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Abstract

The integrable spin chain found in perturbative planar N = 4 super-
symmetric gauge theory is dynamic. Here we propose a reformulation
which removes the dynamic effects in order to make the model more
accessible to an algebraic treatment.

1 Introduction

The study of integrable structures in planar perturbative N = 4 supersymmetric Yang–
Mills theory following the works [1] has led to the discovery of an exciting integrable
spin chain model. It displays several unusual and novel features with respect to the
established integrable spin chains: First of all, the spin chain is perturbatively long-
ranged [2]. In other words, the Hamiltonian not only acts on nearest-neighbouring spins,
but also on longer blocks of adjacent spins. The range is controlled by the perturbative
order in a coupling constant g ≈ 0. Moreover the chain is dynamic [3], that is, the
Hamiltonian may dynamically change the number of spin sites of the chain. Finally, the
Hamiltonian is an inseparable part of the symmetry algebra. Consequently, all the above
features of the Hamiltonian apply to the symmetry generators as well. In addition it can
be remarked that the spin module is non-compact and graded into bosons and fermions.

Despite these complications, it appears that the Hamiltonian is completely inte-
grable [1–4]. Because it is homogeneous and acts locally, one can apply the asymptotic
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coordinate Bethe ansatz [5]. The form of the asymptotic Bethe equations [6] is fully
constrained by symmetry considerations [7], merely one phase function remains unde-
termined. Imposing a further crossing symmetry [8] together with inspiration from the
dual superstring theory on AdS5 × S5 [9] and its integrable structure [10] one arrives
at a viable proposal for the phase [11] which has since passed several highly non-trivial
tests [12].

Note well that the above mentioned asymptotic Bethe equations describe the spec-
trum only up to certain finite-size corrections, see [13] and references therein, yet to be
understood from the integrable model point of view. A conceivable path towards the
exact finite-size spectrum is to fully understand the algebraic structure underlying the
integrable spin chain model. One of the obstacles are the dynamic effects for which the
conventional algebraic structures appear to be inapplicable.

In this note we consider the prototypical dynamic sector of the N = 4 SYM spin
chain with su(2|3) symmetry [3].1 We shall propose an undynamic reformulation where
length fluctuations are absent for a large part of the algebra including the Hamiltonian.
This is meant to facilitate an eventual algebraic treatment the model. We will start with
a review of the su(2|3) sector, then propose the undynamic reformulation and finally
discuss the implications and potential pitfalls.

2 Dynamic Chain

Let us start by reviewing the (apparently) integrable su(2|3) dynamic spin chain con-
structed in [3].

Hilbert Space. The spin at each site can be in three bosonic states |φa〉 with a =
1, 2, 3, and two fermionic states |ψα〉 with α = 1, 2. Thus the graded spin module V is
thus spanned by the five states

V =
〈
φ1, φ2, φ3

∣∣ψ1, ψ2
〉
. (2.1)

The Hilbert space H of the spin chain model is given by the direct sum of cyclic chain
spaces HL of arbitrary length L

H =
∞⊕
L=1

HL, HL = V⊗L
∣∣
cyclic

. (2.2)

The space V⊗L|cyclic represents the subspace of V⊗L on which the graded cyclic shift
operator acts as the identity. The dynamic nature of the model consists in the fact that
the Hamiltonian (as well as the other symmetry generators) acts as an endomorphism of
H and not of the individualHL’s, in other words, the length of the spin chain is a dynamic
quantity. Furthermore our spin chain is homogeneous which entails the restriction to

1The N = 6 superconformal Chern–Simons theory [14] with osp(6|4, R) symmetry has an analogous
su(2|3) sector [15]. The results of [3] and of this note are general and they also apply to this model with
some minor modifications regarding, e.g. the coupling constant and the embedding.

2



cyclic states: Homogeneous operators commute with the graded permutation whose
spectrum exp(2πiZ/L) crucially depends on the length. The only common eigenvalue
on chains of L and L+ 1 is 1 and thus dynamic homogeneous models must be based on
cyclic states.

Symmetry Algebra. The symmetry of the dynamic chain is assumed to be su(2|3).
This algebra is spanned by the su(3) generators Ra

b (Ra
a = 0), the su(2) generators

La
b (La

a = 0), the fermionic generators Qα
b and Sa

β and finally the Hamiltonian H.
The Lie superalgebra is given by the canonical Lie brackets for su(3) and su(2) and the
supercharges transform in (anti)fundamental representations, e.g.

