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Abstract

We discuss the quantum dynamics of the PU oscillator, i.e. the system with the
Lagrangian

L =
1

2

[

q̈2 − (Ω2
1 + Ω2

2)q̇
2 + Ω2

1Ω
2
2q

]

(+ nonlinear terms) . (1)

When Ω1 6= Ω2, the free PU oscillator has a pure point spectrum that is dense
everywhere. When Ω1 = Ω2, the spectrum is continuous, E ∈ {−∞,∞}. The
spectrum is not bounded from below, but that is not disastrous as the Hamiltonian
is Hermitian and the evolution operator is unitary. Generically, the inclusion of
interaction terms break unitarity, but in some special cases unitarity is preserved.

We discuss also the nonstandard realization of the PU oscillator suggested by
Bender and Mannheim, where the spectrum of the free Hamiltonian is positive
definite, but wave functions grow exponentially for large real values of canonical
coordinates. The free nonstandard PU oscillator is unitary at Ω1 6= Ω2, but unitarity
is broken in the equal frequencies limit.

1 Motivation

Mechanical and field-theory systems involving higher derivatives in the Lagrangian at-
tracted (or, better to say, reattracted) recently some attention. In Refs. [1, 2] we put
forward arguments that the Theory of Everything may represent a variant of supersym-
metric higher-derivative theory living in flat higher-dimensional space. Our Universe is
associated then with a 3-brane classical solution in this theory (a kind of soap bubble
embedded in the flat higher-dimensional bulk), while gravity has the status of effective
theory in the brane world-volume.

The first paper where such theories were considered dates back to 1950 [3]. It was
shown there that higher-derivative theories are in many cases ghost-ridden, which may
break unitarity and render theory meaningless. Recently, it was understood, however, that

∗On leave of absence from ITEP, Moscow, Russia.
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there are higher-derivative systems where the ghosts are “benign” such that unitarity is
preserved. An example of nontrivial supersymmetric higher-derivative system of such
benign variety was constructed and studied in Ref. [4].

In this note, we concentrate on the dynamics of the system (1) (it is the simplest
example of higher-derivative mechanical systems introduced and studied first in the paper
[3] and is known by the name Pais-Uhlenbeck oscillator). Recently, the interest to this
problem has been revived [2], [5]- [9]. In spite of that many salient features of the PU
oscillator dynamics were revealed in previous studies, a certain confusion persists now in
the literature. This especially concerns the interpretation of the results obtained. Thus,
we found it useful to write a kind of mini-review including all relevant previous results
with inaccuracies corrected, as well as some new remarks. There are basically three new
observations:

• The statement of Ref. [5] that the Hamiltonian of the oscillator in the equal fre-
quency limit represents a set of Jordan blocks of infinite dimension is compatible
with the statement that the spectrum of such system is continuous if the limit
Ω1 → Ω2 is defined in a natural way [3,6]. We note that the wave functions of con-
tinuous spectrum can be represented as superpositions of non-stationary solutions
to the Schrödinger equation (non-stationary solutions are characteristic for Jordan
block Hamiltonians.)

• In contrast to what we suggested earlier [5], the spectrum stays unbounded from
below also when nonlinear terms in Eq.(1) are included. In most cases, the latter
bring about the quantum collapse phenomenon and breaking of unitarity. Unitarity
survives, however, when interaction has a certain special form.

• In constrast to what was written in Ref. [9], the free equal-frequency PU oscillator
in the nonstandard realization is not unitary in the usual sense of this word.

2 Hamiltonian and its spectrum

The canonical Hamiltonian corresponding to the Lagrangian (1) can be obtained using
Ostrogradsky’s method [10]. Due to the presence of extra derivatives, the phase space
involves besides (q, pq) an extra canonical coordinate

x = q̇ (2)

and the corresponding canonical momentum px. The canonical Hamiltonian is

H = pqx+
p2

x

2
+

(Ω2
1 + Ω2

2)x
2

2
− Ω2

1Ω
2
2q

2

2
. (3)

Indeed, if writing the canonical Hamilton equations of motion and excluding pq, x, px, we
arrive at the equation

q(4) + (Ω2
1 + Ω2

2)q̈ + Ω2
1Ω

2
2q = 0 , (4)
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which can on the other hand be directly derived from the Lagrangian (1).
Consider first the case of inequal frequencies and assume for definiteness Ω1 > Ω2.

