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The su(2|3) Undynamic Spin Chain

Niklas BEISERT

Maz-Planck-Institut fir Gravitationsphysik, Albert-FEinstein-Institut,
Am Mdihlenberg 1, 14476 Potsdam, Germany

The integrable spin chain found in perturbative planar A/ = 4 supersymmetric gauge
theory is dynamic. Here we propose a reformulation which removes the dynamic effects in
order to make the model more accessible to an algebraic treatment.

§1. Introduction

The study of integrable structures in planar perturbative N' = 4 supersym-
metric Yang-Mills theory following the works?®) has led to the discovery of an
exciting integrable spin chain model. It displays several unusual and novel features
with respect to the established integrable spin chains: First of all, the spin chain
is perturbatively long-ranged.*) In other words, the Hamiltonian not only acts on
nearest-neighbouring spins, but also on longer blocks of adjacent spins. The range
is controlled by the perturbative order in a coupling constant g ~ 0. Moreover the
chain is dynamic,” that is, the Hamiltonian may dynamically change the number
of spin sites of the chain. Finally, the Hamiltonian is an inseparable part of the
symmetry algebra. Consequently, all the above features of the Hamiltonian apply
to the symmetry generators as well. In addition it can be remarked that the spin
module is non-compact and graded into bosons and fermions.

Despite these complications, it appears that the Hamiltonian is completely inte-
grable.)6) Because it is homogeneous and acts locally, one can apply the asymptotic
coordinate Bethe ansatz.”)® The form of the asymptotic Bethe equations? is fully
constrained by symmetry considerations,!?) merely one phase function remains un-
determined. Imposing a further crossing symmetry!'):12) together with inspiration
from the dual superstring theory on AdSs x S°13) and its integrable structure® one
arrives at a viable proposal for the phase!®:16) which has since passed several highly
non-trivial tests.!”)20)

Note well that the above-mentioned asymptotic Bethe equations describe the
spectrum only up to certain finite-size corrections, see Refs. 21), 22) and references
therein, yet to be understood from the integrable model point of view. A conceiv-
able path towards the exact finite-size spectrum is to fully understand the algebraic
structure underlying the integrable spin chain model. One of the obstacles are the
dynamic effects for which the conventional algebraic structures appear to be inap-
plicable.

In this note we consider the prototypical dynamic sector of the N' = 4 SYM
spin chain with su(2|3) symmetry.?>*) We shall propose an undynamic reformula-

*) The N = 6 superconformal Chern-Simons theory®® with 0sp(6]4, R) symmetry has an anal-
ogous su(2[3) sector.?”) The results of Ref. 5) and of this note are general and they also apply to
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tion where length fluctuations are absent for a large part of the algebra including the
Hamiltonian. This is meant to facilitate an eventual algebraic treatment the model.
We will start with a review of the su(2|3) sector, then propose the undynamic refor-
mulation and finally discuss the implications and potential pitfalls.

§2. Dynamic chain

Let us start by reviewing the (apparently) integrable su(2|3) dynamic spin chain
constructed in Ref. 5).

2.1. Hilbert space

The spin at each site can be in three bosonic states |¢?) with a = 1,2, 3, and two
fermionic states [¢)*) with a = 1,2. Thus the graded spin module V is thus spanned
by the five states

V= (4", 0% 6’|, ¢?). (211)
The Hilbert space H of the spin chain model is given by the direct sum of cyclic
chain spaces Hp, of arbitrary length L

(22)

o
H= @HL’ HL = V®L‘cyclic'
L=1
The space V®L\Cyclic represents the subspace of V¥ on which the graded cyclic shift
operator acts as the identity. The dynamic nature of the model consists in the fact
that the Hamiltonian (as well as the other symmetry generators) acts as an endo-
morphism of H and not of the individual Hy’s, in other words, the length of the
spin chain is a dynamic quantity. Furthermore our spin chain is homogeneous which
entails the restriction to cyclic states: Homogeneous operators commute with the
graded permutation whose spectrum exp(2miZ/L) crucially depends on the length.
The only common eigenvalue on chains of L and L+ 1 is 1 and thus dynamic homo-
geneous models must be based on cyclic states.

