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Abstract

Pure Yang–Mills theory on R × S2 is analyzed in a gauge-invariant Hamiltonian formalism. Using a
suitable coordinatization for the sphere and a gauge-invariant matrix parametrization for the gauge poten-
tials, we develop the Hamiltonian formalism in a manner that closely parallels previous analysis on R

3. The
volume measure on the physical configuration space of the gauge theory, the nonperturbative mass-gap and
the leading term of the vacuum wave functional are discussed using a point-splitting regularization. All the
results carry over smoothly to known results on R

3 in the limit in which the sphere is de-compactified to a
plane.
© 2009 Elsevier B.V. All rights reserved.

1. Introduction

This paper will set up the framework for a Hamiltonian analysis of Yang–Mills theories in
2 + 1 dimensions, for the case of the spatial manifold being a two-sphere S2 of finite radius r .
Specifically, we formulate the theory in a gauge-invariant Hamiltonian framework by suitably
coordinatizing the sphere and utilizing the matrix parametrization of the gauge potentials. The
invariant volume measure on the physical configuration space of Yang–Mills theory on R × S2

and the computation of the mass gap and vacuum wave functional are discussed. Even though,
many of the technical details are rather different from that of the gauge theory on R × R

2, the

* Corresponding author.
E-mail addresses: abhishek@aei.mpg.de (A. Agarwal), vpn@sci.ccny.cuny.edu (V.P. Nair).
0550-3213/$ – see front matter © 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.nuclphysb.2009.03.007

http://www.elsevier.com/locate/nuclphysb
mailto:abhishek@aei.mpg.de
mailto:vpn@sci.ccny.cuny.edu
http://dx.doi.org/10.1016/j.nuclphysb.2009.03.007


118 A. Agarwal, V.P. Nair / Nuclear Physics B 816 (2009) 117–138
final results that we obtain are in complete agreement with the expectations from the behavior of
the gauge theory when the spatial manifold is a plane.

The Hamiltonian approach to Yang–Mills theories in 2 + 1 dimensions, developed by Kara-
bali, Kim and Nair (KKN) [1], has the potential to address a number of nonperturbative questions
such as confinement, mass gap and screening [2–5]. The initial calculations led to a formula for
the string tension which has been shown to be in good agreement with lattice calculations [6].
The possibility of incorporating glueballs within this scheme has been explored in a number of
papers [3]. More recently, the screening of the adjoint and other screenable representations has
been discussed [4]. The seminal idea for all these calculations has been a matrix parametrization
for the gauge potentials which makes the implementation of gauge invariance particularly sim-
ple. After transforming the Hamiltonian to this parametrization, the vacuum wave function was
calculated in a 1/e2-expansion, where e is the Yang–Mills coupling constant. This is something
like a continuum strong coupling expansion but, in this context, it is important to keep in mind
that there is really no suitable expansion parameter for the Yang–Mills theory in 2+1 dimensions
(except possibly for 1/N ). The role of the coupling constant e is simply that modes of the field
with momenta k � e2 should be treated nonperturbatively, while modes with momenta k � e2

can be treated in perturbation theory. For elucidating the nonperturbative structure of the theory,
an expansion in terms of k/e2 can be suitable, although corrections need to be worked out care-
fully. One may ask whether the 1/e2-expansion can be phrased in terms of a dimensionless fixed
parameter. Such a characterization will need another dimensional fixed parameter in the theory.
Finite volume for the spatial manifold can provide such a parameter. This is one of the motiva-
tions for considering S2. The continuum strong coupling expansion can then be considered as an
expansion in powers of 1/(e2r).

More generally, the analysis of the theory on manifolds of the form R × Σ , where Σ is a
Riemann surface can be very useful. The case of a torus, for instance, can be related to the theory
at finite temperature and so many features related to deconfinement can be analyzed.1 One may
regard the present work, for R × S2 as the zeroth step in a more general analysis.

Apart from the motivations outlined above, another reason to explore the KKN formalism
on various nontrivial spatial geometries is the following. The formulae for the mass-gap, string-
tension and vacuum wave functional of the gauge theory on R × R

2, obtained first by explicit
computations, provide us with some insights into the geometric features that tie these quantities
together. It was recently argued in [7] that these quantities are related to each other by some rather
generic features such as Lorentz invariance and the two-dimensional anomaly computation which
ultimately dictates the measure on the configuration space of the gauge theory. By computing
mass-gap and vacuum wave function for the strongly coupled theory on R × S2 we provide
further evidence in favor of these arguments.

There is yet another reason why the analysis of Yang–Mills theory on R × S2 can be inter-
esting. In the case of this theory with additional matter degrees of freedom corresponding to
sixteen supercharges, there is a recent proposal about the gravity dual description. The computa-
tion of the masses of operators built out of the scalars fields in the theory has been carried out,
from the string theory side, in the leading strong coupling limit. The analysis developed here,
when augmented by the addition of matter fields, has the potential for the computation of the
same quantities from the gauge theory side. This can, obviously, be useful in elucidating the
gauge-gravity duality.

1 For some recent work in this direction see [5].
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The paper is organized as follows. In Section 2 we construct the gauge-invariant variables
appropriate for the Hamiltonian analysis on S2. The volume measure on the configuration space,
obtained as the Jacobian for this change of variables is reported in Section 3; details of the deriva-
tion of the measure are presented in Appendix A. In Sections 4 and 5, we provide expressions
for the Hamiltonian in terms of the gauge-invariant quantities. As with the analysis on the plane,
special attention needs to paid to the regularization of the Hamiltonian and various other local
composite operators. A point-split regularization scheme that is compatible both with the sym-
metries of the sphere and the ‘holomorphic’ invariance of the gauge theory is also elaborated
upon in these sections. In Section 6 we use the formalism to compute the leading order term
(the term with two powers of the current) in the vacuum wave functional of the theory. Many of
the technical details relevant to this computation, such as an expression for the Hamiltonian in
momentum space, are contained in Appendix B.

2. The matrix parametrization

As is standard in Hamiltonian analyses, we shall use the A0 = 0 gauge. We then have the two
spatial components Az, Az̄.2 For R

2, we used the parametrization

(1)Az = −∂zMM−1, Az̄ = M†−1∂̄M†.

We want to construct the analogue of this for S2. For this, it is convenient to think of S2 as
SU(2)/U(1) and use the group translation operators (i.e., angular momentum operators) as co-
variant derivatives. Such an analysis (which can be extended to certain higher dimensional spaces
as well) was used extensively in the study of the quantum hall effect (and its non-commutative
analog) in [8]. Using this coordinatization in the present context allows us to follow the analysis
carried out on the plane extremely closely.

