
ar
X

iv
:0

80
7.

21
31

v1
  [

he
p-

th
] 

 1
4 

Ju
l 2

00
8

AEI-2008-045

CCNY-HEP-08/4

July 2008

The Hamiltonian Analysis for Yang-Mills Theory on R × S2

ABHISHEK AGARWAL
a and V.P. NAIR

b

aMax Planck Institut für Gravitationsphysik

Albert Einstein Institut

Am Mühlenberg-1, D14476, Potsdam, Germany

bPhysics Department

City College of the CUNY

New York, NY 10031

E-mail: abhishek@aei.mpg.de

vpn@sci.ccny.cuny.edu

Abstract

Pure Yang-Mills theory on R× S2 is analyzed in a gauge-invariant Hamiltonian formalism.

Using a suitable coordinatization for the sphere and a gauge-invariant matrix parametriza-

tion for the gauge potentials, we develop the Hamiltonian formalism in a manner that closely

parallels previous analysis on R
3. The volume measure on the physical configuration space

of the gauge theory, the nonperturbative mass-gap and the leading term of the vacuum

wave functional are discussed using a point-splitting regularization. All the results carry

over smoothly to known results on R
3 in the limit in which the sphere is de-compactified

to a plane.
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1 Introduction

This paper will set up the framework for a Hamiltonian analysis of Yang-Mills theories in

2+1 dimensions, for the case of the spatial manifold being a two-sphere S2 of finite radius

r. Specifically, we formulate the theory in a gauge-invariant Hamiltonian framework by

suitably coordinatizing the sphere and utilizing the matrix parametrization of the gauge

potentials. The invariant volume measure on the physical configuration space of Yang-Mills

theory on R × S2 and the computation of the mass gap and vacuum wave functional are

discussed. Even though, many of the technical details are rather different from that of

the gauge theory on R × R
2, the final results final results that we obtain are in complete

agreement with the expectations from the behavior of the gauge theory when the spatial

manifold is a plane.

The Hamiltonian approach to Yang-Mills theories in 2+1 dimensions, developed by

Karabali, Kim and Nair (KKN) [1], has the potential to address a number of nonperturbative

questions such as confinement, mass gap and screening [2]-[5]. The initial calculations led

to a formula for the string tension which has been shown to be in good agreement with

lattice calculations [6]. The possibility of incorporating glueballs within this scheme has

been explored in a number of papers [3]. More recently, the screening of the adjoint and

other screenable representations has been discussed [4]. The seminal idea for all these

calculations has been a matrix parametrization for the gauge potentials which makes the

implementation of gauge invariance particularly simple. After transforming the Hamiltonian

to this parametrization, the vacuum wave function was calculated in a 1/e2-expansion, where

e is the Yang-Mills coupling constant. This is something like a continuum strong coupling

expansion but, in this context, it is important to keep in mind that there is really no

suitable expansion parameter for the Yang-Mills theory in 2+1 dimensions (except possibly

for 1/N). The role of the coupling constant e is simply that modes of the field with

momenta k ≪ e2 should be treated nonperturbatively, while modes with momenta k ≫ e2

can be treated in perturbation theory. For elucidating the nonperturbative structure of

the theory, an expansion in terms of k/e2 can be suitable, although corrections need to be

worked out carefully. One may ask whether the 1/e2-expansion can be phrased in terms

of a dimensionless fixed parameter. Such a characterization will need another dimensional

fixed parameter in the theory. Finite volume for the spatial manifold can provide such

a parameter. This is one of the motivations for considering S2. The continuum strong

coupling expansion can then be considered as an expansion in powers of 1/(e2r).
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More generally, the analysis of the theory on manifolds of the form R × Σ, where Σ is

a Riemann surface can be very useful. The case of a torus, for instance, can be related

to the theory at finite temperature and so many features related to deconfinement can be

analyzed1. One may regard the present work, for R×S2 as the zeroth step in a more general

analysis.

Apart from the motivations outlined above, another reason to explore the KKN formal-

ism on various nontrivial spatial geometries is the following. The formulae for the mass-gap,

string-tension and vacuum wave functional of the gauge theory on R × R
2 , obtained first

by explicit computations, provide us with some insights into the geometric features that

tie these quantities together. It was recently argued in [7] that these quantities are re-

lated to each other by some rather generic features such as Lorentz invariance and the two

dimensional anomaly computation which ultimately dictates the measure on the configura-

tion space of the gauge theory. By computing mass-gap and vacuum wave function for the

strongly coupled theory on R×S2 we provide further evidence in favor of these arguments.

There is yet another reason why the analysis of Yang-Mills theory on R × S2 can be

interesting. In the case of this theory with additional matter degrees of freedom correspond-

ing to sixteen supercharges, there is a recent proposal about the gravity dual description.

The computation of the masses of operators built out of the scalars fields in the theory has

been carried out, from the string theory side, in the leading strong coupling limit. The

analysis developed here, when augmented by the addition of matter fields, has the potential

for the computation of the same quantities from the gauge theory side. This can, obviously,

be useful in elucidating the gauge-gravity duality.

The paper is organized as follows. In the next section we construct the gauge-invariant

variables appropriate for the Hamiltonian analysis on S2. The volume measure on the

configuration space, obtained as the Jacobian for this change of variables is reported in the

next section; details of the derivation of the measure are presented in the first appendix.

In sections 4 and 5, we provide expressions for the Hamiltonian in terms of the gauge-

invariant quantities. As with the analysis on the plane, special attention needs to paid to

the regularization of the Hamiltonian and various other local composite operators. A point-

split regularization scheme that is compatible both with the symmetries of the sphere and

the ‘holomorphic’ invariance of the gauge theory is also elaborated upon in these sections. In

section 6 we use the formalism to compute the leading order term (the term with two powers

1For some recent work in this direction see [5]
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of the current) in the vacuum wave functional of the theory. Many of the technical details

relevant to this computation, such as an expression for the Hamiltonian in momentum space,

are contained in the second appendix.

2 The matrix parametrization

As is standard in Hamiltonian analyses, we shall use the A0 = 0 gauge. We then have the

two spatial components Az, Az̄
2. For R

2, we used the parametrization

Az = −∂zM M−1, Az̄ = M †−1∂̄M † (1)

We want to construct the analogue of this for S2. For this, it is convenient to think of S2 as

SU(2)/U(1) and use the group translation operators (i.e., angular momentum operators) as

covariant derivatives. Such an analysis (which can be extended to certain higher dimensional

spaces as well) was used extensively in the study of the quantum hall effect (and its non-

commutative analog) in [8]. Using this coordinatization in the present context allows us to

follow the analysis carried out on the plane extremely closely.