[Ra
b,Q

γ
d] = −δadQγ

b + 1
3
δabQ

γ
d. (2.3)

The non-trivial brackets among the supercharges are given by

{Qα
b,S

c
δ} = δαδ Rc

b + δcbL
α
δ + δαδ δ

c
bH. (2.4)

Finally, the weights of the supercharges with respect to the Hamiltonian read

[H,Qα
b] = +1

6
Qα

b, [H,Sa
β] = −1

6
Sa

β. (2.5)

Representation. We want to construct a family of representations J(g) of su(2|3) on
the Hilbert space H parametrised by a coupling constant g. The coupling constant g
is assumed to be small and we shall treat the representation as a perturbation series
around g = 0

J(g) = J0 + gJ1 + g2J2 + . . . (2.6)

At leading order the representation J0 is given by the standard tensor product of funda-
mental representations of su(2|3)

(R0)
a
b =

{
a
b

}
− 1

3
δab
{
c
c

}
,

(L0)
α
β =

{
α
β

}
− 1

2
δαβ
{
γ
γ

}
,

(Q0)
α
b =

{
α
b

}
,

(S0)
a
β =

{
a
β

}
,

H0 = 1
3

{
a
a

}
+ 1

2

{
α
α

}
. (2.7)

The interaction symbols
{ ·
·

}
have the following meaning: For example,

{
β
a

}
picks any

boson φa from the chain and replaces it by a fermion ψβ. Here Latin and Greek indices
refer to bosons and fermions, respectively. A homogeneous sum over all sites with proper
grading is implicit in this notation.

The su(3) and su(2) representations are finite-dimensional and cannot be deformed
continuously

Ra
b(g) = (R0)

a
b, Lα

β(g) = (L0)
α
β. (2.8)

The representation of supercharges is deformed at all order in g, the first correction reads

(Q1)
α
b = εαγεbde

{
de
γ

}
, (S1)

a
β = εacdεβε

{
ε
cd

}
. (2.9)

Symbols
{ ···
···

}
with more than two indices refer to more complex interactions. For exam-

ple,
{
ε
cd

}
replaces a sequence of two bosons φcφd by a single fermion ψε. In the model the

3



range of interactions is bounded by the perturbative order: At order gn the interactions
may consist of no more than 2 +n spins (incoming plus outgoing), i.e. three in this case.

In fact, this is the leading appearance of dynamic effects within the model. The
restriction to cyclic states simplifies the specification of interactions symbols: In cyclic
states only the sequence of spins matters but not their overall position along the chain.
Thus there is no need to specify how the final spins (ψε) are aligned with respect to the
initial spins (φcφd), e.g. left, right or centred.

These first corrections to the supercharges preserve the algebra. The possibility of
such corrections is in fact very remarkable and related to a compatibility of the repre-
sentation theory of cyclic chains of length L and L+ 1.

Hamiltonian. The role of the Hamiltonian is somewhat special. It is a Cartan genera-
tor of su(2|3), but unlike the others its representation does receive corrections. Without
loss of generality [3] we may assume that (2.5) holds for H0 instead of H(g)

[H0,Q
α
b(g)] = +1

6
Qα

b(g), [H0,S
a
β(g)] = −1

6
Sa

β(g). (2.10)

and consequently for δH(g) = H(g)− H0

[δH(g),Qα
b(g)] = 0, [δH(g),Sa

β(g)] = 0. (2.11)

In other words, the quantum corrections to the Hamiltonian are invariant under the full
representation of su(2|3). In particular, the leading correction to H(g) must be invariant
under the undeformed su(2|3) representation. The simplest non-trivial such term is a
graded permutation of two sites which can first appear at order g2. Together with a
two-site identity operator the second order contribution reads

H2 =
{
ab
ab

}
+
{
αb
αb

}
+
{
aβ
aβ

}
+
{
αβ
αβ

}
−
{
ba
ab

}
−
{
bα
αb

}
−
{
βa
aβ

}
+
{
βα
αβ

}
. (2.12)

The next correction to the Hamiltonian appears at order g3

H3 = −εabcεδε
{
δε
abc

}
− εαβεcde

{
cde
αβ

}
. (2.13)

It is compatible with the first corrections to the supercharges Q1 and S1. To some extent
one can say that the Hamiltonian generally is shifted by two orders in g with respect to
the remainder of the algebra.