We can use a group element g ∈ SU(2) to parameterize the two-sphere. Explicitly, the standard
complex coordinates on S2 may be related to g via the parametrization

(2)g = 1√
1 + zz̄

[
1 z

−z̄ 1

](
eiψ/2 0

0 e−iψ/2

)
.

In terms of this coordinatization, the non-vanishing components of the metric tensor and the
volume element on the sphere are given by

(3)gzz̄ = gz̄z = r2

π(1 + zz̄)2
, dμ = r2 dzdz̄

π(1 + zz̄)2
.

In our conventions, the area of the sphere is r2.3 The volume element on the sphere is the natural
one induced from the measure on SU(2), when the volume of the Lie group is normalized to r2.
In terms of the usual angular coordinates of S2,

(4)z = tan(θ/2)eiφ.

Functions which are well defined on the sphere are independent of the U(1) angle ψ . We may
think of them as U(1)-invariant functions on the group SU(2). For such functions, we may also

2 The convention here is that z = x1 − ix2, z̄ = x1 + ix2 while Az = 1
2 (A1 + iA2), Az̄ = 1

2 (A1 − iA2).
3 It is also understood that dz dz̄ is only a short-hand notation for 1 dz dz̄ = d2x.
2i
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write

(5)
∫

dμ
(
S2)f (z, z̄) =

∫
r2 dzdz̄

π(1 + zz̄)2
f (z, z̄) =

∫
dμ(g)

2π
f (g)

where dμ(g) is the Haar measure for the group SU(2).
Consider the left and right translations operators on SU(2) defined by

(6)Lag = 1

2
σag, Rag = g

1

2
σa

where 1
2σa are the generators of SU(2) in the 2 × 2 matrix representation. We will use R± =

R1 ± iR2 as the translation operators on S2 = SU(2)/U(1), with R3 as the U(1) generator.
Thus functions on S2 are invariant under R3. We define the Wigner Dj

mn(g)-functions as the
representative of g in the spin j -representation,

(7)Dj
mn(g) = 〈j,m|ĝ|j, n〉.

Functions on S2 can be expanded in terms of Dj

m0(g).
Corresponding to R±, we introduce the gauge potentials A±, setting A0 = 0 as on the plane.

The matrix parametrization of the fields may then be written as

(8)A+ = −
√

π

r
(R+M)M−1, A− =

√
π

r

(
M†−1R−M†).

It is instructive to compare these with the components in the coordinate basis. For functions
on S2,

(9)R+ = (1 + zz̄)∂z, R− = (1 + zz̄)∂z̄.

Correspondingly, the coordinate components Az, Az̄ of the gauge potentials are given by

(10)A+ = √
π(1 + zz̄)Az, A− = √

π(1 + zz̄)Az̄.

With z = (x1 − ix2)/r , we see that the large r limit returns the parametrization of the fields on the
plane. A± are the components of the potentials in the tangent frame basis. Gauge transformations
on the sphere are given by

(11)A± → UA±U−1 −
√

π

r
(R±U)U−1.

These transformations obviously are equivalent to left translations of M by U , M → MU(x) =
U(x)M(x).

As on the plane, the matrix parametrization results in a new gauge symmetry, the so-called
holomorphic invariance. From the definitions (8), it is easy to see that M and MV̄ (z̄), where
V̄ (z̄) is a matrix that depends only on the antiholomorphic coordinate z̄, result in the same gauge
potentials. While there are no globally defined antiholomorphic functions on the sphere, it is
necessary to be able to use the parametrization (8) patchwise on the spatial manifold and hence
it is important to keep track of this symmetry. In particular, this symmetry needs to be preserved
in any physically meaningful computation that one might intend to carry out in the theory. In
particular regularization schemes must preserve this symmetry. We use this as a guiding principle
to do various regularized computations later in the paper.
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Starting with the Yang–Mills action, we can now obtain the canonical one-form as

Θ = −4
∫

dμπ(1 + zz̄)2 Tr(EzδAz̄ + Ez̄δAz)

(12)= −4
∫

dμTr(E+δA− + E−δA+).

As for A, the tangent frame components of E are related to the coordinate components by E+ =√
π(1 + zz̄)Ez, E− = √

π(1 + zz̄)Ez̄.
Upon using the parametrization (8), Θ becomes

Θ = 2
∫

dμTr
(
p̄δM†M†−1 + pM−1δM

)
,

p ≡ pat2 = −2

√
π

r
R+

(
M−1E−M

)
,

(13)p̄ ≡ p̄ata = 2

√
π

r
R−

(
M†E+M†−1).

Here R+, R− denote the translation operators R+, R− acting on vectors. Recall that R+, R−
correspond to the Levi-Civita covariant derivatives; their action on vectors will be different from
their action on scalar functions because of the Levi-Civita or spin connection. The commutation
rule [R+,R−] = 2R3 can be interpreted as the commutator of two covariant derivatives, with R3
being proportional to the Riemann tensor of S2 multiplied by the spin operator of the tensor on
which it acts. Explicitly,

(14)R+ = (1 + zz̄)∂z − z̄, R− = (1 + zz̄)∂z̄ − z.

The Green’s functions for the operators R+, R− can now be defined as follows.

R+(z)G+(z,w) = δ
(2)

S2 (z − w) − 1

r2
,

R−(z)G−(z,w) = δ
(2)

S2 (z − w) − 1

r2
,

(15)G+(z,w) = 1

r2

1 + w̄z

z̄ − w̄
, G−(z,w) = 1

r2

1 + wz̄

z − w
.

Here

(16)δ
(2)

S2 (z − w) = π

r2
(1 + zz̄)2δ(2)(z − w)

is the Dirac delta function on the two-sphere appropriate to the tangent frame we are using. In the
above formulae for the Green’s functions, the subtraction of 1

r2 , has to do with the existence of
the (constant) zero mode for the Laplace operator on the two-sphere. This is to be contrasted with
the situation one encounters for R

2, in which case there is no such zero mode to be subtracted.
As is evident, the zero mode contribution goes to zero as r → ∞.

Using these Green’s functions, the expressions (13) can be inverted, with the electric field
components given in terms of the gauge-invariant momentum operators p, p̄ as

Ek+(x) = ir

2
√

π

(
M†)ak

(x)

∫
dμy G−(x, y)p̄a(y),
y
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(17)Ek−(x) = − ir

2
√

π
(M)ka(x)

∫
y

dμy G+(x, y)pa(y).

Here M is the adjoint representative of the matrix M , i.e.,

(18)Mab = 2 tr
(
taMtbM−1).

