . (7.3)

It is based on the fact that similarity transformations can only act on identical irreducible
representations. For n identical irreps, there are n2 similarity transformations, but n of
them act trivially on a given set of commuting matrices Q2r. Furthermore the number
of similarity transformations is equal to the number of spanning interactions of length L
which equals L!.

Exceptionally we find a non-zero entry in Table 4 for similarity transformations at
L = 5 and λ3. It is explained by a degeneracy of two eigenvalues of Q2 at leading order
for identical irreps at L = 5 (the one with multiplicity 6 in Table 3). In addition to
adjusting these two eigenvalues one can also adjust the eigenvectors with 2(2 − 1) = 2
similarity transformations.

How can we understand the complete arbitrariness of finite length contributions? At
spanning order for open chains (and analogously at wrapping order for closed chains)
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λ0 λ1 λ2 λ3 λ4 predicted
L Q2 Q4 Q2 Q4 Q2 Q4 Q2 Q4 S Q2 Q4 S
1 1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 2
3 4 4 4 4 2 4 4 2
4 10 10 10 10 14
5 26 2 26 0
6 76 ?

Table 4: Number of spanning terms at given order and length. Terms listed underQ2,4 affect the
eigenvalues of Q2,4, respectively. Terms listed under S correspond to similarity transformations.

the interactions act on the whole chain. One thus loses the desired locality property of
Qr and all linear operators become admissible contributions. We may thus consider the
charges Qr as free general matrices. In the generic case, two n × n matrices commute
if their eigenvectors coincide. Therefore one should expect 2n degrees of freedom for
the eigenvalues of the two matrices and n(n − 1) degrees of freedom for the common n
eigenvectors (up to rescaling).

What implications does this observation have on integrability of (perturbative) long-
range chains? There are two possibilities which crucially depend on the precise definition
of integrability (which is currently unclear): In the one case, integrability permits all the
finite length terms that we have found. This implies that the operator Q2 is almost
completely arbitrary at sufficiently high orders of λ or at finite λ. Clearly there cannot
be a method to determine the spectrum which is remotely as efficient as the Bethe ansatz.
Therefore this definition of integrability cannot be useful in practice.

There may be various stronger definitions of integrability which would constrain some
or all of the spanning (wrapping) terms. In addition they might even constrain some
of the bulk (or boundary) terms. The last option would be particularly desirable for
AdS/CFT integrability because it would provide us with further constraints on the fi-
nite size spectrum. Consider for example the Haldane–Shastry and Inozemtsev integrable
long-range chains [19]. Their finite size spectrum is uniquely defined by the Hamiltonian.
More conveniently it can be described exactly by equations similar to Bethe equations
(for Haldane–Shastry the equations are purely combinatorial while for Inozemtsev the
equations are currently known only in special cases). It appears unlikely that the equa-
tions can be deformed in such a way that only the spectrum at spanning or wrapping
order is deformed. Hopefully a suitable integrability constraint can be found to constrain
the spectrum of N = 4 SYM at finite size.

8 Summary

In this paper we have generalized the analysis of long-range integrable gl(N) spin chains
started in [9] to the case of open boundary conditions. For these open chains only the
even integrable charges Q2r are conserved and we have explicitly constructed the first
two of them up to order λ3. We have performed the nested asymptotic Bethe ansatz for
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the open spin chain and found several new features characterizing its moduli space:

• a new type of deformation parameter δ2s+1 starting at O(λs) which represents a
phase for reflections of particles at the boundaries of the chain,

• a reflection map p̄(p) corresponding to a nontrivial change of particle momentum
at the boundaries due to a parity breaking Hamiltonian,

• boundary and bilocal similarity transformations having their origin in the open
boundary conditions.