Beyond. The higher orders of the Hamiltonian and the algebra have been constructed
at orders O(g6) and O(g4), respectively in [3]. The concrete expressions are long and
little enlightening, but they appear to preserve integrability.

A dynamic charge which commutes with the whole algebra has been derived in [16]
at order O(g1) providing evidence for the compatibility of integrability with dynamic
effects.

To make integrability rigorous one could construct the bi-local Yangian generators
and show that they commute properly with the algebra and among themselves. The
Yangian generators Ĵ are expected to take the generic form [4,17–19]

ĴIJ ∼ {J IK |JKJ} − {JKJ |J IK}+ local, (2.14)
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where the vertical bar stands for arbitrarily many intermediate sites and the local terms
represent a local regularisation of the bi-local insertions. For example, the Yangian
generator Q̂ corresponding to the supercharge Q reads at leading order

(Q̂0)
α
b ∼

{
α
c

∣∣ c
b

}
−
{
c
b

∣∣α
c

}
+
{
α
γ

∣∣γ
b

}
−
{
γ
b

∣∣α
γ

}
. (2.15)

The first correction is expected to take the form

(Q̂1)
α
b ∼ εαγεdef

({
de
γ

∣∣f
b

}
−
{
f
b

∣∣de
γ

})
+ εγδεbde

({
α
γ

∣∣de
δ

}
−
{
de
δ

∣∣α
γ

})
, (2.16)

where in both expressions the local regularisation terms are very restricted and can
merely be proportional to Q0 and Q1, respectively. It may be interesting to treat the
realisation of the Yangian algebra explicitly. In particular, there may be complications
[18] due to the fact that the Hamiltonian is part of the algebra itself and because it is
well-known that the Yangian is conserved only up to boundary terms.

3 Undynamic Chain

Dynamic spin chains as presented in the previous section have not been explored to a
large extent yet. In this section we present an alternative formulation in terms of a chain
with an undynamic Hamiltonian. The reformulation will show that the difficulties of
this particular model cannot be attributed to the dynamic effects. They are rather due
to the long-range nature of the interactions.

Hilbert Space. The dynamic effects are essentially due to the degeneracy of quantum
numbers for φ[1φ2φ3] and ψ[1ψ2]. The trick of freezing out the dynamic effects consists
in moving one of the bosons into the “background” and thus balancing the number of
spins.

Let us single out one of the three bosons

Z := φ3 (3.1)

and restrict Latin indices to the range a, b = 1, 2 for the remainder of the paper. We
now introduce composites as the fundamental spin degrees of freedom

φan := φaZ · · · Z︸ ︷︷ ︸
n

, ψαn := ψαZ · · · Z︸ ︷︷ ︸
n

, V =
∞⊕
n=0

〈
φ1
n, φ

2
n

∣∣ψ1
n, ψ

2
n

〉
. (3.2)

Every state of the above dynamic Hilbert space can obviously be translated to a state of
an undynamic Hilbert space defined analogously to (2.2). One simply counts the number
of Z’s following any of the φa or ψα and puts as an additional index to the spin.2 Note
that by this redefinition we trade in the dynamic effects for infinitely many spin degrees
of freedom.

2The only exceptions are the states made from Z alone. These states cannot be represented, but
luckily they are trivial and can be ignored to a large extent.
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Algebra Decomposition. Clearly the new notation breaks the manifest su(3) sym-
metry of the bosons to su(2). Together with the other su(2) and some of the fermionic
generators the residual symmetry algebra reduces to u(2|2). This subalgebra is char-
acterised by preserving the number of spin sites and it includes the Hamiltonian. The
remaining generators are actually still dynamic but it in a controlled way: They either
add or take away one site.

Let us decorate the residual u(2|2) generators by a tilde. Their embedding into su(2|3)
is given by

R̃a
b = Ra

b + 1
2
δabR

3
3,

L̃α
β = Lα

β,

Q̃α
b = Qα

b,

S̃a
β = Sa

β,

B̃ = 3
2
R3

3,

C̃ = H− 1
2
R3

3. (3.3)

We shall call the remaining generators dynamic and distinguished them by a hat. Their
embedding into su(2|3) reads

R̂a = Ra
3,

Q̂α = Qα
3,

R̂a = R3
a,

Ŝα = S3
α. (3.4)