Since the Green’s functions involve subtractions of a zero mode, we notice that the equivalence
of (13) and (17) require that

(19)
∫

dμx pa(x) =
∫

dμx p̄a(x) = 0.

This is equivalent to the statement that the total charge on the closed manifold S2 must be zero.
Notice that p, p̄ are expressible as total derivatives of the electric field components and so the
integrals correspond to the total charge on the space. (If the definition of p, p̄ in (13) is integrated
on a space with a boundary, we would get the integrals of the electric field components over the
boundary, which would be the charge.) Another way to phrase this is by observing, again from
their definition (13), that the operators p, p̄ have no j = 0 mode, hence their volume integral
must vanish.

The canonical one-form (13) allows us to read off the basic commutation relations as[
pa(x),pb(y)

] = f abcpc(x)δ
(2)

S2 (x − y),[
p̄a(x), p̄b(y)

] = −f abcp̄c(x)δ
(2)

S2 (x − y),[
pa(x),M(y)

] = −iM(y)taδ
(2)

S2 (x − y),

(20)
[
p̄a(x),M†(y)

] = −itaM†(y)δ
(2)

S2 (x − y).

All the other commutators vanish.

3. The measure of integration

The evaluation of the measure of integration for the gauge fields, which determines the inner
product for wave functionals, is the next step. We will work this out in Appendices A, B, but
the result is basically unchanged from the result on the plane. On the plane, we get the WZW
action for the gauge-invariant combination H = M†M . This action involves the kinetic term and
the WZ term. The latter is a differential form and hence does not depend on the metric; it will
therefore have the same form on the plane and the sphere. (Recall that the result on the plane is
also for the case with the point at infinity added, so that it is also topologically a sphere, although
metrically distinct.) The kinetic term is again essentially the same, because the sphere metric is
conformally flat and the kinetic term is classically conformally invariant. Thus the result can be
easily written down as

det(−D+D−) = constant exp(2cASWZW),

SWZW(H) = 1

2

∫
dμTr

[
R+HR−H−1]

(21)+ i

12π

∫
d3x εμνα Tr

[
H−1∂μHH−1∂νHH−1∂αH

]
where cA is the adjoint Casimir defined by cAδab = famnfbmn; cA = N for SU(N).
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4. The Hamiltonian

4.1. H in terms of gauge-invariant variables

The next step in setting up the formalism is the construction of the Hamiltonian in terms of
the gauge-invariant variables. Since these involve functional operators, regularization is impor-
tant. We shall start with the naive expressions here and discuss in the next subsection how the
regularization can be included.

The Hamiltonian operator is H = T + V , where the kinetic energy operator T is

T = 2e2
∫

dμEa+Ea−

(22)= e2r2

2π

∫
dμ(x)

∫ [
dμ(y)dμ(w)

]
G−(x, y)p̄a(y)Kab(x)G+(x,w)pb(w)

where

(23)Kab = 2 Tr
(
taH tbH−1) = (

M† M
)ab

Kab is the adjoint representation of H . In the second line of (22), we have used the expressions
(17) for the E±.

The potential energy, written out in terms of the R± derivatives, is

(24)V = 4

πe2

∫
dμTr

(√
π

r
(R+A− − R−A+) + [A+,A−]

)2

.

Notice that the parametrization of the potentials in (8) can be expressed as

A+ = M†−1
[
−

√
π

r
R+HH−1

]
+

√
π

r
M†−1R+M†,

(25)A− = M†−1[0]M† +
√

π

r
M†−1R−M†.

In other words, the potentials (A+,A−) are the gauge transform of (−√
πR+HH−1/r,0) by the

complex matrix M†. It is then easy to see that the potential energy can be written as

(26)V = 2π3

e2N2

∫
dμ

( R−J a

r

R−J a

r

)

where the current J a , as in the case of Yang–Mills on R × R
2, is

(27)J a = 2N

πr
Tr

(
taR+HH−1).

As the radius of the sphere r becomes large, the sphere is well approximated by the plane.
It is interesting to see how the expressions for various quantities on the sphere go over to the
corresponding quantities on the plane, as described in [1]. The coordinates on the plane w, w̄

are related to z, z̄ by z, z̄ = w
r

, w̄
r

. It is easily verified that, as r → ∞, dμ → d2x/π . Similarly,
R±/r → ∂, ∂̄ , A± → √

πA,
√

πĀ. The current J a goes over to its planar image without any
additional factors.
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4.2. Regularization

We now turn to the question of regularization. In the case of Yang–Mills on R × R
2, a point-

splitting regulator consistent with the holomorphic invariance was used. The basic ingredient
necessary for this was a ‘smoothed out’ version of the Dirac delta function on the plane. Specifi-
cally, the choice was

(28)σp(z,w, ε) = 1

πε
exp

(
−|z − w|2

ε

)
.

Here z and w are complex coordinates on the plane e.g. z = (x1 − ix2). This expression for the
regularized δ-function reduces to the planar δ-function as ε → 0. Thus ε can be considered as
the ultraviolet cutoff for the theory; of course, all computations are to be done with finite ε which
is allowed to approach zero only after physical quantities are computed.

The first step towards regularizing the theory on the sphere is the sphere-analogue of the above
expression for σp . Since S2 = SU(2)/U(1), functions on the sphere can be expressed in terms
of the Wigner D-functions Dl

m,0 which are proportional to the usual spherical harmonics Yl,m.
Denoting an arbitrary element of SU(2) by g, any linear combination

(29)f (g) =
∑
l,m

almDl
m,0(g)

is a function on S2. The Wigner functions are normalized as

(30)
∫

dμ(g) Dl∗
m,0(g)Dl′

n,0(g) = r2δl,l′δm,n

2l + 1

where dμ(g) is the invariant measure (the Haar measure) on SU(2). In terms of the local coordi-
nates z, z̄ for the sphere, it can be given explicitly as

(31)dμ(g) = dθ2

2π

r2 dzdz̄

π(1 + zz̄)2

where θ2, with 0 � θ2 � 2π , is the extra U(1) angle. The mode decomposition of the delta
function is thus given by

(32)δ(g, g′) =
∑
l,m

(2l + 1)

r2
Dl

m,0(g)Dl∗
m,0(g

′) =
∑

l

(2l + 1)

r2
Dl

0,0

(
g′†g

)
.

We need a one-parameter family of functions which are consistent with the coset space prop-
erties of the sphere and which reduce to the expression above when the parameter goes to zero.
Before working out such an extension, it is useful to recall some relations between the coset
space representations of points on S2 and their usual polar angle depictions.

