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Flexible generation of correlated photon pairs in different frequency ranges
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The feasibility to generate correlated photon pairs at variable frequencies is investigated. For
this purpose, we consider the interaction of an off-resonant laser field with a two-level system pos-
sessing broken inversion symmetry. We show that the system generates non-classical photon pairs
exhibiting strong intensity-intensity correlations. The intensity of the applied laser tunes the degree
of correlation while the detuning controls the frequency of one of the photons which can be in the
THz-domain. Furthermore, we observe the violation of a Cauchy-Schwarz inequality characterizing
these photons.
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I. INTRODUCTION

The nature of light has always intrigued mankind and
its study has nowadays culminated in the field of quan-
tum optics investigating matter-field interaction [1, 2].
With the first measurement of an intensity-intensity cor-
relation function by Hanbury Brown and Twiss [3] and
the theoretical basis for the characterization of light by
Glauber [4, 5], scientists have efficient tools in their hands
to probe light fields for quantum signatures [6]. In the
last few decades, the interest in non-classical light has
grown significantly with the advent of quantum computa-
tion and information science [7]. Entangled photon pairs
turn out to be indispensable for many quantum proto-
cols [8] and quantum algorithms [9]. Currently, there are
a series of experimental techniques available to produce
entangled photons such as parametric down conversion
[10–12], four-wave mixing [13–15], electromagnetically in-
duced transparency [16, 17] or cavity QED [18, 19]. Fur-
thermore, an atomic memory for correlated photon states
has been realized experimentally, playing an essential role
for quantum communication over long distances [20–22].
Recently, a heralded entanglement source of great prac-
tical importance has been demonstrated [23, 24]. In ad-
dition, theoretical considerations have predicted the gen-
eration of a correlated photon pair in the x-ray regime
from strongly driven atomic ensembles [25]. Very re-
cently, a communication network for quantum informa-
tion processing has been proposed [26], which consists of
numerous different nodes and channels. Since such differ-
ent nodes may have different characteristic frequencies,
there is great interest in investigating non-classical pairs
of photons of different frequencies [27]. As an important
milestone in this direction, entangled photons of different
but close frequencies limited to the microwave or optical
ranges have been generated and detected experimentally
[28, 29].

Based on this background, we investigate here a two-
level system with broken inversion symmetry which is
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driven by an off-resonant laser field. By means of adjust-
ing the laser frequency ωL, one can spontaneously gener-
ate a photon at an approximate frequency ωL − ω0 and
a subsequent photon with transition frequency ω0. With
the parameters of e.g. gamma globulin macromolecules,
those frequencies can be in the THz- and optical regimes,
respectively, see Fig. 1. We find that this photon-pair of
different frequencies is both of non-classical character and
entangled because it violates a Cauchy-Schwarz inequal-
ity. The advantage of our scheme lies in the fact that the
frequency of the longer wavelength photon can be manip-
ulated by an appropriate selected detuning. This is quite
useful in driving a quantum network composed of differ-
ent nodes of various frequencies including quantum wells
or dots of THz transition frequencies. Furthermore, the
high flexibility distinguishes our model from a cascade
three-level system or other down conversion processes.

II. THE MODEL

In particular, we consider a two-level system (see Fig. 1)
with the transition frequency ω0 described by the or-
thonormal ground state |1〉 and excited state |2〉 with

FIG. 1: (color online) The emission of the non-classical pho-
ton pair. The non-resonant laser excites the two-level system
with broken inversion symmetry and induces the emission of
a THz-photon and the subsequent spontaneously emitted op-
tical photon.
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broken inversion symmetry, meaning that the diagonal
parts of the dipole operator satisfy the following con-
dition: |℘11| 6= |℘22|, where we define ℘ij = e 〈i|r|j〉
for {i, j} ∈ {1, 2}. The system is driven by a classi-
cal off-resonant laser field given by a linearly polarized
monochromatic plane-wave field in the dipole approx-
imation E = E0 cos(ωLt) with laser frequency ωL and
amplitude E0. The sample is surrounded by a quantized
environment that accounts for the processes of sponta-
neous emission [30].
The Hamiltonian H describing the system takes into ac-
count the energy of the environment HE and of the two-
level systemHT , the interaction-energy between the laser
and the two-level system HI1 and the interaction-energy
between the environment and the two-level system HI2:
H = HE +HT +HI1 +HI2, or