2.2. Symmetry Algebra.

The symmetry of the dynamic chain is assumed to be su(2|3). This algebra is
spanned by the su(3) generators R%, (R?*, = 0), the su(2) generators £%, (£%, = 0),
the fermionic generators Q¢ and &“%g and finally the Hamiltonian §. The Lie
superalgebra is given by the canonical Lie brackets for su(3) and su(2) and the
supercharges transform in (anti)fundamental representations, e.g.

R, Q74 = =597 + %5253’761. (2-3)
The non-trivial brackets among the supercharges are given by
{Q%, &%} = 65N + 05£% + 05 5,9 (24)
Finally, the weights of the supercharges with respect to the Hamiltonian read
[9,9%] = +Q%.  [9,6%] = —§6". (2:5)

this model with some minor modifications regarding, e.g. the coupling constant and the embedding.
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2.3. Representation

We want to construct a family of representations J(g) of su(2|3) on the Hilbert
space H parametrised by a coupling constant g. The coupling constant g is assumed
to be small and we shall treat the representation as a perturbation series around
g=20

J9) =0+ g+t . (2:6)

At leading order the representation Jg is given by the standard tensor product of
fundamental representations of su(2|3)

<%>“b={2}—%5z‘:{i}v (Qo)ab:{ }’ 50:1{a}+1{a} (2:7)
(L)% ={5} —205{7},  (&0)'s = {3} Srel s 2ie
The interaction symbols {} have the following meaning: For example, {f } picks
any boson ¢® from the chain and replaces it by a fermion ¢/°. Here Latin and Greek
indices refer to bosons and fermions, respectively. A homogeneous sum over all sites
with proper grading is implicit in this notation.

The su(3) and su(2) representations are finite-dimensional and cannot be de-
formed continuously

R%(9) = (Ro)%,  £%(9) = (£0)%- (2-8)

The representation of supercharges is deformed at all order in g, the first correction
reads

(Q1)% = " epae{ C,lye }, (61)% = e {5} (2+9)

Symbols {:::} with more than two indices refer to more complex interactions. For
example, {Ced} replaces a sequence of two bosons ¢°¢? by a single fermion €. In the
model the range of interactions is bounded by the perturbative order: At order g"
the interactions may consist of no more than 2 4+ n spins (incoming plus outgoing),
i.e. three in this case.

In fact, this is the leading appearance of dynamic effects within the model. The
restriction to cyclic states simplifies the specification of interactions symbols: In
cyclic states only the sequence of spins matters but not their overall position along
the chain. Thus there is no need to specify how the final spins (¢¢) are aligned with
respect to the initial spins (¢¢?), e.g. left, right or centred.

These first corrections to the supercharges preserve the algebra. The possibility
of such corrections is in fact very remarkable and related to a compatibility of the
representation theory of cyclic chains of length L and L + 1.

2.4. Hamiltonian

The role of the Hamiltonian is somewhat special. It is a Cartan generator of
su(2]3), but unlike the others its representation does receive corrections. Without
loss of generality® we may assume that (2-5) holds for $)y instead of $(g)

(90, Q%(9)] = +52%(9), [90,6%5(9)] = —56%3(9), (2-10)
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and consequently for 69(g) = H(g) — $Ho

[555(9)7530‘17(9)] =0, [55(9)7 6aﬁ(g)] =0. (2'11)

In other words, the quantum corrections to the Hamiltonian are invariant under the
full representation of su(2|3). In particular, the leading correction to $(g) must
be invariant under the undeformed su(2|3) representation. The simplest non-trivial
such term is a graded permutation of two sites which can first appear at order g2.
Together with a two-site identity operator the second order contribution reads

d2= {0} it o) t{ag) — ) - ey - Lo +{as) @12)
The next correction to the Hamiltonian appears at order ¢>
3 = —sabce(;e{ flfc} - e“ﬁscde{ ng ) (2-13)

It is compatible with the first corrections to the supercharges 1 and &1. To some
extent one can say that the Hamiltonian generally is shifted by two orders in g with
respect to the remainder of the algebra.