An arbitrary SU(2) element can be parameterized as

(33)g =
[

g11 g12
g21 g22

]
=

[
u∗

2 u1
−u∗

1 u2

]
, detg = |u1|2 + |u2|2 = 1.

As is well known, the two-sphere will require at least two coordinate patches, one on the northern
hemisphere (which can be extended to everywhere on S2 except at the south pole) and the other
on the southern hemisphere. In terms of u1, u2, one patch has u2 
= 0 and other has u1 
= 0. On
the first one, for example, we can define the local coordinate z = u1/u2. In this case, the general
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SU(2) element (33) can be brought to the form

(34)g = 1√
1 + zz̄

[
1 z

−z̄ 1

][
e−iθ2 0

0 eiθ2

]

where θ2 is the argument of u2. The change of variables z = tan(θ/2)eiφ will bring us to the
standard parametrization of the sphere in terms of the polar coordinates θ , φ.

The angle Ω between the unit vectors in the directions (θ̂ , φ̂) and (θ̂ ′, φ̂′) is given by

cos(Ω) = (
cos(θ) cos(θ ′) + sin(θ) sin(θ ′) cos(φ − φ′)

)
(35)= (1 + z̄w)(1 + w̄z) − |z − w|2

(1 + zz̄)(1 + ww̄)
.

In terms of group parameters, we may write

(36)cos(Ω) = U11U22 + U21U12

where

(37)U = g′†g = 1√
(1 + zz̄)(1 + ww̄)

[
1 + z̄w z − w

−z̄ + w̄ 1 + w̄z

]
.

The geodesic distance two points is given by rΩ ; we can also relate the angle Ω to the chordal
distance 4�(z,w) by 1 − cos(Ω) = 2�(z,w), where

(38)�(z,w) = |z − w|2
(1 + zz̄)(1 + ww̄)

.

With these formulae and the standard expression for the spherical harmonics, we see that D0,0 is
given in terms of the Legendre polynomials Pl by

(39)Dl
0,0

(
g′†g

) = Pl

(
cos(Ω)

)
with g, g′ are the group elements corresponding to z, w, respectively.

We now consider the function et cos(Ω) which can be expressed using the Gegenbauer expan-
sion formula as

(40)et cos(Ω) =
(

2

t

)1/2

�(1/2)

∞∑
l=0

(
l + 1

2

)
Pl

(
cos(Ω)

)
I
l+ 1

2
(t).

Here Iν is a modified Bessel function of order ν. Writing 2t = 1/ε, we see immediately that, for
small ε (large t ),

(41)
1

r2ε
exp

(
− 1

2ε

(
1 − cos(Ω)

)) ≈
∞∑
l=0

e−l(l+1)ε (2l + 1)

r2
Pl

(
cos(Ω)

)
.

The large t -asymptotic formula for the modified Bessel function has been used for this simplifi-
cation,

(42)Iν(t)
large t≈ 1√

2πt
exp

(
t − ν2 − 1

4

2t

)
.
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Notice that the right-hand side of (41) is nothing but the heat kernel on the two sphere since

(43)(∂ε − R−R+)

∞∑
l=0

e−l(l+1)ε(2l + 1)Pl

(
cos(Ω)

) = 0.

From the asymptotic expansion (41) and the formula (32) for δ(g, g′), we see that

(44)Lim
ε→0

1

r2ε
exp

(
− 1

2ε

(
1 − cos(Ω)

)) = δ(g, g′).

Thus a sharply peaked Gaussian function on the sphere can be expressed as

σ(z,w, ε) = 1

r2ε
exp

(
− 1

2ε

(
1 − cos(Ω)

)) = e−�(z,w)/ε

r2ε

(45)→ δ(g, g′), as ε → 0.

Using (38) σ can also be expressed manifestly in terms of the z, w variables as

(46)σ(z,w, ε) = 1

r2ε
exp

(
− |z − w|2

ε(1 + zz̄)(1 + ww̄)

)
.

4.3. Regularized expression for the kinetic energy operator

The regularization of the kinetic energy operator was carried out in [1] at the level of the
‘momentum’ operators pa , p̄a . With the definition of σ(z,w, ε) given above, we can follow the
same procedure on the sphere, defining the regularized operators by

pa →
∫

dμ(y)σ (x, y, ε)
(
K−1(y, x̄)K(y, ȳ)

)ab
pb(y),

(47)p̄a →
∫

dμ(y)σ (x, y, ε)
(
K(x, ȳ)K−1(y, ȳ)

)ab
p̄b(y).

The regularized expressions have the same transformation properties under holomorphic trans-
formations and reduce to the unregulated expressions if ε is let go to zero. The parameter ε serves
has a short distance cut-off.

The regularized expression for the kinetic energy operator is can now be given as

(48)T = r2e2

2π

∫
dμ(u)dμ(v)Πrs(u, v)p̄r (u)ps(v)

where

(49)Πr,s(u, v) =
∫

dμ(x)
(

Gar− (x,u)
)
Kab(x)

(
Gbs+ (x, v)

)
.

The regularized Green’s functions occurring in this formula are given by

Gab+ (x, y) =
∫

dμ(u)G+(x,u)σ (u, y, ε)
(
K−1(y, ū)K(y, ȳ)

)ab
,

(50)Gab− (x, y) =
∫

dμ(u)G−(x,u)σ (u, y, ε)
(
K(u, ȳ)K−1(y, ȳ)

)ab
.
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5. The Hamiltonian in terms of currents

We shall start with the expression of the kinetic energy in terms of currents. As in the case of
the theory on the plane, the wave function can be taken to be a function of the current defined
in (27). Since the kinetic energy operator is quadratic in the p, p̄ variables, it is easily seen from
the chain rule for functional differentiation that T will contain a term with one derivative with
respect to J a and another term with two derivatives with respect to J a . The coefficients of these
terms can be found by evaluating the action of T on functional involving, at most, two powers of
the current. The commutation relations we shall need for this calculation are[

ps(v), J a(z)
] = − iN

rπ
Kas(z)R+zδ

2
S2(v − z),

(51)
[
p̄r (u), J a(z)

] = −iDbr
z δ2

S2(z − u)

where D is the holomorphic covariant derivative given by

(52)Dar
z = N

rπ
R+zδ

ar + if arcJ c(z).

Other commutation relations which are useful for this calculation are[
pa(x),Kmn(y)

] = f ancKmcδ
(2)

S2 (x − y),

(53)
[
p̄a(x),Kmn(y)

] = f macKcnδ
(2)

S2 (x − y).

The action of T on J a can now be simplified as

T

∫
z

ca(z)J a(z) = − iNre2

2π2

∫
z,u,v,x

Gmr− (x,u)Kms(x)G+(x, v)
[
p̄r (u),Kas(z)

]

(54)× (
R+zδ

(2)

S2 (v − z)
)
ca(z).