We can use a group element g ∈ SU(2) to parameterize the two-sphere. Explicitly, the

standard complex coordinates on S2 may be related to g via the parametrization

g =
1√

1 + zz̄

[

1 z

−z̄ 1

] (

eiψ/2 0

0 e−iψ/2

)

(2)

In terms of this coordinatization, the non-vanishing components of the metric tensor and

the volume element on the sphere are given by

gzz̄ = gz̄z =
r2

π(1 + zz̄)2
, dµ =

r2dzdz̄

π(1 + zz̄)2
(3)

In our conventions, the area of the sphere is r2 3. The volume element on the sphere is the

the natural one induced from the measure on SU(2), when the volume of the Lie group is

normalized to r2. In terms of the usual angular coordinates of S2,

z = tan(θ/2)eiφ (4)

Functions which are well defined on the sphere are independent of the U(1) angle ψ. We

may think of them as U(1)-invariant functions on the group SU(2). For such functions, we

2The convention here is that z = x1 − ix2, z̄ = x1 + ix2 while Az = 1

2
(A1 + iA2), Az̄ = 1

2
(A1 − iA2).

3It is also understood that dzdz̄ is only a short-hand notation for 1

2i
dzdz̄ = d2x
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may also write

∫

dµ(S2) f(z, z̄) =

∫

r2dzdz̄

π(1 + zz̄)2
f(z, z̄) =

∫

dµ(g)

2π
f(g) (5)

where dµ(g) is the Haar measure for the group SU(2).

Consider the left and right translations operators on SU(2) defined by

La g = 1
2σa g, Ra g = g 1

2σa (6)

where 1
2σa are the generators of SU(2) in the 2 × 2 matrix representation. We will use

R± = R1 ± iR2 as the translation operators on S2 = SU(2)/U(1), with R3 as the U(1)

generator. Thus functions on S2 are invariant under R3. We define the Wigner Dj
mn(g)-

functions as the representative of g in the spin j-representation,

Dj
mn(g) = 〈j,m| ĝ |j, n〉 (7)

Functions on S2 can be expanded in terms of Dj
m0(g).

Corresponding to R±, we introduce the gauge potentials A±, setting A0 = 0 as on the

plane. The matrix parametrization of the fields may then be written as

A+ = −
√
π

r
(R+M)M−1, A− =

√
π

r
(M †−1R−M

†) (8)

It is instructive to compare these with the components in the coordinate basis. For functions

on S2,

R+ = (1 + zz̄) ∂z, R− = (1 + zz̄) ∂z̄ (9)

Correspondingly, the coordinate components Az, Az̄ of the gauge potentials are given by

A+ =
√
π(1 + zz̄) Az, A− =

√
π(1 + zz̄) Az̄ (10)

With z = (x1− ix2)/r, we see that the large r limit returns the parametrization of the fields

on the plane. A± are the components of the potentials in the tangent frame basis. Gauge

transformations on the sphere are given by

A± → UA±U
−1 −

√
π

r
(R±U)U−1 (11)

These transformations obviously are equivalent to left translations of M by U , M →
MU (x) = U(x)M(x).

As on the plane, the matrix parametrization results in a new gauge symmetry, the so-

called holomorphic invariance. From the definitions (8), it is easy to see that M and MV̄ (z̄),
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where V̄ (z̄) is a matrix that depends only on the anti-holomorphic coordinate z̄, result in

the same gauge potentials. While there are no globally defined antiholomorphic functions

on the sphere, it is necessary to be able to use the parametrization (8) patchwise on the

spatial manifold and hence it is important to keep track of this symmetry. In particular,

this symmetry needs to be preserved in any physically meaningful computation that one

might intend to carry out in the theory. In particular regularization schemes must preserve

this symmetry. We use this as a guiding principle to do various regularized computations

later in the paper.

Starting with the Yang-Mills action, we can now obtain the canonical one-form as

Θ = −4

∫

dµ π(1 + zz̄)2 Tr(EzδAz̄ + Ez̄δAz)

= −4

∫

dµ Tr(E+δA− + E−δA+) (12)

As for A, the tangent frame components of E are related to the coordinate components by

E+ =
√
π(1 + zz̄)Ez, E− =

√
π(1 + zz̄)Ez̄ .

Upon using the parametrization (8), Θ becomes

Θ = 2

∫

dµ Tr(p̄ δM †M †−1 + p M−1δM)

p ≡ pat2 = −2

√
π

r
R+(M−1E−M) (13)

p̄ ≡ p̄ata = 2

√
π

r
R−(M †E+M

†−1)

Here R+,R− denote the translation operators R+, R− acting on vectors. Recall thatR+, R−

correspond to the Levi-Civita covariant derivatives; their action on vectors will be different

from their action on scalar functions because of the Levi-Civita or spin connection. The

commutation rule [R+, R−] = 2R3 can be interpreted as the commutator of two covariant

derivatives, with R3 being proportional to the Riemann tensor of S2 multiplied by the spin

operator of the tensor on which it acts. Explicitly,

R+ = (1 + zz̄)∂z − z̄, R− = (1 + zz̄)∂z̄ − z (14)

The Green’s functions for the operators R+,R− can now be defined as follows.

R+(z)G+(z,w) = δ
(2)
S2 (z − w) − 1

r2

R−(z)G−(z,w) = δ
(2)
S2 (z − w) − 1

r2

G+(z,w) =
1

r2
1 + w̄z

z̄ − w̄
, G−(z,w) =

1

r2
1 + wz̄

z − w
(15)
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Here

δ
(2)
S2 (z −w) =

π

r2
(1 + zz̄)2δ(2)(z − w) (16)

is the Dirac delta function on the two-sphere appropriate to the tangent frame we are using.

In the above formulae for the Green’s functions, the subtraction of 1
r2 , has to do with the

existence of the (constant) zero mode for the Laplace operator on the two-sphere. This is to

be contrasted with the situation one encounters for R
2, in which case there is no such zero

mode to be subtracted. As is evident, the zero mode contribution goes to zero as r → ∞.