The residual u(2|2) algebra is determined by the following brackets

[B̃, Q̃α
b] = +1

2
Q̃α

b,

[B̃, S̃a
β] = −1

2
S̃a

β,
{Q̃α

b, S̃
c
δ} = δαδ R̃c

b + δcbL̃
α
δ + δαδ δ

c
bC̃, (3.5)

along with the obvious brackets of su(2) × su(2) generators and trivial brackets for the
central charge C̃. The dynamical generators form two irreducible multiplets of u(2|2):
(R̂a, Q̂α) and (R̂a, Ŝα). The non-obvious mixed brackets for the first multiplet take the
form

[Q̃α
b, R̂

c] = δcbQ̂
α,

{S̃a
β, Q̂

γ} = δγβR̂
a,

[B̃, R̂a] = −3
2
R̂a,

[B̃, Q̂α] = −Q̂α,

[C̃, R̂a] = +1
2
R̂a,

[C̃, Q̂α] = +1
2
Q̂α. (3.6)

The brackets for the conjugate multiplet essentially follow by conjugation. Finally, the
non-trivial brackets between the dynamic generators yield

[R̂a, R̂b] = R̃a
b − δab B̃,

[R̂a, Ŝβ] = S̃a
β,

[Q̂α, R̂b] = Q̃α
b,

{Q̂α, Ŝβ} = L̃α
β + δαβ (B̃ + C̃). (3.7)

Representation of the Residual Algebra. With the above decomposition relations
it is straight-forward to convert the representation of the previous section to the new
basis. The leading order u(2|2) algebra reads

Ra
b =

{
a(n)
b(n)

}
− 1

2
δab
{
c(n)
c(n)

}
,

Lα
β =

{
α(n)
β(n)

}
− 1

2
δαβ
{
γ(n)
γ(n)

}
,

(Q0)
α
b =

{
α(n)
b(n)

}
,

(S0)
a
β =

{
a(n)
β(n)

}
,

C̃0 = 1
2

{
I(n)
I(n)

}
,

B̃ = n
{
I(n)
I(n)

}
− 1

2

{
a(n)
a(n)

}
. (3.8)

Here we have extended the notation for interaction symbols in a hopefully evident way
to the new states (3.2), where n stands for the number of trailing Z’s. A repeated upper
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and lower index n is implicitly summed over all integers starting from 0. A capital Latin
letter represents either a boson or fermion. For example, the symbols

{
I(n)
I(n)

}
and n

{
I(n)
I(n)

}
count the length of the new chain and the number of Z’s, respectively.

The leading correction to the supercharges reads

(Q̃1)
α
b = εαγεbd

({
d(n+1)
γ(n)

}
−
{
I(k+1),d(n)
I(k),γ(n)

})
,

(S̃1)
a
β = εacεβδ

({
δ(n)
c(n+1)

}
−
{

I(k),δ(n)
I(k+1),c(n)

})
. (3.9)

While in (2.9) all interactions were one-to-two or two-to-one site, here we get one-to-one
site or two-to-two site operators. In the case of the two-to-two site contributions the
second site is merely needed to account for the change of leading Z’s which cannot be
represented otherwise.

A careful conversion of the leading interacting Hamiltonian (2.12) yields the new
representation

C̃2 =
{
I(k),J(n+1)
I(k),J(n+1)

}
−
{
I(k+1),J(n)
I(k),J(n+1)

}
−
{
I(k),J(n+1)
I(k+1),J(n)

}
+
{
I(k+1),J(n)
I(k+1),J(n)

}
+
{
I(0),J(n)
I(0),J(n)

}
−
{
a(0),b(n)
b(0),a(n)

}
−
{
α(0),b(n)
b(0),α(n)

}
−
{
b(0),α(n)
α(0),b(n)

}
+
{
β(0),α(n)
α(0),β(n)

}
. (3.10)

Gladly, this is still a nearest-neighbour spin chain Hamiltonian. Note that the terms
on the two above lines have a somewhat different meaning: The terms on the first row
represent propagation terms of the magnons along the original chain, while the terms on
the second row represent spin interactions of two adjacent magnons. The first correction
to the interacting Hamiltonian (2.13) was showed the leading appearance of dynamic
effects. In the new basis, however, the length remains fixed

C̃3 = εcdε
αβ
(
−
{
c(0),d(n+1)
α(0),β(n)

}
+
{
c(1),d(n)
α(0),β(n)

}
−
{
I(k+1),c(0),d(n)
I(k),α(0),β(n)

})
+ εcdεαβ

(
−
{

α(0),β(n)
c(0),d(n+1)