We have left, G+ in the unregulated form in this expression; this is adequate for this calculation.
The right-hand side of (54) can be simplified by noting that∫

z,v

G+(x, v)Kas(z)
[
R+(z)δ2

S2(v − z)
]
ca(z) =

∫
z

ca(z)Kas(z)
[
R+(z)G+(x, z)

]
(55)= −ca(x)Kas(x).

In the above manipulations it is useful to recall that G+(x, z) is the Green’s function for R+z,
i.e.,

(56)R+(z)G+(x, z) = (1 + zz̄)∂z

(
1 + xz̄

r2(x̄ − z̄)

)
= −δ2

S2(z − x).

Using this in (54) we have,

(57)T

∫
z

ca(z)J a(z) = iNre2

2π2
f arl

∫
z

Glr− (z, z)ca(z).

The coincident point limit of the Green’s function Glr− (z, z) can be obtained by expanding the
definition (50) around u = x. This leads to
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Gab− (x, x) = δab

∫
dμ(u)G−(x,u)σ (u, x, ε)

+ (
(∂K)K−1)ab

(x)

∫
dμ(u)G−(x,u)(u − x)σ (u, x, ε) + · · ·

(58)≡ δabI1 + I2 + · · · .
The higher terms which are not shown here are of at least O(ε) and are irrelevant for this calcu-
lation. The contribution of the term involving I1 in (58) to (57) is zero since the trace over the
color indices vanishes. The integrand in I2 has no singularities and it can be evaluated by taking
ε → 0 to get r2I2 = (R+K)K−1, so that

(59)Glr− (z, z) = − 1

r2

[
(R+K)K−1]lr (z) = iπ

Nr
f lrcJ c(z).

Eq. (57) can now be simplified as

(60)T

∫
z

ca(z)J a(z) = e2N

2π

∫
z

ca(z)J a(z).

Notice that the parameter for the mass gap is the same as on R × R
2; of course, this is not

surprising, since it arises from the two-dimensional anomaly, as explained elsewhere.
The calculation given above shows that the term in T involving one derivative with respect to

J can be written as

(61)T1 = e2N

2π

∫
z

J a(z)
δ

δJ a(z)
.

It may be worth pointing out that δ
δJ a(z)

is only short-hand notation for the operator whose
commutation relation is given by

(62)

[
δ

δJ a(z)
, J b(y)

]
= δabδ2

S2(z − y).

In other words, our definition includes the suitable metrical factors which give the covariant
δ-function on the right-hand side.

We now turn to the action of the kinetic energy operator on functionals involving two J fields,
such as

∫
x,y

Cmn(x, y)Jm(x)J n(y), where C is some test function. Mathematical manipulations,
similar to what was carried out above, show that

e2r2

2π

∫
u,v,x,y

Πrs(u, v)Cmn(x, y)
[
p̄r (u), Jm(x)

][
ps(v), J n(y)

]

(63)= e2Nr

2π2

∫
u,v,x,y

Cmn(x, y)
(

D(v)G−(u, v)
)rs

[
δ

δJ r(v)
, Jm(x)

][
δ

δJ s(u)
, J n(y)

]
.

This shows that the term in T involving two derivatives with respect to J a is given by

(64)T2 = mr

π

∫
w,z

((
D(w)G−

)ab
(z,w)

) δ

δJ a(w)

δ

δJ b(z)
.
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Putting together (61) and (64), the expression for the kinetic energy operator in terms of the
currents is thus given by

(65)T = m

∫
z

J a(z)
δ

δJ a(z)
+ mr

π

∫
w,z

((
D(w)G−

)ab
(z,w)

) δ

δJ a(w)

δ

δJ b(z)

with D given by (52). If the two J derivatives in T act on well separated J fields, then G− can
be replaced by its unregulated version, so that

(66)T = m

∫
z

J a(z)
δ

δJ a(z)
+ mr

π

∫
w,z

Dab(w)G−(z,w)
δ

δJ a(w)

δ

δJ b(z)
.

With the use of the regularized δ-function, the potential energy term can be written out in
terms of currents as

V = π2

mNr2

∫
z,w

(
R−J a(z)

[
K(z, w̄)K−1(w, w̄)

]ab R−J b
)
σ(z,w, ε)

(67)− π

Nr

∫
z,w

[
R−w R−zDba

w G−(z,w)
][

K(z, w̄)K−1(w, w̄)
]ab

σ (z,w, ε).

The second term on the right-hand side is what needs to be subtracted to define a properly normal-
ordered expression.

6. Vacuum wave functional

In this section we utilize the Hamiltonian formalism developed above to compute the vacuum
wave functional of the theory on R × S2. The analysis closely parallels the case of R × R

2

discussed in [2]. One of the motivations for the computation on R × S2 is to elucidate the extent
to which the physical results of the analysis on R × R

2 can be carried over to other spatial
geometries. In [7], it was argued that the value of the mass-gap and the functional form of the
leading vacuum wave functional are essentially determined by general features of the theory such
as Lorentz invariance and the two-dimensional anomaly. The explicit computation of the wave
functional on R × S2 will show that these arguments are indeed realized.

As in [2], one takes an ansatz for the vacuum wave functional of the form

(68)Ψ0 = eP

where, P is a functional of the J ’s to be determined. The condition that this be a zero energy
ground state of the theory translates to the operator equation

(69)[T ,P ] + 1

2

[[T ,P ],P ] + V = 0.

If the potential energy is neglected, since the kinetic energy involves derivatives with respect
to J , a solution is evidently given by P = 0 (or Ψ0 = 1, up to normalization). The fact that T is
proportional to m and V to 1/m suggests that one can set up a 1/m-expansion for P as

(70)P = c0

m2
P0 + c1

m4
P1 + c2

m8
P2 + · · · .
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Eq. (69) then splits up as

c0

m2
[T ,P0] = V,

(71)
c1

m4
[T ,P1] + c0

2m4

[
T , [P0,P0]

] = 0, . . . , etc.

The leading contribution to the strong coupling wave functional is thus given by P0. In the planar
case, a key relation

(72)[T ,V ] = 2mV

where V was the properly normally-ordered expression, was the crucial ingredient for solving
these equations [1]. This relation can be verified to be valid for the case of R × S2 as well, with
the definition of the regularized V as in (67), with the proper normal ordering term. This implies
that P0 = −V/2m, so that

(73)Ψ0 = exp

[
− π2

2m2N

∫
dμ

( R−
r

J a R−
r

J a

)
+ O

(
m−4)].