2.5. Beyond

The higher orders of the Hamiltonian and the algebra have been constructed at
orders O(g%) and O(g*), respectively in Ref. 5). The concrete expressions are long
and little enlightening, but they appear to preserve integrability.

A dynamic charge which commutes with the whole algebra has been derived in
Ref. 25) at order O(g') providing evidence for the compatibility of integrability with
dynamic effects.

To make integrability rigorous one could construct the bi-local Yangian genera-
tors and show that they commute properly with the algebra and among themselves.
The Yangian generators J are expected to take the generic form®:26)-28)

Iy~ T | TE 5y = {T5 5| T k) + local, (2-14)

where the vertical bar stands for arbitrarily many intermediate sites and the local
terms represent a local regularisation of the bi-local insertions. For example, the
Yangian generator £ corresponding to the supercharge £ reads at leading order

Q)% ~ {25} = (ol + {513 - (315 (2:15)
The first correction is expected to take the form
Q)% ~ eeaer ({11} = 115D + e ({515} - {515}, (216)

where in both expressions the local regularisation terms are very restricted and
can merely be proportional to Qp and i, respectively. It may be interesting to
treat the realisation of the Yangian algebra explicitly. In particular, there may be
complications?” due to the fact that the Hamiltonian is part of the algebra itself and
because it is well-known that the Yangian is conserved only up to boundary terms.
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§3. Undynamic chain

Dynamic spin chains as presented in the previous section have not been explored
to a large extent yet. In this section we present an alternative formulation in terms
of a chain with an undynamic Hamiltonian. The reformulation will show that the
difficulties of this particular model cannot be attributed to the dynamic effects. They
are rather due to the long-range nature of the interactions.

3.1. Hilbert space

The dynamic effects are essentially due to the degeneracy of quantum numbers
for ¢p1 23 and Y11hg). The trick of freezing out the dynamic effects consists in
moving one of the bosons into the “background” and thus balancing the number of
spins.

Let us single out one of the three bosons

Z:=¢ (31)

and restrict Latin indices to the range a,b = 1, 2 for the remainder of the paper. We
now introduce composites as the fundamental spin degrees of freedom

=022, YL =yZ.-Z. V=P (oL vl v (32

n n n=0

Every state of the above dynamic Hilbert space can obviously be translated to a state
of an undynamic Hilbert space defined analogously to (2-2). One simply counts the
number of Z’s following any of the ¢% or ¥* and puts as an additional index to the
spin.*) Note that by this redefinition we trade in the dynamic effects for infinitely
many spin degrees of freedom.

3.2. Algebra decomposition

Clearly the new notation breaks the manifest su(3) symmetry of the bosons
to su(2). Together with the other su(2) and some of the fermionic generators the
residual symmetry algebra reduces to u(2[2). This subalgebra is characterised by
preserving the number of spin sites and it includes the Hamiltonian. The remaining
generators are actually still dynamic but it in a controlled way: They either add or
take away one site.

Let us decorate the residual u(2|2) generators by a tilde. Their embedding into
su(2|3) is given by
MY, = R, + 26003, Q% =9%, B =3IR%,

Log = £%, Gy =6%,  C=9-1R%. (33)

We shall call the remaining generators dynamic and distinguished them by a hat.