}
+
{
α(0),β(n)
c(1),d(n)

}
−
{

I(k),α(0),β(n)
I(k+1),c(0),d(n)

})
. (3.11)

Representation of Dynamic Generators. Note that C0 measures half the length
of the undynamic chain and thus the two brackets in (3.6) imply that the generators R̂a

and Q̂α add one site while R̂a and Ŝα remove one site. The leading-order representation
takes the form

R̂a =
{
I(k),a(n−1−k)

I(n)

}
,

(Q̂0)
α =

{
I(k),α(n−1−k)

I(n)

}
,

R̂a =
{

I(n)
I(k),a(n−1−k)

}
,

(Ŝ0)α =
{

I(n)
I(k),α(n−1−k)

}
,

(3.12)

which changes the length by one unit, because they replace a background spin Z by
something else or vice versa.

Despite the length fluctuation, these generators close onto the one-to-one generators
of the residual u(2|2) representation. For example the non-manifest su(3) brackets can
be performed easily

[R̂a, R̂b] =
∞∑
m=0

∞∑
n=0

n−1∑
k=0

m−1∑
j=0

[{
I(k),a(n−1−k)

I(n)

}
,
{

J(m)
J(j),b(m−1−j)

}]
=
∞∑
k=0

∞∑
n=0

{
I(k),a(n)
I(k),b(n)

}
−
∞∑
n=0

δabn
{
I(n)
I(n)

}
= R̃a

b − δab B̃, (3.13)
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as it should according to (3.7).
The first correction to the dynamic supercharges reads

(Q̂1)
α = εαβεcd

{
c(0),d(n)
β(n)

}
, (Ŝ1)α = εcdεαβ

{
β(n)

c(0),d(n)

}
. (3.14)

Actually, it is not necessary to specify either of the pairs Q̂, Ŝ or Q̃, S̃ explicitly because
according to (3.6,3.7) one pair can simply be obtained from the other by commutation
with the exact generators R̂.

Dynamic (super)symmetries which relate conventional nearest-neighbour spin chain
models at lengths differing by one unit are not unheard of: In particular they have
appeared in various sectors of AdS/CFT [20, 6, 21, 22]. They also exist for the XXX1

chain [23], the XXZ1/2 chain with q = e±2πi/3 [24, 25] (or more generally XXZs with
q = enπi/(1±s)), and a more exotic model [26]. They all share the feature that Bethe
roots at rapidity 0 induce the symmetry and that the symmetry can only exist for cyclic
closed chains or for open chains.

4 Comments

In this final section I would like to comment on the reformulation performed in the
previous section and on the possibility of extending such a reformulation to the whole
AdS/CFT spin chain with psu(2, 2|4) symmetry.

Algebraic Formulation. It is fair to say that the picture presented in the previous
section does not constitute an improvement of the situation per se. For example, the
construction of [3] would not simplify in the new basis. In fact it would be somewhat
worse, because the range of the interactions changes drastically between the pictures:
The perturbative construction is expected to follow the range of the original spin chain,
while the range in the new basis represents the number of magnon excitations involved in
the interaction. Moreover, the manifest su(3) symmetry reduces to merely su(2)× u(1).
Finally, there is an unaesthetic asymmetry between leading and trailing background spins
Z. Nevertheless, there is a one-to-one map of interactions, and thus essentially nothing
is lost by the change of picture.

The potential advantages of the new basis are of a more formal nature. There is
some hope that the absence of dynamic effects for a large part of the algebra will make
the model more accessible to conventional algebraic methods such as a Hopf algebra
treatment. For example, to represent the action of symmetry generators through a
coproduct appears reasonable only if the representation is undynamic. However, the
problems introduced by long-range interactions certainly remain to be overcome. The
remaining dynamic symmetry generators change the length by exactly one unit, which is
much better than the arbitrariness in the original picture. In fact the various symmetry
enhancements discussed in [24,26,25] and [20,6,22] are of or can be brought to this form
and they call for a more general story yet to be understood.
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Excitation Picture. The picture advertised here closely resembles what one obtains
by performing the coordinate Bethe ansatz in [27].3 Namely, the spin Z is treated as a
background spin and the magnons become sites of the reduced chain with 2|2 spin orien-
tations per site. The only difference is that magnons carry a definite momentum while
here the spin orientation also specifies the distance between two adjacent excitations.4