Reverting back to the A± variables,

(74)Ψ0 = exp

[
− 4

2πme2

∫
dμTr

(√
π

r
(R+A− − R−A+) + [A+,A−]

)2

+ O
(
m−4)].

Evidently, these expressions reduce to the appropriate ones on the plane [2], once the large r

limit is taken.
As expected, to this order, the vacuum wave functional is nothing but the action functional

Yang–Mills theory defined on S2. Thus, in complete analogy with the planar theory, the vacuum
expectation value of any spatial observable of the gauge theory can be re-cast as an appropri-
ate (Euclidean) correlation function for the two-dimensional Yang–Mills theory in a functional
integral framework.

The leading term in P with two powers of the current and with arbitrary powers of momentum
(or derivatives of J ) can also be worked out as in the planar case. This calculation is most easily
phrased in terms of the momentum-space variables J a

l,m which are the components of J a in a
vector spherical harmonic expansion. These expansions and the expressions for the kinetic and
potential energy operators are given in the next section. Here we will use the scaled variable

(75)I a
l,m =

√
l(l + 1)

2l + 1
J a

l,m.

To determine the leading term in the wave-functional, we make the Gaussian ansatz for P ,

(76)P = PG =
∑
l,m

(−1)mK(l)I a
l,mIa

l,−m,

where K(l) is an as-yet-undetermined kernel. Imposing (69) on the above ansatz and using the
momentum-space representations of T and V (Eqs. (B.20) and (B.21)) leads to the equation

(77)
4Nm

π2
K2(l) − 2mK(l) − π2

r2mN
= 0.

As in the previous computation leading to (74) the subtraction of a normal ordering divergence
is implied. The solution of the above equation corresponding to a normalizable wave functional
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is given by

(78)K(l) = − π2

Nmr2

(
1

m +
√

m2 + 4l(l+1)

r2

)
.

Reverting back to the position space basis, we have4

(79)Ψ0 ≈ ΨG = exp

[
− π2

Nm

∫
dμ

( R−
r

J a

)
1

m +
√

m2 − 4R−R+
r2

( R−
r

J a

)]
.

It is interesting to check the large r limit of this formula. Using the correspondence of quantities
on the sphere and the plane, outlined in Section 4, we see that, as r → ∞,

(80)ΨG = exp

[
− π

Nm

∫
∂̄J a 1

m +
√

m2 − 4∂̄∂
∂̄J a

]

which agrees completely with the results in [2] and the general arguments in [7]. It is also im-
portant to note that the presence of the additional parameter r in turn generates a dimensionless
parameter rm. The strong coupling limit of (79) thus corresponds to taking rm � 1 while the
reverse inequality gives us the weak coupling regime where perturbation theory is valid. It is
straightforward to see that (79) interpolates smoothly between these two limits.

7. Concluding remarks

In this paper we have extended the gauge-invariant Hamiltonian analysis of (2 + 1)-
dimensional Yang–Mills theories to the case where the spatial manifold is a two-sphere.

As mentioned in the introduction, one of the motivations for this analysis was to try and
formulate what is meant by strong coupling expansion in a more precise way.

In YM(2 + 1), there is really no expansion parameter, one can only say that modes with
momenta much higher than e2 can be treated perturbatively, while modes with momenta much
smaller than e2 can be treated in some strong coupling expansion. Nevertheless, there is a remark-
able stability to the theory. Computations done in the two limits give results which are close, for
example, for the mass parameter via resummation and from strong coupling. (More recently, it
has been checked that corrections to string tension from higher terms via loop contributions also
remain small; this will be published elsewhere.) While the computation of the averages involve
integration over all field space, the end result seems to show that there is very little contribution
from regions of ‘large J ’. Perhaps this is due to the fact that the volume of the gauge-invariant
field space as defined by the WZW partition function is ‘finite’; this may help to cut-off contribu-
tions from such regions of field space. One cannot, at this stage, make a more precise statement
about this. To elucidate this property, one needs to start with a more precise statement about what
is meant by a strong coupling expansion. With a control parameter, the radius of the sphere, this
can be given a more precise meaning as an expansion in 1/e2r .

Our results could serve as theoretical predictions for lattice gauge theory computations of the
mass-gap and the string tension of SU(N) Yang–Mills theories on R × S2. Other than lattice
gauge theories, the thermodynamic properties of pure Yang–Mills theory on R × S3 and R ×
S2 have recently been investigated by a number of authors [9,10]. The weakly coupled gauge

4 In our convention, R− differs from the lowering operator on SU(2) by a ‘−’ sign.
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theory, analyzed in [10], showed an interesting phase structure at high temperatures. Since most
of the techniques that we developed in this paper naturally lend themselves to the analysis of the
strong coupling regime of the gauge theory, it would be very interesting to extend the analysis
to the finite temperature case and investigate the nature of the de-confining phase transition as a
function of the radius of the sphere.

Perhaps the most interesting extension of the present analysis lies in the direction of super-
symmetrization of the theory. In particular, analyzing the theory with sixteen supercharges is
of paramount importance for testing some very concrete string theory based predictions for the
spectrum of the theory at strong coupling [11]. We are in the process of analyzing this possibility.
Several other fascinating results have also been conjectured for three-dimensional Yang–Mills
theories with diverse degrees of supersymmetry on R

3 [12–14]. Analyzing these theories on
R × S2 using the methods presented in this paper also remains an interesting avenue for future
explorations.
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Appendix A. The Gauge-invariant measure

As with Yang–Mills on R3, the change of variables A+,A− → H involves a non-trivial Jaco-
bian. The Jacobian is necessary for computing the inner product on the space of wave functionals,
which are taken to be functionals of H , or equivalently that of J . To compute the Jacobian we
follow the analysis done on the plane quite closely. In what follows, we shall perform the relevant
analysis on a sphere of unit volume i.e. at r2 = 1. The answer for a general value for r2 can be
obtained simply from dimensional analysis and it is mentioned at the very end of the section.

We first note that the distance functional on the space of the gauge potentials on S2 can be
written as

(A.1)δs2
A = −8

∫
dμ(z)Tr(δA+δA−) = 8

∫
dμ(z)Tr

((
D+δMM−1)(D−M†−1δM†)),

where D± are the covariant derivatives. Explicitly

(A.2)D+
(
δMM−1) = √

πR+
(
δMM−1) + [

A+,
(
δMM−1)].

The pre-factor 8 is chosen so that the distance function goes over to that on R2 once the sphere
is de-compactified.

The measure on the space of Sl(N,C) matrices M is given by

(A.3)δS2
Sl(N,C) = 8

∫
dμ(z)Tr

(
δMM−1)(M†−1δM†).