*) The only exceptions are the states made from Z alone. These states cannot be represented,
but luckily they are trivial and can be ignored to a large extent.
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Their embedding into su(2|3) reads

E}A{a = %a& f}A}‘a = 9{3%
Q* =Q%, 6, =63, (3-4)

The residual u(2|2) algebra is determined by the following brackets:

[%7 éab] = +%5§abv

B, 605 = — 169, (9%, &%) = 080 + 558% + 6555€, (35)
) - 3 3

along with the obvious brackets of su(2) x su(2) generators and trivial brackets for the
central charge €. The dynamical generators form two irreducible multiplets of u(2[2):
(R?*, Q%) and (Rg, S4). The non-obvious mixed brackets for the first multiplet take
the form

[éab’%c] — 65{)(1’ [% E}A“ta] — _%%a7 [é’ %a] — +%§{a?
&=, [B.07=-0"  [€4]=+2" (36

The brackets for the conjugate multiplet essentially follow by conjugation. Finally,
the non-trivial brackets between the dynamic generators yield

[%av iﬁb] = ii'{ab - 6[?%7 [éa7 E}A{b] = éab?
[%av Gﬁ] = Gaﬁv {Qa’ 65} = Saﬁ + 6%(% + Q:) (37)
3.3. Representation of the residual algebra

With the above decomposition relations it is straightforward to convert the rep-
resentation of the previous section to the new basis. The leading order u(2]2) algebra
reads

B} (0% = {?:é:;i} € =3{im}

{3523} (&) ={5m}  B=n{im}-a{am}
(3-8)

Here we have extended the notation for interaction symbols in a hopefully evident

way to the new states (3-2), where n stands for the number of trailing Z’s. A

repeated upper and lower index n is implicitly summed over all integers starting

from 0. A capital Latin letter represents either a boson or fermion. For example,

the symbols {%Z;} and n{ %Z;} count the length of the new chain and the number

of Z’s, respectively.

The leading correction to the supercharges reads

(Q1)% = e ({1000 = {1520},
(&) = =5 ({000} = {00000 1) - (3:9)

While in (2-9) all interactions were one-to-two or two-to-one site, here we get one-to-
one site or two-to-two site operators. In the case of the two-to-two site contributions

ms: WQ
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the second site is merely needed to account for the change of leading Z’s which
cannot be represented otherwise.

A careful conversion of the leading interacting Hamiltonian (2-12) yields the new
representation

= {1 k:)7J ZI

+ {10}t

, n

k+1),
k—l—l) J n)}

}+{ﬂ(° (n) 1}, (310)

n

(k+1), I(k),J(n+1)

} - {1( n+1 - {I(k+1) J(n)} + {1

a(O b(n) n
} { 0),a(n) } { b(0 } { b(n
Gladly, this is still a nearest-neighbour spin chain Hamiltonian. Note that the terms
on the two above lines have a somewhat different meaning: The terms on the first row
represent propagation terms of the magnons along the original chain, while the terms
on the second row represent spin interactions of two adjacent magnons. The first

correction to the interacting Hamiltonian (2-13) was showed the leading appearance
of dynamic effects. In the new basis, however, the length remains fixed

& = €Cd6aﬁ< {“Qorsm }+ {0 5(71))} { e )/fl(n)}>

+ €Cd5a/3 (*{ (0), d(n(ﬂ } + { e(1),d 5 : } {1 Ic+1C)X(O()O) L(i(?)@) }> - (311)

3.4. Representation of dynamic generators

e 2=
NN /—\/—\

Note that €y measures half the length of the undynamic chain and thus the two
brackets in (3-6) imply that the generators R* and Q¢ add one site while R, and
&, remove one site. The leading-order representation takes the form