The Hamiltonian (3) can then be brought into diagonal form by the following canonical
transformation

q =
1

Ω1

Ω1X2 − P1
√

Ω2
1 − Ω2

2

, x =
Ω1X1 − P2
√

Ω2
1 − Ω2

2

,

px =
Ω1P1 − Ω2

2X2
√

Ω2
1 − Ω2

2

, pq = Ω1
Ω1P2 − Ω2

2X1
√

Ω2
1 − Ω2

2

. (5)

The inverse of it is

X1 =
1

Ω1

pq + Ω2
1x

√

Ω2
1 − Ω2

2

, X2 =
px + Ω2

1q
√

Ω2
1 − Ω2

2

,

P1 = Ω1
px + Ω2

2q
√

Ω2
1 − Ω2

2

, P2 =
pq + Ω2

2x
√

Ω2
1 − Ω2

2

. (6)

We obtain

H =
P 2

1 + Ω2
1X

2
1

2
− P 2

2 + Ω2
2X

2
2

2
. (7)

The spectrum of this Hamiltonian is

Enm =

(

n +
1

2

)

Ω1 −
(

m+
1

2

)

Ω2, n,m = 0, 1, 2, . . . (8)

The eigenfunctions of the original Hamiltonian (3) are [5]

Ψnm(q, x) = Cnme
−iΩ1Ω2qx exp

{

−∆

2

(

x2 + Ω1Ω2q
2
)

}

φnm(q, x) , (9)

where ∆ = Ω1 − Ω2 and

φnm(q, x) =
m

∑

k=0

(

i∆

4
√

Ω1Ω2

)k
m!(n−m)!

(m− k)!k!(n−m+ k)!
H+

n−m+kH
−
k , m ≤ n ,

φnm(q, x) =
n

∑

k=0

(

i∆

4
√

Ω1Ω2

)k
n!(m− n)!

(n− k)!k!(m− n+ k)!
H+

k H
−
m−n+k, m > n .

(10)

Here H±
l are the Hermite polynomials of the following arguments,

H+
l ≡ Hl[i

√

Ω1(Ω2q − ix)], H−
l ≡ Hl[

√

Ω2(Ω1q + ix)] (11)

[H0(z) ≡ 1, H1(z) ≡ 2z,H2(z) ≡ 4z2 − 2, . . .], and Cmn are the irrelevant for our purposes
normalization factors.
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The wave functions (9) are normalized implying that the spectrum is pure point.
However, for generic incommensurable frequencies, the spectrum is dense everywhere:
however small is the interval {E,E + dE} it contains an infinite number of eigenvalues,
and this is true for any E. Obviously, this unusual property is related to the fact that
the spectrum has no bottom. We want to emphasize, however, that though this quantum
system is unusual, it is not sick: the Hamiltonian (7) is Hermitian and the corresponding
evolution operator is unitary.

In the limit Ω1 → Ω2, the transformation (5) becomes singular. To understand what
happens in this limit, it is best to look directly at the spectrum (8) and the wave functions
(9,10).

If setting formally Ω1 = Ω2 in Eq.(8) 1, we obtain

Enm = Ω(n−m) (12)

meaning the infinite degeneracy of the spectrum at each level. The wave functions are
reduced to

Ψnm(q, x) ∝
[

e−iΩ2qxH+
n−m, m ≤ n

e−iΩ2qxH−
m−n, m > n

. (13)

We see that, at each level with a given n − m, an infinite dimensional Jordan block
appears [5].

3 Jordan blocks and continuous spectrum. Unitarity.

The presence of Jordan blocks in the Hamiltonian 2 implies usually the loss of unitarity.
Indeed, consider the matrix Hamiltonian

H =

(

1 1
0 1

)

(14)

(it has only one eigenvector ψ =

(

1
0

)

with eigenvalue 1). It is straightforward to see

that the time-dependent Schrödinger equation

i
dψ

dt
= Hψ (15)

has the following general solution,

ψ(t) = a

(

1
0

)

e−it + b

(

−it
1

)

e−it . (16)

1See, however, the discussion below.
2The points in the parameter space where such Jordan blocks emerge are called exceptional points [11].
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When b 6= 0, the norm of ψ(t) grows with time. The latter statement applies to the
natural norm ‖ψ‖ = ψ†ψ and also to any other positive definite norm ∼ ψ†Mψ. If the
norm is not positive definite, it is not true, as is clearly seen when choosing

M =

(

0 0
0 1

)

.