Thus

(A.4)dμ(A) = det(D+D−) dμ
(
M,M†).

As expected, the Jacobian is given by the Dirac determinant for massless fermions on S2. To
evaluate the determinant, we first note that if we denote

(A.5)S+ = ln detD+
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then its variation is given by

(A.6)δS+ =
∫

dμ(x) tr
[
D−1+ (x, x)δA+(x)

]
.

The variation requires the evaluation of the covariant Green’s function at a coincident point,
which of course requires a careful regularization. We shall proceed to evaluate this next. the
unregulated version of D−1+ is given by

(A.7)D−1+ (x, y) = M(x)(1 + x̄y)M−1(y)√
π(x̄ − ȳ)

.

We regulate this expression as

D−1+ (x, y) → D−1+ (x, y)

(A.8)= M(x)

[∫
u

(1 − x̄u)√
π(x̄ − ū)

K−1(y, ū)K(y, ȳ)σ (x, y, ε)

]
M−1(y).

The choice of regularization is by no means unique, and indeed one could have point split the
unregulated expression in various different ways to construct its regularized version. A basic
guiding principle to employ in the choice of regularizations is that the final answer be gauge-
invariant, i.e. expressible in terms of the variables H . We shall see that with our choice above,
that will indeed be the case. Any other choice of regularization will lead to answers that will
differ from our result by local counter-terms.

At coincident points, we can expand K−1(x, ū) about ū = x to get

D−1+ (x, x) =
∫
u

1 + x̄u√
π(x̄ − ū)

σ (x,u, ε)

− 1√
π

[
M(∂x̄H)H−1M−1](x)

∫
u

(1 + x̄u)σ (x,u, ε) + O(ε)

(A.9)= I1 + I2 + O(ε).

The first integral can be rewritten as

(A.10)
√

πI1 = −
∫

dμ(u)G+(u, x)σ (u, x, ε) = −
∫

dμ(g)G+(g, g′)σ (g, g′, ε)

where g, g′ are the SU(2) elements corresponding to u and x respectively. We now note that both
G+ and σ are functions of g′†g. Thus

−√
πI1 =

∫
dμ(g)G+(g, g′)σ (g, g′, ε) =

∫
dμ(g)G+

(
g′†g

)
σ
(
g′†g, ε

)
(A.11)=

∫
dμ(g)G+(g′)σ (g, ε).

In the last step we have used the left and right invariance of the integration measure on SU(2).
Thus, reverting back to the local coordinates on the sphere,

(A.12)−I1 = 1√
π

∫
dμ(u)

1

ū
σ (u, ε)
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which vanishes by angular integration. Thus

(A.13)I1 = 0.

In I2, which is devoid of short distance singularities, we can let ε approach zero inside the
integrand, giving us the final result:

(A.14)

D−1+ (x, x) = 1√
π

M(x)H−1(x)
(
R−H(x)

)
M−1(x) =

(
1

π
A− + 1√

π
(R−M)M−1

)
.

Thus, putting together the analysis so far,

(A.15)δS+ =
∫

tr
((

A− + (R−M)M−1)δA+
)
.

To integrate this functional differential equation we note that δS+ can be related to the holomor-
phic variation of a Hermitian WZW model on S2. The WZW action on S2 is defined to be

(A.16)SWZW[A] = 1

2

∫
dμ(z) tr

(
R+AR−A−1) + �

where the volume term

(A.17)� = i

12π

∫
d3x εijk tr

(
A−1∂iAA−1∂jAA−1∂kA

)
.

The derivatives

(A.18)∂1 = 1

1 + zz̄
(R+ + R−), ∂2 = 1

i(1 + zz̄)
(R+ − R−)

while x3 corresponds to the coordinate third direction whose boundary is S2. We should note that
despite their ostensible appearance all metrical factors eventually cancel out and we get back an
action functional which is the same as that on R2. This is to be expected from the topological
nature of the WZW action.

The Polyakov–Wiegmann identity satisfied by (A.16) can be written down as

(A.19)SWZW[AB] = SWZW[A] + SWZW[B] −
∫

dμ(z) tr
(
A−1R−AR+BB−1),

which gives us the relation

(A.20)SWZW[H ] = SWZW[M] + SWZW
[
M†] + 1

π

∫
dμ(z) tr(A−A+).

Thus the variation of the Wess–Zumino–Witten action with respect to the holomorphic compo-
nent of the gauge potential is given by

(A.21)δA+SWZW[H ] =
(

1

π
A− + 1√

π
(R−M)M−1

)
.

The corresponding variation w.r.t. the antiholomorphic component of the gauge connection
proceeds along exactly similar lines. Using (A.15), (A.21) we have the functional differential
equation

(A.22)δA+S+ = ARδA+SWZW[H ].
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AR is given by tr(tatb)R = tr(tatb)Fundamental. For us, R corresponds to the adjoint representation
of the group G = SU(N).

Using the initial condition that, D± = √
πR± when A± = 0, we can integrate (A.22) and its

antiholomorphic counterpart, to get:

(A.23)det[D+D−] =
[

det[√πR+
√

πR−]∫
dμ(z)

]dim(G)

exp
(
2cASWZW[H ]),

where cA is the quadratic Casimir invariant for the adjoint representation. To obtain the result
for a sphere of volume r2, one simply replaces R± → 1

r
R± and the integration measure by

dμ → r2 dμ.

Appendix B. Mode expansions

In this appendix, we give the mode expansions for the current and for the kinetic and potential
energy terms.

We start with the expansion of the current J in spherical harmonics. From its very definition
(27), it is clear that it is a vector field on the sphere. It should hence be expanded in terms of
vector spherical harmonics. An appropriate expansion is given by

(B.1)J a(g) = 1

r

l=∞∑
l=1,−l�m�l

J a
l,mDl

m,1(g).

This is indeed the correct expansion to consider as J is obtained by R+ acting on a scalar field
on the sphere, hence its expansion involves Dl

m,1. Notice that Dl
m,1 is not really a function on

the sphere, as it involves the extra U(1) direction as well. (This is as expected, since vectors are
sections of the vector bundle.) However, we shall see that in the final results the extra phases
cancel out, even though they do show up at intermediate stages of the computation.

Using the orthogonality properties of the rotation matrices we can derive the following com-
pleteness relation for the δ-function appropriate to vectors.

(B.2)

δ(g′, g) = 1

r2

l=∞∑
l=1,−l�m�l

(2l + 1)D∗l
m,1(g

′)Dl
m,1(g) = 1

r2

l=∞∑
l=1,−l�m�l

(2l + 1)Dl
1,1

(
g′†g

)
.