),a(n—1—k) noo_ I(n)
= { I(n) }7 Ry = {I(k),a(nflfk) 2
. — [1(k),a(n—1-k) 3 — I(n)
<Q0)a - { 03(2) }v (So0)a = {I(k),a(g—l—k) }7
which changes the length by one unit, because they replace a background spin Z by
something else or vice versa.
Despite the length fluctuation, these generators close onto the one-to-one gen-

erators of the residual u(2|2) representation. For example the non-manifest su(3)
brackets can be performed easily

m mb ZZZZ[ k)af((r'zz)lk}{JQ mlj}]
:ZZ{I];;%Z(”} 2517 {§EZ§} R, — 6B, (3-13)

k=0n=0

(3-12)

as it should according to (3-7).
The first correction to the dynamic supercharges reads
2 0),d
(Ql)a = €aﬁe’fcd{c(ﬁ)(ngn)}, (Gl)cx = 8 z’faﬂ{ ﬁ(n) } (3-14)
Actually, it is not necessary to specify either of the pairs Q, S or 9,6 explicitly
because according to (3-6) and (3-7) one pair can simply be obtained from the other
by commutation with the exact generators fR.
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Dynamic (super)symmetries which relate conventional nearest-neighbour spin
chain models at lengths differing by one unit are not unheard of: In particular they
have appeared in various sectors of AdS/CFT 9),29)-31) They also exist for the XXX
chain,?? the XXZy/p chain with ¢ = eF2mi/3 33),34) (or more generally XXZs with
q= e”’ri/(lis)), and a more exotic model.?) They all share the feature that Bethe
roots at rapidity 0 induce the symmetry and that the symmetry can only exist for
cyclic closed chains or for open chains.

§4. Comments

In this final section I would like to comment on the reformulation performed in
the previous section and on the possibility of extending such a reformulation to the
whole AdS/CFT spin chain with psu(2,2|4) symmetry.

4.1. Algebraic formulation

It is fair to say that the picture presented in the previous section does not con-
stitute an improvement of the situation per se. For example, the construction of
Ref. 5) would not simplify in the new basis. In fact it would be somewhat worse,
because the range of the interactions changes drastically between the pictures: The
perturbative construction is expected to follow the range of the original spin chain,
while the range in the new basis represents the number of magnon excitations in-
volved in the interaction. Moreover, the manifest su(3) symmetry reduces to merely
su(2) xu(1). Finally, there is an unaesthetic asymmetry between leading and trailing
background spins Z. Nevertheless, there is a one-to-one map of interactions, and
thus essentially nothing is lost by the change of picture.

The potential advantages of the new basis are of a more formal nature. There
is some hope that the absence of dynamic effects for a large part of the algebra will
make the model more accessible to conventional algebraic methods such as a Hopf
algebra treatment. For example, to represent the action of symmetry generators
through a coproduct appears reasonable only if the representation is undynamic.
However, the problems introduced by long-range interactions certainly remain to
be overcome. The remaining dynamic symmetry generators change the length by
exactly one unit, which is much better than the arbitrariness in the original picture.
In fact the various symmetry enhancements discussed in Refs. 33)-35), 9), 29) and
31) are of or can be brought to this form and they call for a more general story yet
to be understood.

4.2. FExcitation picture

The picture advertised here closely resembles what one obtains by performing the
coordinate Bethe ansatz in Ref. 36).*) Namely, the spin Z is treated as a background
spin and the magnons become sites of the reduced chain with 2|2 spin orientations
per site. The only difference is that magnons carry a definite momentum while here

*) A similar picture also underlies the NLIE approach [see e.g. Refs. 37) and 38)].
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the spin orientation also specifies the distance between two adjacent excitations.®
In that sense, these two pictures are essentially related by Fourier transformation.