H =
∑

k

~ωka
†
k
ak + ~ω0Sz + ~Ω(S+ + S−) cos(ωLt)

+~GSz cos(ωLt) + i
∑

k

(gk · d)(a†
k
− ak)(S

+ + S−), (1)

where we define the Rabi frequency Ω = ℘12 · E0/~,
and G = (℘11 − ℘22) · E0/~ leads to broken inver-
sion symmetry [31]. Here, we have introduced the usual
atomic operators S+ = |2〉 〈1|, S− = |1〉 〈2| and Sz =

(|2〉 〈2| − |1〉 〈1|)/2. a†
k
and ak denote the creation and

annihilation electromagnetic field operators of the k-th
mode of frequency ωk. The coupling constant gk is de-
fined as gk =

√

2π~ωk/V ǫ̂λ, where ǫ̂λ is the photon
polarization vector, λ ∈ {1, 2}, and V is the electro-
magnetic field quantization volume. The electromag-
netic atom-field interaction is given in the usual dipole-
approximation. We stress the fact that we do not work
in the rotating wave approximation, but rather choose a
perturbative approach to account for non-linear effects.
For this purpose, we first perform a unitary transforma-

tion on H with H0 =
∑

k
~ωLa

†
k
ak + ~ωLSz,

H̃ = e
i

~
H0t(H −H0)e

− i

~
H0t, (2)

which may be separated (H̃ = H̃ ′ + H̃ ′′) into a time-
independent part

H̃ ′ =
∑

k

~(ωk − ωL)a
†
k
ak + ~(ω0 − ωL)Sz

+
~Ω

2
(S+ + S−) + i

∑

k

(gk · d)(a†
k
S− − akS

+), (3)

and a time-dependent part containing fast oscillating
terms

H̃ ′′ =
~G

2
Sz(e

iωLt + e−iωLt)

+
~Ω

2
(S+e2iωLt + S−e−2iωLt)

+ i
∑

k

(gk · d)(a†
k
S+e2iωLt − akS

−e−2iωLt). (4)

The time-dependent part can be regarded as a perturba-
tion to the time-independent part and we can thus ap-
ply the second-order perturbation theory [32, 33], since
G < ωL, Ω < ωL and (gk · d) < ωL:

Hpert = −
i

~
H̃ ′′

∫

dtH̃ ′′. (5)

Our final Hamiltonian Hf = H̃ ′ + Hpert acquires the
shape

Hf =
∑

k

~(ωk − ωL)a
†
k
ak + ~(ω0 − ωL +

Ω2

4ωL

)Sz

+
~Ω

2
(S+ + S−) + i

∑

k

(gk · d)(a†
k
S− − akS

+)

+
3G

8iωL

∑

k

(gk · d)(a†
k
S+eiωLt − akS

−e−iωLt)

+
Ω

2iωL

∑

k

(gk · d)(ak − a†
k
)Sz, (6)

where we keep the slowlyest oscillating time-dependent
terms only. We notice that the time-dependent terms
are proportional to G and are thus important for the
description of a system with broken inversion symme-
try. The ratios G/ωL and Ω/ωL are small for optical
frequencies ωL such that higher orders are negligible in
the Hamiltonian. Our perturbative approach also reveals
an effect of strong driving fields - the Bloch-Siegert shift
~Ω2/(4ωL) [34] of the upper state of the two-level system,
see Fig. 1. Finally, the two-level approximation applies
because Ω/ωL ≪ 1 and |ω0 − ωL|/ωL ≪ 1.
In what follows, we shall derive the master equation em-
ploying the Hamiltonian in Eq. (6) and the Heisenberg
picture. We assume that the matter-field interaction
is weak in the sense that an emitted photon does not
react back on the atom and use the well-known Born-
Markov approximation. Thus, the time-evolution of an
arbitrary atomic operatorQ(t) is governed by the Heisen-
berg equation: d

dt
〈Q(t)〉 = i

~
〈[Hf , Q]〉 . By inserting the

final Hamiltonian, we obtain

d

dt
〈Q(t)〉 =

i

~
〈[H̃0, Q]〉

−
∑

k

(gk · d)