This allows us to write

(B.3)
δ

δJ a(g)
= 1

r

l=∞∑
l=1,−l�m�l

(2l + 1)D∗l
m,1(g)

δ

δJ a
l,m

,

which is consistent with (62). Thus we can easily write

(B.4)T1 = m

∫
dμ(g)J a(g)

δ

δJ a(g)
= m

l=∞∑
l=1,−l�m�l

J a
l,m

δ

δJ a
l,m

.

Notice that in the integral over SU(2) in the left-hand side of this equation, the U(1) factors
cancel out and we eventually only perform an integral over the sphere. This will be true of the
other manipulations we perform as well. We now look at T2, which we write in terms of SU(2)
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coordinates as

T2 =
∫

g,g′

(
m1

(
R+(g′)G−(g, g′)

) δ2

δJ a(g)δJ a(g′)

(B.5)+ im2f
abcG−(g, g′)J c(g′) δ2

δJ b(g)δJ a(g′)

)
,

where,

(B.6)m1 = mN

π2
, m2 = mr

π
.

Focusing on the first term in T2 we notice that

(B.7)G−(g, g′) = R+(g)G(g,g′)

where G is the Green’s function for the Laplacian with the mode expansion given by

(B.8)r2G(g,g′) =
∞∑
l=1

2l + 1

l(l + 1)
Dl

0,0

(
g′†g

) =
∑
l,m

2l + 1

l(l + 1)
D∗l

m,0(g
′)Dl

m,0(g).

Thus, the first term in T2 can be written as

T 1
2 = m1

r4

∫
g,g′

(2l + 1)(2p + 1)(2q + 1)

l(l + 1)

(B.9)× ((
R+(g′)R+(g)D∗l

m,0(g
′)Dl

m,0(g)
)

D∗p

r,1(g)D∗q

s,1(g
′)
) δ2

δJ a
p,rδJ

a
q,s

.

Sum over the various momentum modes is implied in the above formula. Summations will not
be explicitly indicated to avoid cluttering the formulae.

The definition of the Wigner functions and R+ give the relations

R+(g)Dl
m,0(g) = √

l(l + 1)Dl
m,1(g),

(B.10)R+(g′)D∗l
m,0(g

′) = −√
l(l + 1)D∗l

m,−1(g
′).

We can simplify (B.9) using these results as

T 1
2 = −m1

r4

∫
g,g′

(2l + 1)(2p + 1)(2q + 1)
(

D∗l
m,−1(g

′)Dl
m,1(g)D∗p

r,1(g)D∗q

s,1(g
′)
) δ2

δJ a
p,rδJ

a
q,s

= −m1

r2

∫
g′

(2p + 1)(2q + 1)
[

D∗l
m,−1(g

′)D∗q

s,1(g
′)
] δ2

δJ a
l,mδJ a

q,s

(B.11)= m1(−1)s+1(2l + 1)
δ2

δJ a
l,−sδJ

a
l,s

.

Turning now to the second term in T2, we can write it out as

T 2
2 = im2f

abc

∫
J c(w)G(z,w)

δ

δJ b(z)

δ

δJ a(w)

z,w
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= i
m

π
f mnc

∫
g,g′

(2r + 1)(2a + 1)(2l + 1)

l(l + 1)

× (
R+(g)D∗l

q,0(g
′)Dl

q,0(g)
)

Dp

q,1(g
′)D∗r

s,1(g)D∗a
b,1(g

′)
[
J c

p,q

δ

δJ n
r,s

δ

δJm
a,b

]

(B.12)= i
m

π
f mnc

∫
g′

(2r + 1)(2a + 1)√
r(r + 1)

Dp

q,1(g
′)D∗r

s,0(g
′)D∗a

b,1(g
′)
[
J c

p,q

δ

δJ n
r,s

δ

δJm
a,b

]
.

The last two integrals above are meant to be evaluated on a sphere (or equivalently an SU(2)) of
unit volume. All the factors of r cancel out. The integral of three Wigner functions can be readily
expressed in terms of Clebsch–Gordan coefficients. To do that we first note the that

(B.13)Dl
m,0(θ,φ) =

√
4π

2l + 1
Y ∗

l,m(θ,φ)

where the usual spherical harmonics are normalized to unity on a sphere of volume 4π , i.e.

(B.14)
∫

sin(θ) dθ dφ Y ∗
l,m(θ,φ)Yl′,m′(θ,φ) = δl,l′δm,m′ .

It then follows that

(B.15)Dl
m,n(θ,φ,ψ) = e−inψ Dl

m,0(θ,φ) = e−inψ

√
4π

2l + 1
Y ∗

l,m(θ,φ).

Hence∫
g′

Dp

q,1(g
′)D∗r

s,0(g
′)D∗a

b,1(g
′)

(B.16)=
√

4π

(2p + 1)(2a + 1)(2r + 1)

∫
dΩ̃ Y ∗

p,q(Ω̃)Ya,b(Ω̃)Yr,s(Ω̃),

where dΩ̃ = sin(θ) dθ dφ, the volume measure on a sphere of volume 4π . This last integral is a
standard one, and can be evaluated to get the final answer as

(B.17)
∫
g′

Dp

q,1(g
′)D∗r

s,0(g
′)D∗a

b,1(g
′) = 1

2p + 1
C(r, a,p;0,0,0)C(r, a,p; s, b, q).

In terms of the Wigner 3j -symbol,

(B.18)
∫
g′

Dp

q,1(g
′)D∗r

s,0(g
′)D∗a

b,1(g
′) =

(
r a p

0 0 0

)(
r a p

s b −q

)
.

Thus putting it all together,

(B.19)T 2
2 = i

m

π
f mnc (2r + 1)(2a + 1)√

r(r + 1)

(
r a p

0 0 0

)(
r a p

s b −q

)[
J c

p,q

δ

δJ n
r,s

δ

δJm
a,b

]
.

Hence, we finally have:
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T = m

(
J a

l,s

δ

δJ a
l,s

+ N

π2
(−1)s+1(2l + 1)

δ2

δJ a
l,sδJ

a
l,−s

)

(B.20)+ im

π
f mnc (2r + 1)(2a + 1)√

r(r + 1)

(
r a p

0 0 0

)(
r a p

s b −q

)
J c

p,q

δ

δJ n
r,s

δ

δJm
a,b

.

Once again, sum over the repeated momentum indices is implied.
The mode expansion of the potential energy term given in (26) is easily worked out as

(B.21)V = 2π3

e2N2r2

∑
l�1

l(l + 1)

2l + 1

∑
m

(−1)mJ a
l,mJ a

l,−m.
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