On a set of states we have demonstrated that the Bethe equations yield the correct energy
spectrum which indicated that the proposed Hamiltonian is indeed integrable. In addi-
tion we have briefly discussed the role of spanning terms in the context of open chains
as the counterpart of wrapping interactions for closed spin chains. We found that these
finite size contributions do not impose any restrictions on the bulk or boundary interac-
tions but merely provide additional degrees of freedom not influencing the integrability
of the system.
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Q̄2(λ) = ([1, 2]− [2, 1])

+ iα0(λ) ([2, 3, 1]− [3, 1, 2])

+ α1(λ) ([1]− 4[1, 2] + 2[2, 1] + [1, 3, 2] + [2, 1, 3]− [3, 2, 1])

+ 1
2
δ3(λ) (2[1]− 2[1, 2]− 2[2, 1] + [1, 3, 2] + [2, 1, 3])

+ ζ−1,1(λ) (−[1, 3, 2] + [2, 1, 3])

+ 2α0(λ)2 ([1]− 2[1, 2] + [1, 3, 2] + [2, 1, 3]− [3, 2, 1]

+ [2, 3, 4, 1]− [2, 4, 1, 3]− [3, 1, 4, 2] + [4, 1, 2, 3])

+ α1(λ)2 (−12[1] + 32[1, 2]− 7[2, 1]− 11[1, 3, 2]− 11[2, 1, 3] + 8[3, 2, 1]

+ [1, 4, 3, 2]− [2, 3, 4, 1] + [2, 4, 1, 3] + [3, 1, 4, 2]

+ [3, 2, 1, 4]− [4, 1, 2, 3]− [4, 2, 3, 1])

+ i
2
α0(λ)α1(λ) (−18[2, 3, 1] + 18[3, 1, 2] + 3[2, 4, 3, 1] + 3[3, 2, 4, 1]

− 3[4, 1, 3, 2]− 3[4, 2, 1, 3])

+ 1
8
δ3(λ)2 (−2[2, 1]− 2[3, 2, 1] + 3[1, 3, 2] + 3[2, 1, 3]− 2[1, 2, 4, 3]

− 2[2, 1, 3, 4] + [1, 4, 3, 2] + [3, 2, 1, 4])

+ 1
4
δ5(λ) (−4[1] + 4[1, 2] + 2[2, 1]− 2[3, 2, 1] + [1, 3, 2] + [2, 1, 3]

− 2[1, 2, 4, 3]− 2[2, 1, 3, 4] + [1, 4, 3, 2] + [3, 2, 1, 4])

+ α1(λ)δ3(λ) (−10[1] + 10[1, 2] + 10[2, 1]− 4[1, 3, 2]− 4[2, 1, 3]− 2[3, 2, 1]

− [1, 2, 4, 3] + [1, 4, 3, 2]− [2, 1, 3, 4] + [3, 2, 1, 4])

+ 1
2
β23(λ) (−4[1] + 8[2, 1]− 2[2, 3, 1]− 2[3, 1, 2]− 2[2, 1, 4, 3]− 2[2, 3, 4, 1]

+ 2[2, 4, 1, 3] + 2[3, 1, 4, 2]− 2[3, 4, 1, 2]− 2[4, 1, 2, 3]

+ [2, 4, 3, 1] + [3, 2, 4, 1] + [4, 1, 3, 2] + [4, 2, 1, 3])

+ iε+2,1(λ) ([2, 4, 1, 3]− [3, 1, 4, 2])

+ iε+2,2(λ) ([2, 4, 3, 1]− [3, 2, 4, 1]− [4, 1, 3, 2] + [4, 2, 1, 3])

+ 1
2
ζ−1,1(λ)2 (−2[2, 1] + 3[1, 3, 2] + 3[2, 1, 3]− 2[3, 2, 1]− 2[1, 2, 4, 3]− 2[2, 1, 3, 4]

+ [1, 4, 3, 2] + [3, 2, 1, 4])

+ ζ−2,1(λ) (2[1, 2, 4, 3]− 2[2, 1, 3, 4]− [1, 4, 3, 2] + [3, 2, 1, 4])

+ iζ−2,2(λ) (2[2, 3, 1]− 2[3, 1, 2]− [1, 3, 4, 2] + [1, 4, 2, 3]− [2, 3, 1, 4] + [3, 1, 2, 4])

+ iζ+
2,1(λ) ([1, 3, 4, 2]− [1, 4, 2, 3]− [2, 3, 1, 4] + [3, 1, 2, 4])

+ α1(λ)ζ−1,1(λ) (−2[1, 2, 4, 3] + 2[2, 1, 3, 4])

+O(λ3)

Table 5: Normalized Hamiltonian printed up to second order.
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