In that sense, these two pictures are essentially related by Fourier transformation.
In fact, the residual u(2|2) algebra acting on the new basis coincides with the su(2|2)

algebra of the coordinate Bethe ansatz. In this context the difference between the pictures
is that here UV effects, i.e. what happens whey two magnons come close (in the original
model), can be honestly represented. This may be crucial for understanding finite-
size effects. In the asymptotic coordinate Bethe ansatz such effects are largely ignored
and collectively accounted for by the S-matrix. Conversely, here it is not possible to
represent gauge transformations in a consistent manner. In the coordinate Bethe ansatz
the gauge transformations alias the central extensions were crucial for success of the
construction. Representing the su(2|2) algebra within the coordinate Bethe ansatz is
particularly simple because one only has to understand the single-magnon representation
and how to assemble multi-magnon representation from that. The latter is achieved by a
coproduct [29] within the Hopf algebra framework. One might actually do the same here,
at least to some approximation: Namely, find a representation of u(2|2) on the infinite-
dimensional spin module. A similar proposal has appeared recently for the closely related
exceptional superalgebra d(2, 1;α) in [30].

Complete AdS/CFT Spin Chain. It would be desirable to represent the complete
AdS/CFT spin chain with psu(2, 2|4) symmetry. However, the generalisation is not
straight-forward: The spin module V contains not only the background spin and sin-
gle excitations, but also multiple excitations. The decomposition of V in terms of the
subalgebras psu(2|2)× psu(2|2) reads [31]

V =
∞⊕
n=0

Vn ⊗ V ′n, Vn = (V1)
⊗n∣∣

antisym
. (4.1)

Here V0 is the trivial module spanned by the background spin Z and Vn is the n-
fold graded anti-symmetric tensor product of V1 = 〈φ1, φ2|ψ1, ψ2〉. The V ′n denote the
corresponding modules of the second psu(2|2). There are now two ways in which one
could attempt to proceed:

As before one could dress each of the components Vn ⊗ V ′n for n 6= 0 by an arbitrary
number of background spins Z. However this would not freeze the spin chain because
only the overall number of excitations n is conserved. For example, two single excitations
(n = 1) can be mapped to one double excitation (n = 2).

Instead one should work only with V1 ⊗ V ′1 trailed by arbitrarily many background
spins Z. The higher excitations would be represented by gluing together single excita-
tions. For example the double excitation Z̄ can be thought of as being composed from

3A similar picture also underlies the NLIE approach, see e.g. [28].
4It might also be worthwhile to investigate an absolute (instead of relative) position space picture,

where, however, length fluctuations may become difficult to handle.
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φb ⊗ φȧ and φd ⊗ φċ:
Z̄n → εbdεȧċ (φb ⊗ φȧ)−1(φ

d ⊗ φċ)n. (4.2)

Here the number “−1” of trailing Z’s is meant to indicate that the two consecutive sin-
gle excitations reside on a single site (i.e. −1 sites in between) and thus form a double
excitation. The problem with this representation is the graded anti-symmetrisation im-
plicit for multiple excitations. Consequently the Hilbert space HL of the model contains
additional unphysical states.5 Therefore one has to ensure that the Hamiltonian and
the symmetry generators do not map physical states to unphysical states. One could
project out unphysical states from the Hilbert space from the start. This would lead
to potential problems with the definition of interactions (they have to be compatible
with the projection). Alternatively one could adjoin the Hamiltonian with a projection
onto physical states. Unfortunately the latter are defined in a long-ranged fashion (an
arbitrary number of adjacent spins has to be symmetrised). This apparently makes even
the leading-order Hamiltonian long-ranged.

Conclusions. In conclusion, I have presented a reformulation of the su(2|3) dynamic
spin chain constructed in [3] where the dynamic effects are frozen out for a u(2|2) subal-
gebra including the Hamiltonian. The other generators remain dynamic, but they merely
change the length by precisely one unit as in [24–26, 20, 6, 21, 22]. The reformulation is
intended to make the chain more accessible to a conventional algebraic treatment; it is
merely the first step.

The change of picture works nicely for su(2|3) where only single excitations of the
ferromagnetic vacuum exist. A similar treatment of the complete AdS/CFT spin chain
with psu(2, 2|4) symmetry and infinite-dimensional spin representations requires further
insight due to the existence of multiple coincident excitations. However, if the proposed
undynamic reformulation leads to a better understanding of the su(2|3) model then there
may well be a way to generalise those results to psu(2, 2|4).
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