Using these Green’s functions, the expressions (13) can be inverted, with the the electric

field components given in terms of the gauge-invariant momentum operators p, p̄ as

Ek+(x) =
ir

2
√
π

(M†)ak(x)

∫

y
dµy G−(x, y) p̄a(y)

Ek−(x) = − ir

2
√
π

(M)ka(x)

∫

y
dµy G+(x, y) pa(y) (17)

Here M is the adjoint representative of the matrix M i.e.,

Mab = 2tr(taMtbM−1) (18)

Since the Green’s functions involve subtractions of a zero mode, we notice that the equiva-

lence of (13) and (17) require that
∫

dµx p
a(x) =

∫

dµx p̄
a(x) = 0 (19)

This is equivalent to the statement that the total charge on the closed manifold S2 must

be zero. Notice that p, p̄ are expressible as total derivatives of the electric field components

and so the integrals correspond to the total charge on the space. (If the definition of p, p̄

in (13) is integrated on a space with a boundary, we would get the integrals of the electric

field components over the boundary, which would be the charge.) Another way to phrase

this is by observing, again from their definition (13), that the operators p, p̄ have no j = 0

mode, hence their volume integral must vanish.

The canonical one-form (13) allows us to read off the basic commutation relations as

[pa(x), pb(y)] = fabcpc(x) δ
(2)
S2 (x− y)

[p̄a(x), p̄b(y)] = −fabcp̄c(x) δ(2)S2 (x− y)

[pa(x),M(y)] = −iM(y)ta δ
(2)
S2 (x− y) (20)

[p̄a(x),M †(y)] = −itaM †(y) δ
(2)
S2 (x− y)

All the other commutators vanish.
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3 The measure of integration

The evaluation of the measure of integration for the gauge fields, which determines the

inner product for wave functionals, is the next step. We will work this out in the appendix,

but the result is basically unchanged from the result on the plane. On the plane, we get

the WZW action for the gauge-invariant combination H = M †M . This action involves the

kinetic term and the WZ term. The latter is a differential form and hence does not depend

on the metric; it will therefore have the same form on the plane and the sphere. (Recall

that the result on the plane is also for the case with the point at infinity added, so that

it is also topologically a sphere, although metrically distinct.) The kinetic term is again

essentially the same, because the sphere metric is conformally flat and the kinetic term is

classically conformally invariant. Thus the result can be easily written down as

det(−D+D−) = constant exp(2cASWZW )

SWZW (H) =
1

2

∫

dµ Tr
[

R+H R−H
−1
]

+
i

12π

∫

d3x ǫµνα Tr
[

H−1∂µH H−1∂νH H−1∂αH
]

(21)

where cA is the adjoint Casimir defined by cAδab = famnfbmn; cA = N for SU(N).

4 The Hamiltonian

4.1 H in terms of gauge-invariant variables

The next step in setting up the formalism is the construction of the Hamiltonian in terms

of the gauge-invariant variables. Since these involve functional operators, regularization is

important. We shall start with the naive expressions here and discuss in the next subsection

how the regularization can be included.

The Hamiltonian operator is H = T + V , where the kinetic energy operator T is

T = 2e2
∫

dµ Ea+ Ea−

=
e2r2

2π

∫

dµ(x)

∫

[dµ(y)dµ(w)]G−(x, y)p̄a(y)Kab(x)G+(x,w)pb(w) (22)

where

Kab = 2Tr(taHtbH−1) =
(

M†M
)ab

(23)
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Kab is the adjoint representation of H. In the second line of (22), we have used the expres-

sions (17) for the E±.

The potential energy, written out in terms of the R±derivatives, is

V =
4

πe2

∫

dµTr

(√
π

r
(R+A− −R−A+) + [A+, A−]

)2

(24)

Notice that the parametrization of the potentials in (8) can be expressed as

A+ = M †−1

[

−
√
π

r
R+H H−1

]

+

√
π

r
M †−1R+M

†

A− = M †−1 [ 0 ] M † +

√
π

r
M †−1R−M

† (25)

In other words, the potentials (A+, A−) are the gauge transform of (−√
πR+HH

−1/r, 0) by

the complex matrix M †. It is then easy to see that the potential energy can be written as

V =
2π3

e2N2

∫

dµ

(R−J
a

r

R−J
a

r

)

(26)

where the current Ja, as in the case of Yang-Mills on R × R
2, is

Ja =
2N

πr
Tr(taR+HH

−1) (27)

As the radius of the sphere r becomes large, the sphere is well approximated by the

plane. It is interesting to see how the expressions for various quantities on the sphere go

over to the corresponding quantities on the plane, as described in [1]. The coordinates on

the plane w, w̄ are related to z, z̄ by z, z̄ = w
r ,

w̄
r . It is easily verified that, as r → ∞,

dµ → d2x/π. Similarly, R±/r → ∂, ∂̄, A± → √
πA,

√
πĀ. The current Ja goes over to its

planar image without any additional factors.

4.2 Regularization

We now turn to the question of regularization. In the case of Yang-Mills on R × R
2, a

point-splitting regulator consistent with the holomorphic invariance was used. The basic

ingredient necessary for this was a ‘smoothed out’ version of the Dirac delta function on

the plane. Specifically, the choice was

σp(z,w, ǫ) =
1

πǫ
exp

(

−|z − w|2
ǫ

)

(28)

Here z and w are complex coordinates on the plane e.g. z = (x1 − ix2). This expression

for the regularized δ-function reduces to the planar δ-function as ǫ → 0. Thus ǫ can be
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considered as the ultraviolet cutoff for the theory; of course, all computations are to be done

with finite ǫ which is allowed to approach zero only after physical quantities are computed.

The first step towards regularizing the theory on the sphere is the sphere-analogue of the

above expression for σp. Since S2 = SU(2)/U(1), functions on the sphere can be expressed

in terms of the Wigner D-functions Dl
m,0 which are proportional to the usual spherical

harmonics Yl,m. Denoting an arbitrary element of SU(2) by g, any linear combination

f(g) =
∑

l,m

almDl
m,0(g) (29)

is a function on S2. The Wigner functions are normalized as
∫

dµ(g)Dl∗
m,0(g)Dl′

n,0(g) =
r2δl,l

′

δm,n
2l + 1

(30)

where dµ(g) is the invariant measure (the Haar measure) on SU(2). In terms of the local

coordinates z, z̄ for the sphere, it can be given explicitly as

dµ(g) =
dθ2
2π

r2dzdz̄

π(1 + zz̄)2
(31)

where θ2, with 0 ≤ θ2 ≤ 2π, is the extra U(1) angle. The mode decomposition of of the

delta function is thus given by

δ(g, g′) =
∑

l,m

(2l + 1)

r2
Dl
m,0(g)Dl∗

m,0(g
′) =

∑

l

(2l + 1)

r2
Dl

0,0(g
′†g). (32)

We need a one-parameter family of functions which are consistent with the coset space

properties of the sphere and which reduce to the expression above when the parameter goes

to zero. Before working out such an extension, it is useful to recall some relations between

the coset space representations of points on S2 and their usual polar angle depictions.