Such a norm is degenerate, however. It projects the full 2-dimentional Hilbert space where

the Hamiltonian (14) is defined to a one-dimensional subspace ψ =

(

0
c

)

. The dymanics

in this subspace is unitary, the dynamics in full Hilbert space is not.
This reasoning applies to any Jordan block of finite dimension and to any Hamiltonian

including such. However, in our case, the dimensions of the Jordan blocks are infinite.
A remarkable fact is that in this case unitarity is not necessarily broken. In particular,
a unitary evolution operator can well be defined for the free PU oscillator at equal fre-
quencies. The novel feature compared to the inequal frequencies case is the appearance
of continuous spectrum [3, 6].

Strong indications that the spectrum is continuous follow already from inspecting the
spectrum (8), the wave functions (9), and their fate in the limit Ω1 → Ω2.

• One can notice first of all that the discrete spectrum (12) is only obtained from (8)
if setting Ω1 = Ω2 while keeping n,m finite. It is possible to take the limit in such a
way (this implies a kind of ultraviolet regularization), but a more natural approach
is to allow n,m to be arbitrary large. When ∆ = Ω1 − Ω2 is sent to zero and n,m
are sent to infinity such that n −m is kept fixed and n∆ is kept finite, the energy
(8) can acquire an arbitrary value and not only the discrete values (12).

• In the limit ∆ → 0, the wave functions (9) are no longer normalizable, and this
suggests that the spectrum is continuous.

Let us now prove the continuity of the spectrum by constructing explicitly the wave
functions of arbitrary energy E. At the first step, let us get rid of the terms ∝ x2 and ∝ q2

in the Hamiltonian by representing an eigenfunction of (3) as Ψ(q, x) = e−iΩ2xqφ(q, x).
The operator acting on φ(q, x) is

H̃ =
1

2
p2

x + xpq − Ω2qpx . (17)

It is convenient then to perform the canonical transformation [3, 6]

px → px, pq → Ωpq, x→ x+
1

4Ω
pq, q → 1

Ω
q +

1

4Ω2
px . (18)

giving the new Hamiltonian

H ′ =
p2

x + p2
q

4
+ Ω(xpq − qpx) . (19)
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The transformation (18) is the superposition of the scale transformation 3 q → q/Ω, pq →
Ωpq and the unitary transformation O → eROe−R with R = ipxpq/(4Ω). The eigenfunc-
tions of the Hamiltonian (17) is obtained from the eigenfunctions of the Hamiltonian (19)
as 4

φ(q, x) = exp

{

i

4Ω2

∂2

∂x∂q

}

φ′(Ωq, x) .

The eigenfunctions of H ′ are known,

φ′
lk(q

′, x; t) ∝ Jl(kr)e
−ilθ e−it(lΩ+k2/4) , (20)

where (r, θ) are the polar coordinates in the plane (q′, x) and l = 0,±1,±2, . . . are the
eigenvalues of the angular momentum operator L = xp′q − q′px. We obtain

φlk(q, x; t) ∝ exp

{

i

4Ω2

∂2

∂x∂q

}

[

Jl

(

k
√

x2 + Ω2q2
)

(

Ωq − ix

Ωq + ix

)l/2
]

e−it(lΩ+k2/4) . (21)

Introducing
z =

√
Ω(x+ iΩq), w = iz̄ =

√
Ω(ix+ Ωq) ,

expanding the Bessel function and using the identity

exp

{

−1

4

∂2

∂z2

}

zn = 2−nHn(z) ,

we finally derive

Ψlk ∝ e−it(lΩ+k2/4)e−iΩ2qx
∞

∑

m=0

(

ik2

Ω

)m
Hl+m(z)Hm(w)

42m+lm!(l +m)!
. (22)

The structure of this expression is similar to that in Eqs.(9,10), but the meaning is
different: the expansion goes now in the spectral parameter k2/Ω rather than in the
parameter of the Hamiltonian ∆/

√
Ω1Ω2 as in Eq.(10). In addition, Eq.(22) represents

an infinite series rather than a finite sum. We can note that each level in the spectrum is
infinitely degerate. The eigenfuctions Ψlk, Ψl−1,

√
k2+4Ω, etc. have the same energy. This

is not a Jordan degeneracy discussed above: the basis (22) diagonalizes the Hamiltonian,
and the functions Ψlk with different l are distinguished by the eigenvalue of the “angular
momentum” operator,

L =
xpq

2Ω
− Ω

2
qpx +

1

4Ω

(

p2
x −

p2
q

Ω2

)

+
3Ωx2

4
− 3Ω3q2

4
(23)

(we have rotated the operator L = xp′q − q′px back to original variables), that commutes
with the Hamiltonian (3).