~
{〈a†

k
[S−, Q]〉+ 〈[Q,S+]ak〉

−
3G

8ωL

(〈a†
k
[S+, Q]〉 eiωLt + 〈[Q,S−]ak〉 e

−iωLt)

+
Ω

2ωL

(〈a†
k
[Sz, Q]〉+ 〈[Q,Sz]ak〉)}, (7)

where H̃0 = ~(ω0−ωL+Ω2/(4ωL))Sz +~Ω(S++S−)/2.
To further simplify the analytical formalism, we have to
express the annihilation and creation operators as a func-
tion of atomic operators in the Born-Markov approxima-

tion. First, we insert a†
k
(t) in the Heisenberg equation
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and obtain the general solution for the linear inhomoge-
neous differential equation of first order. Then we con-
sider the leading order in the coupling and neglect the
Lamb-shift, so that the creation operator acquires the
shape

a†
k
(t) = a†

k
(0)ei∆kt +

πΩ

2~ωL

(gk · d)Sz(t)δ(∆k)

−
3πG

8~ωL

(gk · d)S−(t)δ(∆k + ω0 +
Ω2

4ωL

)e−iωLt

+ π
(gk · d)

~
S+(t)δ(ωk − ω0 −

Ω2

4ωL

), (8)

where ∆k = ωk−ωL. We notice that for the annihilation
operator ak, we only have to take the H.c. of the above
formula. If we further define the different decay rates of
the system

γR = π
∑

k

(gk · d)2

~2
δ(ωk − ω0 −

Ω2

4ωL

), (9a)

γL = π
∑

k

(gk · d)2

~2
δ(ωk − ωL), (9b)

γT = π
∑

k

(gk · d)2

~2
δ(ωk − ωL + ω0 +

Ω2

4ωL

), (9c)

and insert Eq. (8) in Eq. (7), we may write down our
final master equation

d

dt
〈Q(t)〉 −

i

~
〈[H̃0, Q]〉

= −γR(〈S
+[S−, Q]〉+ 〈[Q,S+]S−〉)

−
Ω

2ωL

γL(〈Sz [S
−, Q]〉+ 〈[Q,S+]Sz〉)

− (
3G

8ωL

)2γT (〈S
−[S+, Q]〉+ 〈[Q,S−]S+〉)

−
Ω

2ωL

γR(〈S
+[Sz, Q]〉+ 〈[Q,Sz]S

−〉)

− (
Ω

2ωL

)2γL(〈Sz [Sz, Q]〉+ 〈[Q,Sz]Sz〉), (10)

which may be interpreted as follows: the first term ac-
counts for the spontaneous emission at resonance ω0 +
Ω2/(4ωL), taking into account the Bloch-Siegert shift.
The second term describes the spontaneous emission at
the laser frequency ωL preceded by an excitation. The
third term corresponds to the emission at frequency
ωL − ω0 − Ω2/(4ωL) preceded by an excitation of the
two-level system. With the used parameters, later on, it
has THz-frequency while the main resonance is optical.
The fourth term accounts for a spontaneous emission at
resonance preceded by an excitation (off-resonant as al-
ways). The last term contributes to the dephasing of the
system. We are interested in correlations between the
processes of the first and third summands that are illus-
trated in Fig. 1. For this purpose, we need to define these
correlations and their time-dependent behaviors.
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FIG. 2: The steady-state inversion operator as a function
of the Rabi frequency with transition frequency ω0 = 5.0 ×

1015 s−1, laser frequency ωL = ω0 + 1013 s−1, detuning ∆ =
1013 s−1 and decay rate γ0 = 3× 106 s−1 with respect to ω0.

In order to probe the quantum nature of our generated
photons, we calculate its intensity-intensity correlation

function g
(2)
ij defined as [1, 2]

g
(2)
ij (τ) =

〈E
(−)
i (t)E

(−)
j (t+ τ)E

(+)
j (t+ τ)E

(+)
i (t)〉

〈E
(−)
i (t)E

(+)
i (t)〉〈E

(−)
j (t)E

(+)
j (t)〉

.