An arbitrary SU(2) element can be parameterized as

g =

[

g11 g12

g21 g22

]

=

[

u∗2 u1

−u∗1 u2

]

, det g = |u1|2 + |u2|2 = 1 (33)

As is well known, the two-sphere will require at least two coordinate patches, one on the

northern hemisphere (which can be extended to everywhere on S2 except at the south

pole) and the other on the southern hemisphere. In terms of u1, u2, one patch has u2 6= 0

and other has u1 6= 0. On the first one, for example, we can define the local coordinate

z = u1/u2. In this case, the general SU(2) element (33) can be brought to the form

g =
1√

1 + zz̄

[

1 z

−z̄ 1

][

e−iθ2 0

0 eiθ2

]

(34)
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where θ2 is the argument of u2. The change of variables z = tan(θ/2)eiφ will bring us to

the standard parametrization of the sphere in terms of the polar coordinates θ, φ.

The angle Ω between the unit vectors in the directions (θ̂, φ̂) and (θ̂′, φ̂′) is given by

cos(Ω) =
(

cos(θ) cos(θ′) + sin(θ) sin(θ′) cos(φ− φ′)
)

=
(1 + z̄w)(1 + w̄z) − |z − w|2

(1 + zz̄)(1 + ww̄)
(35)

In terms of group parameters, we may write

cos(Ω) = U11U22 + U21U12 (36)

where

U = g′†g =
1

√

(1 + zz̄)(1 + ww̄)

[

1 + z̄w z −w

−z̄ + w̄ 1 + w̄z

]

(37)

The geodesic distance two points is given by rΩ; we can also relate the angle Ω to the

chordal distance 4∆(z,w) by 1 − cos(Ω) = 2∆(z,w), where

∆(z,w) =
|z − w|2

(1 + zz̄)(1 + ww̄)
(38)

With these formulae and the standard expression for the spherical harmonics, we see that

D0,0 is given in terms of the Legendre polynomials Pl by

Dl
0,0(g

′†g) = Pl(cos(Ω)) (39)

with g, g′ are the group elements corresponding to z,w, respectively.

We now consider the function et cos(Ω) which can be expressed using the Gegenbauer

expansion formula as

et cos(Ω) =

(

2

t

)1/2

Γ(1/2)

∞
∑

l=0

(l +
1

2
)Pl(cos(Ω))Il+ 1

2

(t) (40)

Here Iν is a modified Bessel function of order ν. Writing 2t = 1/ǫ, we see immediately that,

for small ǫ (large t),

1

r2ǫ
exp

(

− 1

2ǫ
(1 − cos(Ω)

)

≈
∞
∑

l=0

e−l(l+1)ǫ (2l + 1)

r2
Pl(cos(Ω)) (41)

The large t-asymptotic formula for the modified Bessel function has been used for this

simplification,

Iν(t)
large t

≈ 1√
2πt

exp

(

t− ν2 − 1
4

2t

)

(42)
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Notice that the right hand side of (41) is nothing but the heat kernel on the two sphere

since

(∂ǫ −R−R+)

∞
∑

l=0

e−l(l+1)ǫ(2l + 1)Pl(cos(Ω)) = 0 (43)

From the asymptotic expansion (41) and the formula (32) for δ(g, g′), we see that

Limǫ→0
1

r2ǫ
exp

(

− 1

2ǫ
(1 − cos(Ω)

)

= δ(g, g′) (44)

Thus a sharply peaked Gaussian function on the sphere can be expressed as

σ(z,w, ǫ) =
1

r2ǫ
exp

(

− 1

2ǫ
(1 − cos(Ω)

)

=
e−∆(z,w)/ǫ

r2ǫ

→ δ(g, g′), as ǫ→ 0 (45)

Using (38) σ can also be expressed manifestly in terms of the z,w variables as

σ(z,w, ǫ) =
1

r2ǫ
exp

(

− |z − w|2
ǫ(1 + zz̄)(1 + ww̄)

)

(46)

4.3 Regularized Expression for the Kinetic Energy Operator

The regularization of the kinetic energy operator was carried out in [1] at the level of the

‘momentum’ operators pa, p̄a. With the definition of σ(z,w, ǫ) given above, we can follow

the same procedure on the sphere, defining the regularized operators by

pa →
∫

dµ(y)σ(x, y, ǫ)(K−1(y, x̄)K(y, ȳ))abpb(y)

p̄a →
∫

dµ(y)σ(x, y, ǫ)(K(x, ȳ)K−1(y, ȳ))abp̄b(y) (47)

The regularized expressions have the same transformation properties under holomorphic

transformations and reduce to the unregulated expressions if ǫ is let go to zero. The pa-

rameter ǫ serves has a short distance cut-off.

The regularized expression for the kinetic energy operator is can now be given as

T =
r2e2

2π

∫

dµ(u)dµ(v) Πrs(u, v) p̄r(u) ps(v) (48)

where

Πr,s(u, v) =

∫

dµ(x)
(

Gar− (x, u)
)

Kab(x)
(

Gbs+ (x, v)
)

(49)
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The regularized Green’s functions occuring in this formula are given by

Gab+ (x, y) =

∫

dµ(u)G+(x, u)σ(u, y, ǫ)(K−1(y, ū)K(y, ȳ)ab

Gab− (x, y) =

∫

dµ(u)G−(x, u)σ(u, y, ǫ)(K(u, ȳ)K−1(y, ȳ)ab. (50)

5 The Hamiltonian in terms of currents

We shall start with the expression of the kinetic energy in terms of currents. As in the case

of the theory on the plane, the wave function can be taken to be a function of the current

defined in (27). Since the kinetic energy operator is quadratic in the p, p̄ variables, it is

easily seen from the chain rule for functional differentiation that T will contain a term with

one derivative with respect to Ja and another term with two derivatives with respect to Ja.