3It amounts to a unitary transformation with S = e−i(qpq+pqq) ln Ω/2, but this representation is not
particularly useful.

4For a general theory of quantum canonical transformations, see [12].
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We have made two seemingly conflicting statements: (i) the spectrum of the Hamil-
tonian involves a set of infinite-dimensional Jordan blocks and (ii) the spectrum is con-
tinuous. How to reconcile them ? To understand it better, consider the trivial free
Hamiltonian

H = −1

2

∂2

∂x2

with the eigenfunctions

Ψ(x; t) = exp

{

ikx− ik2

2
t

}

. (24)

Note now that not only (24), but also every term of its expansion in k,

k0 : Ψ0(x; t) = 1 ,

k1 : Ψ1(x; t) = x ,

k2 : Ψ2(x; t) = t− ix2 ,

k3 : Ψ3(x; t) = xt− ix3

3
,

k4 : Ψ4(x; t) = t2 − 2itx2 − x4

3
, (25)

etc., satisfy the time-dependent Schrödinger equation (15). The functions (25) represent
polynomials in x and, what is especially noteworthy, in t, much similar to non-stationary
solutions (16) characteristic to Jordan block Hamiltonians.

On the other hand, the functions (25) grow at large x, are not normalizable, and do
not form a basis of a reasonable Hilbert space. The only way to define the latter is to sum
over all Ψn(x; t) with a proper weight and go back to the standard continuous spectrum
wave functions (24), which can be dealt with by introducing a box of finite length L (where
the definition of Hilbert space presents no problem) and sending then L to infinity.

By the same token, individual terms of the expansion of (22) in k represent nonsta-
tionary solutions of the Schrödinger equation with the Hamiltonian (3). For l = 0, these
solutions are

k0 : e−iΩ2qx,

k2 : [t− i(x2 + Ω2q2)]e−iΩ2qx,

k4 :

[

t2 − 2it(x2 + Ω2q2) − (Ω2q2 + x2)2

2
− iqx+

1

8Ω2

]

e−iΩ2qx, (26)

etc. The first function in (26) coincides with the wave function (13) with n−m = 0. The
higher functions may be interpreted as its non-stationary “descendants” associated with
the presence of the infinite-dimensional Jordan block at the level Enm = 0.

However, as was also the case in the previous example, these descendants grow at large
x, q and only their superpositions (22) form a proper Hilbert space basis.

7



4 Including interactions.

We have learned in the previous section that, in spite of unusual features (the absence of
the ground state), the free PU oscillator represents a benign unitary quantum system both
when Ω1 6= Ω2 and when Ω1 = Ω2. It is especially clear in the inequal frequencies case
when the Hamiltonian can be brought in the form (7). When two different oscillators are
decoupled, it does not matter much that the energies of one of the oscillators are counted
with the negative sign. Each oscillator lives its own life and the energy sign is basically a
bookkeeping issue.

The danger arises when the oscillators start to interact. The subsystem 1 can give
energy to subsystem 2 such that the absolute values of the energies of both subsystems
increase. This brings about a potential instability that may lead to collapse and loss
of unitarity. We will see that, generically, such collapse occurs, indeed. But not always.
When the interaction Hamiltonian has some special form, there is no collapse and unitarity
is preserved.

Consider the Hamiltonian (acting on φ(q, x))

H = −1

2

∂2

∂x2
+ iΩ2q

∂

∂x
− ix

∂

∂q
+ αq4 + βq2x2 + γx4 . (27)

Let us find out first whether the spectrum is still unbounded from below as for the free
PU oscillator. The answer is — yes, it is. To see that, choose the variational Ansatz

φ(q, x) = exp

{

−Aq
2

2
− iBxq − Cx2

2

}

√

AC

π
. (28)

The variational energy is

E(A,B,C) =
C

4
+
B2

4A
+
BΩ2

2A
− B

2C
+

3α

4A2
+

3γ

4C2
+

β

4AC
. (29)

By varying A,B,C, one can make it arbitrarily negative. Indeed, choose first A very large
such that

E(∞, B, C) =
C

4
− B

2C
+

3γ

4C2
.