(11)

We know from the definition of the quantized electric field

[1] that E(−) ∝ a†
k
and that E(+) ∝ ak. In our case, we

also know from Eq. (8) that for THz-emission a†
k
∝ S−

and that for optical emission a†
k
∝ S+. Therefore, the

probability for detecting an optical photon after a THz-
photon as a function of atomic operators is given by

g
(2)
12 (0) =

〈S−(t)S+(t)S−(t)S+(t)〉

〈S−(t)S+(t)〉〈S+(t)S−(t)〉
(12)

and the probability for detecting an optical photon fol-
lowed by a THz-photon reads

g
(2)
21 (0) =

〈S+(t)S−(t)S+(t)S−(t)〉

〈S+(t)S−(t)〉〈S−(t)S+(t)〉
. (13)

As a concrete system, we consider gamma globu-
lin macromolecules [35] with the following param-
eters |ω2 − ω1| ∼= 4.8× 1015 s−1, |℘21| ∼= 1D and
|℘22 − ℘11| ∼= 100D. We notice that the transition fre-
quency is optical and we do observe the necessary bro-
ken inversion symmetry. We choose the laser detuning
such that the long wavelength photon is in the THz do-
main. Alternative systems are quantum dots, which are
0-dimensional quantum systems having an electron con-
fined in all three space dimensions [36]. Gallium nitride
devices for example show broken inversion symmetry and
have typical values of |℘22 − ℘11| ∼= 10D, |℘12| ∼= 10D
and ω0 = 4.92× 1015 s−1 [37–40].
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FIG. 3: The steady-state second-order intensity-intensity
correlation function describing the probability of (a) THz-
emission followed by an optical emission and (b) optical emis-
sion followed by THz-emission as a function of the Rabi fre-
quency Ω. Otherwise, we use the same parameters as in Fig. 2.

III. RESULTS

At first, we display the population inversion 〈Sz(t)〉 as a
function of the Rabi frequency Ω in Fig. 2. We observe
that for low Rabi frequencies Ω, the population remains
in the ground state. At a frequency of about 1012 s−1,
we notice an increase of the population and at 1013 s−1,
we see that there is a non-vanishing probability to find
the system in the excited state. Now, we turn to the
plot in Fig. 3(a) of the second-order correlation function

g
(2)
12 (0) as a function of the Rabi frequency Ω describing
the probability of the emission of a THz-photon and the
subsequent emission of an optical photon. We observe a
strong correlation which decreases with rising Rabi fre-
quency. To induce the emission of a THz-photon, the
system has to be excited from the ground state to the

upper state, where it may spontaneously emit an opti-
cal photon. Thus, at low Rabi frequencies, the emission
of an optical photon is almost always preceded by the
emission of a THz-photon. This explains the high de-
gree of correlation of the photon pair. As Ω increases,
there is a non-vanishing probability to find the system in
the excited state and an optical emission that is not pre-
ceded by a THz-photon is possible. This means that the
correlation decreases. Finally, we discuss the intensity-

intensity correlation function g
(2)
21 (0) in Fig. 3(b) describ-

ing the probability of detecting a THz-photon right after
an optical photon. It turns out that this probability is
very low as expected. It slowly rises with increasing Rabi
frequency Ω.
In this context, we also investigate the violation of the
Cauchy-Schwarz inequality

g
(2)
11 (0)g

(2)
22 (0) ≥ [g

(2)
12 (0)]

2. (14)

The correlations g
(2)
11 (0) and g

(2)
22 (0) vanish trivially and

in Fig. 3(a,b), we notice nonvanishing cross-correlations
violating Eq. (14). Thus, we are dealing with a non-
classical pair of correlated and entangled photons.

IV. SUMMARY

In summary, we have investigated the interaction of a
two-level system with broken inversion symmetry and
an off-resonant laser field. Using the parameters of
e.g. gamma globulin macromolecules or certain quan-
tum dots, we have found the possibility to generate a
long wavelength photon in the THz-regime followed by
a photon in the optical frequency range. Furthermore,
we have observed a high degree of correlation between
these photons and even a violation of a Cauchy-Schwarz
inequality. This proves the non-classical character and
entanglement of the photon pair. In the emerging field
of quantum information science, non-classical correlated
or even entangled photon pairs of different frequencies are
of great interest, finding applications in the realization of
a quantum network.
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