The coefficients of these terms can be found by evaluating the action of T on functional

involving, at most, two powers of the current. The commutation relations we shall need for

this calculation are

[ps(v), Ja(z)] = − iN
rπ
Kas(z)R+zδ

2
S2(v − z)

[p̄r(u), Ja(z)] = −iDbr
z δ

2
S2(z − u) (51)

where D is the holomorphic covariant derivative given by

Dar
z =

N

rπ
R+zδ

ar + ifarcJc(z) (52)

Other commutation relations which are useful for this calculation are

[pa(x),Kmn(y)] = fancKmcδ
(2)
S2 (x− y)

[p̄a(x),Kmn(y)] = fmacKcnδ
(2)
S2 (x− y) (53)

The action of T on Ja can now be simplified as

T

∫

z
ca(z)Ja(z) = − iNre

2

2π2

∫

z,u,v,x
Gmr− (x, u)Kms(x)G+(x, v) [p̄r(u),Kas(z)]

×(R+zδ
(2)
S2 (v − z))ca(z) (54)

We have left, G+ in the unregulated form in this expression; this is adequate for this

calculation. The right hand side of (54) can be simplified by noting that
∫

z,v
G+(x, v)Kas(z)[R+(z)δ2S2(v − z)]ca(z) =

∫

z
ca(z)Kas(z)[R+(z)G+(x, z)]

= −ca(x)Kas(x) (55)
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In the above manipulations it is useful to recall that G+(x, z) is the Green’s function for

R+z, i.e.,

R+(z)G+(x, z) = (1 + zz̄)∂z

(

1 + xz̄

r2(x̄− z̄)

)

= −δ2S2(z − x) (56)

Using this in (54) we have,

T

∫

z
ca(z)Ja(z) =

iNre2

2π2
farl

∫

z
Glr−(z, z)ca(z) (57)

The coincident point limit of the Green’s function Glr−(z, z) can be obtained by expanding

the definition (50) around u = x. This leads to

Gab− (x, x) = δab
∫

dµ(u)G−(x, u)σ(u, x, ǫ)

+((∂K)K−1)ab(x)

∫

dµ(u)G−(x, u)(u − x)σ(u, x, ǫ) + · · ·

≡ δabI1 + I2 + · · · (58)

The higher terms which are not shown here are of at least O(ǫ) and are irrelevant for this

calculation. The contribution of the term involving I1 in (58) to (57) is zero since the

trace over the color indices vanishes. The integrand in I2 has no singularities and it can be

evaluated by taking ǫ→ 0 to get r2I2 = (R+K)K−1, so that

Glr−(z, z) = − 1

r2
[(R+K)K−1]lr(z) =

iπ

Nr
f lrcJc(z) (59)

Equation (57) can now be simplified as

T

∫

z
ca(z)Ja(z) =

e2N

2π

∫

z
ca(z)Ja(z) (60)

Notice that the parameter for the mass gap is the same as on R × R
2; of course, this is not

surprising, since it arises from the two-dimensional anomaly, as explained elsewhere.

The calculation given above shows that the term in T involving one derivative with

respect to J can be written as

T1 =
e2N

2π

∫

z
Ja(z)

δ

δJa(z)
(61)

It may be worth pointing out that δ
δJa(z) is only short-hand notation for the operator whose

commutation relation is given by

[

δ

δJa(z)
, Jb(y)

]

= δabδ2S2(z − y). (62)
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In other words, our definition includes the suitable metrical factors which give the covariant

δ-function on the right hand side.

We now turn to the action of the kinetic energy operator on functionals involving two

J fields, such as
∫

x,y C
mn(x, y)Jm(x)Jn(y), where C is some test function. Mathematical

manipulations, similar to what was carried out above, show that

e2r2

2π

∫

u,v,x,y
Πrs(u, v)Cmn(x, y)[p̄r(u), Jm(x][ps(v), Jn(y)]

=
e2Nr

2π2

∫

u,v,x,y
Cmn(x, y) (D(v)G−(u, v))rs

[

δ

δJr(v)
, Jm(x)

] [

δ

δJs(u)
, Jn(y)

]

(63)

This shows that the term in T involving two derivatives with respect to Ja is given by

T2 =
mr

π

∫

w,z

(

D(w)G−)ab(z,w)
) δ

δJa(w)

δ

δJb(z)
(64)

Putting together (61) and (64), the expression for the kinetic energy operator in terms

of the currents is thus given by

T = m

∫

z
Ja(z)

δ

δJa(z)
+
mr

π

∫

w,z

(

D(w)G−)ab(z,w)
) δ

δJa(w)

δ

δJb(z)
(65)

with D given by (52). If the two J derivatives in T act on well separated J fields, then G−

can be replaced by its unregulated version, so that

T = m

∫

z
Ja(z)

δ

δJa(z)
+
mr

π

∫

w,z
Dab(w)G−(z,w)

δ

δJa(w)

δ

δJb(z)
. (66)

With the use of the regularized δ-function, the potential energy term can be written out

in terms of currents as

V =
π2

mNr2

∫

z,w

(

R−J
a(z)[K(z, w̄)K−1(w, w̄)]abR−J

b
)

σ(z,w, ǫ)

− π

Nr

∫

z,w

[

R−wR−zDba
w G−(z,w)

]

[K(z, w̄)K−1(w, w̄)]abσ(z,w, ǫ) (67)

The second term on the right hand side is what needs to be subtracted to define a properly

normal-ordered expression.

6 Vacuum Wave Functional

In this section we utilize the Hamiltonian formalism developed above to compute the vacuum

wave functional of the theory on R × S2. The analysis closely parallels the case of R × R
2
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discussed in [2]. One of the motivations for the computation on R × S2 is to elucidate the

extent to which the physical results of the analysis on R × R
2 can be carried over to other

spatial geometries. In [7], it was argued that the value of the mass-gap and the functional

form of the leading vacuum wave functional are essentially determined by general features

of the theory such as Lorentz invariance and the two-dimensional anomaly. The explicit

computation of the wave functional on R × S2 will show that these arguments are indeed

realized.

As in [2], one takes an ansatz for the vacuum wave functional of the form

Ψ0 = eP (68)

where, P is a functional of the J ’s to be determined. The condition that this be a zero

energy ground state of the theory translates to the operator equation

[T, P ] +
1

2
[[T, P ], P ] + V = 0 (69)

If the potential energy is neglected, since the kinetic energy involves derivatives with repsetc

to J , a solution is evidently given by P = 0 (or Ψ0 = 1, up to normalization). The fact

that T is proportional to m and V to 1/m suggests that one can set up a 1/m-expansion

for P as

P =
c0
m2

P0 +
c1
m4

P1 +
c2
m8

P2 + · · · (70)

Equation (69) then splits up as

c0
m2

[T, P0] = V

c1
m4

[T, P1] +
c0

2m4
[T, [P0, P0]] = 0, · · · etc. (71)

The leading contribution to the strong coupling wave functional is thus given by P0. In the

planar case, a key relation

[T, V ] = 2mV (72)

where V was the properly normally-ordered expression, was the crucial ingredient for solving

these equations [1]. This relation can be verified to be valid for the case of R × S2 as well,

with the definition of the regularized V as in (67), with the proper normal ordering term.