Keeping C finite and increasing B, we can make −E arbitrary large. In Ref. [5], we
used a different variational Ansatz with which the energy of the ground state could not
be made arbitrarily negative. However, as the energy can be lowered indefinitely with a
more general Ansatz (28), we conclude that the ground state is absent.

When α or β or γ are nonzero, the classical dynamics of the Hamiltonian (27) involves
collapse. In the certain region of parameters, there is an island of stability around the
perturbative vacuum [2], defined as the point q = q̇ = q̈ = q(3) = 0. With initial conditions
at the vicinity of this point, the trajectories display benign behaviour peacefully oscillating
near the origin. Generically, however, the trajectories go astray reaching infinity in finite
time.

The simplest well-known system displayng such behaviour describes 3D motion of
the particle with the attractive potential V (r) = −κ/r2. Classically, for certain initial
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conditions, the particle falls to the center in finite time. The quantum dynamics of the
system depends in this case on the value of κ. If mκ < 1/8, the ground state exists and
unitarity is preserved. On the other hand, if mκ > 1/8, the spectrum is not bounded
from below and, which is worse, the spectral problem cannot be well posed until some
extra boundary conditions are set at the vicinity of the origin. The spectrum depends
then on these boundary conditions [13]. Setting such boundary conditions is tantamount
to regularizing the singularity of the potential (the spectrum thus depends on the way it
is done). Without such regularization, the probability leaks out through the singularity
and unitarity is violated. One can conjecture that the presence of classical collapsing
trajectories and the absence of the ground state always imply violation of unitarity. We do
not know whether a mathematical theorem to this effect can be proven, but, heuristically,
it is suggestive. Indeed, if the spectrum involves the states with arbitrary low energies,
the corresponding wave functions should have main support near the singularity, where
theory needs regularization to prevent the leakage of probability.

In other words, the nonlinear PU oscillator is in most cases sick: collapsing classical
trajectories lead to the quantum collapse. However, in some cases there is no collapse.
Consider the PU oscillator with inequal frequencies and let us add to the Hamiltonian (7)
the potential

V (X1, X2) = λ(X1 −X2)(X1 +X2)
3 (30)

(λ > 0). The numerical solution to the classical equations of motion,

Ẍ1 + Ω2
1X1 +

∂V

∂X1

= 0 ,

Ẍ2 + Ω2
2X2 −

∂V

∂X2
= 0 , (31)

do not display any collapse. The amplitude of oscillations somewhat grows with time,
but this growth is rather smooth (see Fig. 1).

The Hamiltonian

H =
P 2

1 + Ω2
1X

2
1

2
− P 2

2 + Ω2
2X

2
2

2
+ λ(X1 −X2)(X1 +X2)

3 (32)

is a close relative to the supersymmetric Hamiltonian considered in Ref. [4]. The bosonic
part of the latter is

H = pP +D(Ω2x+ λx3) , (33)

where (p, P ) are the canonical momenta of (x,D). By introducing X1,2 = (x±D)/
√

2, it
is reduced to the Hamiltonian (32) with Ω1 = Ω2 = Ω. 5 The system (33) is integrable and
the classical trajectories are expressed analytically into Jacobi elliptic functions. In this
case, the amplitude of oscillations grows linearly with time, but this does not represent a

5To avoid confusion, it is worth reminding that the limit Ω1 → Ω2 is singular and the Hamiltonian
(7) with Ω1 = Ω2 does not describe the PU oscillator with equal frequencies.
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Figure 1: A typical classical trajectory of the Hamiltonian (32)

disaster as the trajectories do not run into infinity in a finite time. The Schrödinger equa-
tion for the Hamiltonian (33) can be solved analytically [4]. The spectrum is continuous,
with eigenvalues lying in two intervals ] −∞,−Ω] ∪ [Ω,∞[ plus the eigenvalue {0}. The
quantum spectrum for the Hamiltonian (32) should have the same qualitative features.
Besides (30), there are other interaction potentials providing for the same behaviour. One
of them is V (X1, X2) = λ(X1 − X2)

3(X1 + X2). Note that, being expressed in terms
of the original variables x, q, px, pq, the Hamiltonian (32) acquires a rather complicated
form and the corresponding Lagrangian depending on q and its time derivatives is even
more complicated. Natural nonlinear extentions of the Lagrangian (1) seem all to involve
classical and quantum collapse.