In fact, the residual u(2|2) algebra acting on the new basis coincides with the
su(2]2) algebra of the coordinate Bethe ansatz. In this context the difference be-
tween the pictures is that here UV effects, i.e. what happens whey two magnons
come close (in the original model), can be honestly represented. This may be cru-
cial for understanding finite-size effects. In the asymptotic coordinate Bethe ansatz
such effects are largely ignored and collectively accounted for by the S-matrix. Con-
versely, here it is not possible to represent gauge transformations in a consistent
manner. In the coordinate Bethe ansatz the gauge transformations alias the central
extensions were crucial for success of the construction. Representing the su(2]2) al-
gebra within the coordinate Bethe ansatz is particularly simple because one only has
to understand the single-magnon representation and how to assemble multi-magnon
representation from that. The latter is achieved by a coproduct3?:40) within the
Hopf algebra framework. One might actually do the same here, at least to some ap-
proximation: Namely, find a representation of u(2|2) on the infinite-dimensional spin
module. A similar proposal has appeared recently for the closely related exceptional
superalgebra (2, 1; «) in Ref. 41).

4.3. Complete AdS/CFT spin chain

It would be desirable to represent the complete AdS/CFT spin chain with
psu(2,2|4) symmetry. However, the generalisation is not straightforward: The spin
module V contains not only the background spin and single excitations, but also
multiple excitations. The decomposition of V in terms of the subalgebras psu(2|2) x
psu(2]2) reads*?)

(41)

o0
V= @ Vn ® V;"L’ Vn = (V1)®n|antisym :
n=0
Here V) is the trivial module spanned by the background spin Z and V), is the n-fold
graded anti-symmetric tensor product of V; = (¢!, ¢?| 1!, 4?). The V! denote the
corresponding modules of the second psu(2|2). There are now two ways in which one
could attempt to proceed.

As before one could dress each of the components V, ® V), for n # 0 by an
arbitrary number of background spins Z. However this would not freeze the spin
chain because only the overall number of excitations n is conserved. For example,
two single excitations (n = 1) can be mapped to one double excitation (n = 2).

Instead one should work only with V, ® V| trailed by arbitrarily many back-
ground spins Z. The higher excitations would be represented by gluing together
single excitations. For example the double excitation Z can be thought of as being
composed from ¢’ ® ¢® and ¢¢ ® ¢°:

Z, — epacac (8" @ ¢*)_1(8" ® ¢°)n. (4-2)

) 1t might also be worthwhile to investigate an absolute (instead of relative) position space
picture, where, however, length fluctuations may become difficult to handle.
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Here the number “—1” of trailing Z’s is meant to indicate that the two consec-
utive single excitations reside on a single site (i.e. —1 sites in between) and thus
form a double excitation. The problem with this representation is the graded anti-
symmetrisation implicit for multiple excitations. Consequently the Hilbert space Hp,
of the model contains additional unphysical states.*) Therefore one has to ensure
that the Hamiltonian and the symmetry generators do not map physical states to
unphysical states. One could project out unphysical states from the Hilbert space
from the start. This would lead to potential problems with the definition of inter-
actions (they have to be compatible with the projection). Alternatively one could
adjoin the Hamiltonian with a projection onto physical states. Unfortunately the
latter are defined in a long-ranged fashion (an arbitrary number of adjacent spins
has to be symmetrised). This apparently makes even the leading-order Hamiltonian
long-ranged.

4.4. Conclusions

In conclusion, I have presented a reformulation of the su(2|3) dynamic spin
chain constructed in Ref. 5) where the dynamic effects are frozen out for a u(2|2)
subalgebra including the Hamiltonian. The other generators remain dynamic, but
they merely change the length by precisely one unit as in Refs. 9), 29)-31) and
33)-35). The reformulation is intended to make the chain more accessible to a
conventional algebraic treatment; it is merely the first step.

The change of picture works nicely for su(2|3) where only single excitations of
the ferromagnetic vacuum exist. A similar treatment of the complete AdS/CFT
spin chain with psu(2,2[4) symmetry and infinite-dimensional spin representations
requires further insight due to the existence of multiple coincident excitations. How-
ever, if the proposed undynamic reformulation leads to a better understanding of the
su(2]3) model then there may well be a way to generalise those results to psu(2,2[4).
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