This implies that P0 = −V/2m, so that

Ψ0 = exp

[

− π2

2m2N

∫

dµ

(R−

r
Ja

R−

r
Ja
)

+ O(m−4)

]

. (73)
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Reverting back to the A± variables,

Ψ0 = exp

[

− 4

2πme2

∫

dµTr

(√
π

r
(R+A− −R−A+) + [A+, A−]

)2

+ O(m−4)

]

. (74)

Evidently, these expressions reduce to the appropriate ones on the plane [2], once the large

r limit is taken.

As expected, to this order, the vacuum wave functional is nothing but the action func-

tional Yang-Mills theory defined on S2. Thus, in complete analogy with the planar theory,

the vacuum expectation value of any spatial observable of the gauge theory can be re-cast as

an appropriate (Euclidean) correlation function for the two dimensional Yang-Mills theory

in a functional integral framework.

The leading term in P with two powers of the current and with arbitrary powers of

momentum (or derivatives of J) can also be worked out as in the planar case. This cal-

culation is most easily phrased in terms of the momentum-space variables Jal,m which are

the components of Ja in a vector spherical harmonic expansion. These expansions and the

expressions for the kinetic and potential energy operators are given in the next section.

Here we will use the scaled variable

Ial,m =

√

l(l + 1)

2l + 1
Jal,m. (75)

To determine the leading term in the wave-functional, we make the Gaussian ansatz for P ,

P = PG =
∑

l,m

(−1)mK(l)Ial,mI
a
l,−m, (76)

where K(l) is an as-yet-undetermined kernel. Imposing (69) on the above ansatz and using

the momentum-space representations of T and V (equations (B20) and (B21)) leads to the

equation
4Nm

π2
K2(l) − 2mK(l) − π2

r2mN
= 0 (77)

As in the previous computation leading to (74) the subtraction of a normal ordering diver-

gence is implied. The solution of the above equation corresponding to a normalizable wave

functional is given by

K(l) = − π2

Nmr2





1

m+

√

m2 + 4l(l+1)
r2



 . (78)
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Reverting back to the position space basis, we have 4

Ψ0 ≈ ΨG = exp



− π2

Nm

∫

dµ

(R−

r
Ja
)

1

m+
√

m2 − 4R−R+

r2

(R−

r
Ja
)



 . (79)

It is interesting to check the large r limit of this formula. Using the correspondence of

quantities on the sphere and the plane, outlined in section 4, we see that, as r → ∞,

ΨG = exp

[

− π

Nm

∫

∂̄Ja
1

m+
√

m2 − 4∂̄∂
∂̄Ja

]

(80)

which agrees completely with the results in [2] and the general arguments in [7]. It is also

important to note that the presence of the the additional parameter r in turn generates a

dimensionless parameter rm. The strong coupling limit of (79) thus corresponds to taking

rm≫ 1 while the reverse inequality gives us the weak coupling regime where perturbation

theory is valid. It is straightforward to see that (79) interpolates smoothly between these

two limits.

7 Concluding Remarks

In this paper we have extended the gauge-invariant Hamiltonian analysis of (2+1)-dimensional

Yang-Mills theories to the case where the spatial manifold is a two-sphere.

Our results could serve as theoretical predictions for lattice gauge theory computations

of the mass-gap and the string tension of SU(N) Yang-Mills theories on R × S2. Other

than lattice gauge theories, the thermodynamic properties of pure Yang-Mills theory on

R × S3 and R × S2 have recently been investigated by a number of authors[9, 10]. The

weakly coupled gauge theory, analyzed in [10], showed an interesting phase structure at

high temperatures. Since most of the techniques that we developed in this paper naturally

lend themselves to the analysis of the strong coupling regime of the gauge theory, it would

be very interesting to extend the analysis to the finite temperature case and investigate the

nature of the de-confining phase transition as a function of the radius of the sphere.

Perhaps the most interesting extension of the present analysis lies in the direction of

supersymmetrization of the theory. In particular, analyzing the theory with sixteen su-

percharges is of paramount importance for testing some very concrete string theory based

4In our convention, R
−

differs from the lowering operator on SU(2) by a ‘-’ sign.
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predictions for the spectrum of the theory at strong coupling [11]. We are in the pro-

cess of analyzing this possibility. Several other fascinating results have also been conjec-

tured for three dimensional Yang-Mills theories with diverse degrees of supersymmetry on

R
3[12, 13, 14]. Analyzing these theories on R × S2 using the methods presented in this

paper also remains an interesting avenue for future explorations.

We are grateful to Dimitra Karabali, Prem Kumar and Alexios Polychronakos for various

useful discussions. This research was supported in part by the National Science Foundation

grant PHY-0555620 and by a PSC-CUNY grant.

APPENDIX A: The Gauge-invariant Measure

As with Yang-Mills on R3, the change of variables A+, A− → H involves a non-trivial

Jacobian. The Jacobian is necessary for computing the inner product on the space of wave

functionals, which are taken to be functionals of H, or equivalently that of J . To compute

the Jacobian we follow the analysis done on the plane quite closely. In what follows, we

shall perform the relevant analysis on a sphere of unit volume i.e. at r2 = 1. The answer for

a general value for r2 can be obtained simply from dimensional analysis and it is mentioned

at the very end of the section.

We first note that the distance functional on the space of the gauge potentials on S2

can be written as

δs2A = −8

∫

dµ(z)Tr(δA+δA−) = 8

∫

dµ(z)Tr
(

(D+δMM−1)(D−M
†−1δM †)

)

, (A1)

where D± are the covariant derivatives. Explicitly

D+(δMM−1) =
√
πR+(δMM−1) + [A+, (δMM−1)]. (A2)

The pre-factor 8 is chosen so that the distance function goes over to that on R2 once the

sphere is de-compactified.

The measure on the space of Sl(N,C) matrices M is given by

δS2
Sl(N,C) = 8

∫

dµ(z)Tr(δMM−1)(M †−1δM †). (A3)

Thus

dµ(A) = det(D+D−)dµ(M,M †). (A4)
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As expected, the jacobian is given by the Dirac determinant for massless Fermions on S2.

To evaluate the determinant, we first note that if we denote

S+ = ln detD+ (A5)

then its variation is given by

δS+ =

∫

dµ(x)tr[D−1
+ (x, x)δA+(x)]. (A6)

The variation requires the evaluation of the covariant Green’s function at a coincident point,

which of course requires a careful regularization. We shall proceed to evaluate this next.

the unregulated version of D−1
+ is given by

D−1
+ (x, y) =

M(x)(1 + x̄y)M−1(y)√
π(x̄− ȳ)

. (A7)

We regulate this expression as

D−1
+ (x, y) → D−1

+ (x, y) = M(x)

[∫

u

(1 − x̄u)√
π(x̄− ū)

K−1(y, ū)K(y, ȳ)σ(x, y, ǫ)

]

M−1(y). (A8)

The choice of regularization is by no means unique, and indeed one could have point split

the unregulated expression in various different ways to construct its regularized version. A

basic guiding principle to employ in the choice of regularizations is that the final answer

be gauge-invariant, i.e expressible in terms of the variables H. We shall see that with our

choice above, that will indeed be the case. Any other choice of regularization will lead to

answers that will differ from our result by local counter-terms.

At coincident points, we can expand K−1(x, ū) about ū = x to get

D−1
+ (x, x) =

∫

u

1 + x̄u√
π(x̄− ū)

σ(x, u, ǫ) − 1√
π

[M(∂x̄H)H−1M−1](x)

∫

u
(1 + x̄u)σ(x, u, ǫ) + O(ǫ)

= I1 + I2 + O(ǫ). (A9)

The first integral can be rewritten as

√
πI1 = −

∫

dµ(u)G+(u, x)σ(u, x, ǫ) = −
∫

dµ(g)G+(g, g′)σ(g, g′, ǫ) (A10)

where g, g′ are the SU(2) elements corresponding to u and x respectively. We now note

that both G+ and σ are functions of g′†g. Thus

−
√
πI1 =

∫

dµ(g)G+(g, g′)σ(g, g′, ǫ) =

∫

dµ(g)G+(g′†g)σ(g′†g, ǫ) =

∫

dµ(g)G+(g′)σ(g, ǫ).

(A11)
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In the last step we have used the left and right invariance of the integration measure on

SU(2). Thus, reverting back to the local coordinates on the sphere,

− I1 =
1√
π

∫

dµ(u)
1

ū
σ(u, ǫ) (A12)

which vanishes by angular integration. Thus

I1 = 0. (A13)

In I2, which is devoid of short distance singularities, we can let ǫ approach zero inside the

integrand, giving us the final result:

D−1
+ (x, x) =

1√
π
M(x)H−1(x)(R−H(x))M−1(x) = (

1

π
A− +

1√
π

(R−M)M−1). (A14)

Thus, putting together the analysis so far,

δS+ =

∫

tr((A− + (R−M)M−1)δA+). (A15)

To integrate this functional differential equation we note that δS+ can be related to the

holomorphic variation of a Hermitian WZW model on S2. The WZW action on S2 is defined

to be

SWZW [A] =
1

2

∫

dµ(z)tr(R+AR−A
−1) + Γ (A16)

where the volume term

Γ =
i

12π

∫

d3xǫijktr(A−1∂iAA
−1∂jAA

−1∂kA). (A17)

The derivatives

∂1 =
1

1 + zz̄
(R+ +R−), ∂2 =

1

i(1 + zz̄)
(R+ −R−) (A18)

while x3 corresponds to the coordinate third direction whose boundary is S2. We should

note that despite their ostensible appearance all metrical factors eventually cancel out and

we get back an action functional which is the same as that on R2. This is to be expected

from the toplogical nature of the WZW action.

The Polyakov-Wiegmann identity satisfied by (A16) can be written down as

SWZW [AB] = SWZW [A] + SWZW [B] −
∫

dµ(z)tr(A−1R−AR+BB
−1), (A19)

which gives us the relation

SWZW [H] = SWZW [M ] + SWZW [M †] +
1

π

∫

dµ(z)tr(A−A+). (A20)

21



Thus the variation of the Wess-Zumino-Witten action with respect to the holomorphic

component of the gauge potential is given by

δA+
SWZW [H] = (

1

π
A− +

1√
π

(R−M)M−1). (A21)

The corresponding variation w.r.t the anti-holomorphic component of the gauge connec-

tion proceeds along exactly similar lines. Using (A15,A21) we have the functional differential

equation

δA+
S+ = ARδA+

SWZW [H]. (A22)

AR is given by tr(tatb)R = tr(tatb)Fundamental. For us, R corresponds to the adjoint repre-

sentation of the group G = SU(N).

Using the initial condition that, D± =
√
πR± when A± = 0, we can integrate (A22)

and its anti-holomorphic counterpart, to get:

det[D+D−] =

[

det[
√
πR+

√
πR−]

∫

dµ(z)

]dim(G)

exp(2cASWZW [H]). (A23)

where cA is the quadratic Casimir invariant for the adjoint representation. To obtain the

result for a sphere of volume r2, one simply replaces R± → 1
rR± and the integration measure

by dµ → r2dµ.

APPENDIX B: Mode Expansions

In this appendix, we give the mode expansions for the current and for the kinetic and

potential energy terms.

We start with the expansion of the current J in spherical harmonics. From its very

definition (27), it is clear that it is a vector field on the sphere. It should hence be expanded

in terms of vector spherical harmonics. An appropriate expansion is given by

Ja(g) =
1

r

l=∞
∑

l=1,−l≤m≤l

Jal,mDl
m,1(g). (B1)

This is indeed the correct expansion to consider as J is obtained by R+ acting on a scalar

field on the sphere, hence its expansion involves Dl
m,1. Notice that Dl

m,1 is not really a

function on the sphere, as it involves the extra U(1) direction as well. (This is as expected,

since vectors are sections of the vector bundle.) However, we shall see that in the final
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results the extra phases cancel out, even though they do show up at intermediate stages of

the computation.

Using the orthogonality properties of the rotation matrices we can derive the following

completeness relation for the δ-function appropriate to vectors.

δ(g′, g) =
1

r2

l=∞
∑

l=1,−l≤m≤l

(2l + 1)D∗l
m,1(g

′)Dl
m,1(g) =

1

r2

l=∞
∑

l=1,−l≤m≤l

(2l + 1)Dl
1,1(g

′†g). (B2)

This allows us to write

δ

δJa(g)
=

1

r

l=∞
∑

l=1,−l≤m≤l

(2l + 1)D∗l
m,1(g)

δ

δJal,m
, (B3)

which is consistent with (62). Thus we can easily write

T1 = m

∫

dµ(g) Ja(g)
δ

δJa(g)
= m

l=∞
∑

l=1,−l≤m≤l

Jal,m
δ

δJal,m
. (B4)

Notice that in the integral over SU(2) in the left hand side of this equation, the U(1) factors

cancel out and we eventually only perform an integral over the sphere. This will be true of

the other manipulations we perform as well. We now look at T2, which we write in terms

of SU(2) coordinates as

T2 =

∫

g,g′

(

m1(R+(g′)G−(g, g′))
δ2

δJa(g)δJa(g′)
+ im2f

abcG−(g, g′)Jc(g′)
δ2

δJb(g)δJa(g′)

)

,

(B5)

where,

m1 =
mN

π2
, m2 =

mr

π
. (B6)

Focussing on the first term in T2 we notice that

G−(g, g′) = R+(g)G(g, g′) (B7)

where G is the Green’s function for the Laplacian with the mode expansion given by

r2G(g, g′) =

∞
∑

l=1

2l + 1

l(l + 1)
Dl

0,0(g
′†g) =

∑

l,m

2l + 1

l(l + 1)
D∗l
m,0(g

′)Dl
m,0(g). (B8)

Thus, the first term in T2 can be written as

T 1
2 =

m1

r4

∫

g,g′

(2l + 1)(2p + 1)(2q + 1)

l(l + 1)

×
(

(R+(g′)R+(g)D∗l
m,0(g

′)Dl
m,0(g))D∗p

r,1(g)D
∗q
s,1(g

′)
) δ2

δJap,rδJ
a
q,s

(B9)
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Sum over the various momentum modes is implied in the above formula. Summations will

not be explicitly indicated to avoid cluttering the formulae.

The definition of the Wigner functions and R+ give the relations

R+(g)Dl
m,0(g) =

√

l(l + 1)Dl
m,1(g)

R+(g′)D∗l
m,0(g

′) = −
√

l(l + 1)D∗l
m,−1(g

′) (B10)

We can simplify (B9) using these results as

T 1
2 = −m1

r4

∫

g,g′
(2l + 1)(2p + 1)(2q + 1)

(

D∗l
m,−1(g

′)Dl
m,1(g)D∗p

r,1(g)D
∗q
s,1(g

′)
) δ2

δJap,rδJ
a
q,s

= −m1

r2

∫

g′
(2p + 1)(2q + 1)

[

D∗l
m,−1(g

′)D∗q
s,1(g

′)
] δ2

δJal,mδJ
a
q,s

= m1(−1)s+1(2l + 1)
δ2

δJal,−sδJ
a
l,s

. (B11)

Turning now to the second term in T2, we can write it out as

T 2
2 = im2f

abc

∫

z,w
Jc(w)G(z,w)

δ

δJb(z)

δ

δJa(w)

= i
m

π
fmnc

∫

g,g′

(2r + 1)(2a + 1)(2l + 1)

l(l + 1)

×
(

R+(g)D∗l
q,0(g

′)Dl
q,0(g)

)

Dp
q,1(g

′)D∗r
s,1(g)D∗a

b,1(g
′)

[

Jcp,q
δ

δJnr,s

δ

δJma,b

]

= i
m

π
fmnc

∫

g′

(2r + 1)(2a + 1)
√

r(r + 1)
Dp
q,1(g

′)D∗r
s,0(g

′)D∗a
b,1(g

′)

[

Jcp,q
δ

δJnr,s

δ

δJma,b

]

(B12)

The last two integrals above are meant to be evaluated on a sphere (or equivalently an

SU(2)) of unit volume. All the factors of r cancel out. The integral of three Wigner

functions can be readily expressed in terms of Clebsch-Gordan coefficients. To do that we

first note the that

Dl
m,0(θ, φ) =

√

4π

2l + 1
Y ∗
l,m(θ, φ) (B13)

where the usual spherical harmonics are normalized to unity on a sphere of volume 4π. i.e.

∫

sin(θ)dθdφY ∗
l,m(θ, φ)Yl′,m′(θ, φ) = δl,l′δm,m′ . (B14)

It then follows that

Dl
m,n(θ, φ, ψ) = e−inψDl

m,0(θ, φ) = e−inψ
√

4π

2l + 1
Y ∗
l,m(θ, φ). (B15)
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Hence

∫

g′
Dp
q,1(g

′)D∗r
s,0(g

′)D∗a
b,1(g

′) =

√

4π

(2p + 1)(2a + 1)(2r + 1)

∫

dΩ̃Y ∗
p,q(Ω̃)Ya,b(Ω̃)Yr,s(Ω̃),

(B16)

where dΩ̃ = sin(θ)dθdφ, the volume measure on a sphere of volume 4π. This last integral

is a standard one, and can be evaluated to get the final answer as

∫

g′
Dp
q,1(g

′)D∗r
s,0(g

′)D∗a
b,1(g

′) =
1

2p + 1
C(r, a, p; 0, 0, 0)C(r, a, p; s, b, q). (B17)

In terms of the Wigner 3j-symbol,

∫

g′
Dp
q,1(g

′)D∗r
s,0(g

′)D∗a
b,1(g

′) =

(

r a p

0 0 0

)(

r a p

s b −q

)

. (B18)

Thus putting it all together,

T 2
2 = i

m

π
fmnc

(2r + 1)(2a+ 1)
√

r(r + 1)

(

r a p

0 0 0

)(

r a p

s b −q

)[

Jcp,q
δ

δJnr,s

δ

δJma,b

]

(B19)

Hence, we finally have:

T = m

(

Jal,s
δ

δJal,s
+
N

π2
(−1)s+1(2l + 1)

δ2

δJal,sδJ
a
l,−s

)

+
im

π
fmnc

(2r + 1)(2a + 1)
√

r(r + 1)

(

r a p

0 0 0

)(

r a p

s b −q

)

Jcp,q
δ

δJnr,s

δ

δJma,b
. (B20)

Once again, sum over the repeated momentum indices is implied.

The mode expansion of the potential energy term given in (26) is easily worked out as

V =
2π3

e2N2r2

∑

l≥1

l(l + 1)

2l + 1

∑

m

(−1)mJal,mJ
a
l,−m (B21)
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