5 Complexification

The spectral Sturm-Liouville problem is defined when the operator in question (Hamilto-
nian) is given and boundary contitions are specified. It is possible thus to have different
spectral problems associated with a given Hamiltonian.

Take a simple oscillator,

H =
1

2
(P 2 + Ω2X2) .

If considering the spectral problem at real X and requiring that wave functions vanish at
infinity, we obtain the usual spectrum

En = Ω(n + 1/2) .

The wave functions, Ψ ∝ e−X2/2, continued analytically to complex X, vanish asymp-
totically not only on the real axis, but in the whole Stokes wedge with |arg(X)| < π/4.
Nothing prevents, however, to consider another spectral problem and require that wave
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functions vanish at large imaginary X. The corresponding eigenfunctions are Ψn ∝
Hn(iX)eX2/2. They vanish in the complementary Stokes wedge as shown in Fig. 2.
The spectrum is now

En = −Ω(n + 1/2) .
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Figure 2: Stokes wedges

We have seen that the free PU oscillator with different frequencies is equivalent to the
combination of two oscillators (7) with the spectrum (8). But the latter is true only if
q, x, pq, px and hence X1,2 are assumed to be real. One can on the other hand assume that,
while X1 is kept real, X2 is imaginary. In this case, the sign of the energy eigenvalues of
the second oscillator is reversed, and one obtains a positive definite spectrum

Enm =

(

n +
1

2

)

Ω1 +

(

m+
1

2

)

Ω2 n,m = 0, 1, . . . (34)

with no trace of ghosts. Another way to obtain this result is the following [8, 9]. Let us
consider the Hamiltonian (3) and assume x being real and q being imaginary there 6 ,
q = iy, pq = −ipy. The Hamiltonian acquires the form

H =
p2

x

2
− ixpy +

(Ω2
1 + Ω2

2)x
2

2
+

Ω2
1Ω

2
2y

2

2
. (35)

The second term in this expression is complex which may lead to worries whether the
Hamiltonian (35) makes sense. This worries are not grounded, however. Though the
Hamiltonian (35) is not manifestly Hermitian, it belongs to the class of crypto-Hermitian
Hamiltonians with real spectrum [14]. The Hamiltonian (35) can be diagonalized to the
manifestly Hermitian form,

Hdiag =
P 2

1 + Ω2
1X

2
1

2
+
P 2

2 + Ω2
2X

2
2

2
. (36)

6From the viewpoint of the original Lagrangian (1), it is not so natural to assume that the coordinate
q is imaginary, while its time derivative x = q̇ is real. But, formally, one is allowed to do it.
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by a complex canonical transformation (a brother of the transformation (6) ),

X1 ≡ x̃ =
1

Ω1

Ω2
1x− ipy

√

Ω2
1 − Ω2

2

, X2 ≡ ỹ =
Ω2

1y − ipx
√

Ω2
1 − Ω2

2

,

P1 ≡ p̃x = Ω1
px + iΩ2

2y
√

Ω2
1 − Ω2

2

, P2 ≡ p̃y =
py + iΩ2

2x
√

Ω2
1 − Ω2

2

. (37)

This transformation amounts to a certain similarity nonunitary transformation,

Hdiag = e−Se−RHeReS (38)

with

R =

(

pxpy

2Ω1Ω2
+
xyΩ1Ω2

2

)

ln
Ω1 + Ω2

Ω1 − Ω2
, (39)

and

S =
i ln Ω1

2
(ypy + pyy) . (40)

To find the eigenfunctions of (35), one can either rotate away the eigenfunctions of
(36), Ψ = eReSΨdiag or proceed in the same way as in Ref. [5] representing the wave
functions as

Ψnm = φnm exp

{

−Ω1 + Ω2

2
(x2 + Ω1Ω2y

2) − Ω1Ω2xy

}

. (41)

The operator acting on φnm(x, y) is

Ô = −1

2

∂2

∂x2
− x

∂

∂y
+ [x(Ω1 + Ω2) + yΩ1Ω2]

∂

∂x
+

Ω1 + Ω2

2
. (42)

Introducing

z =
√

Ω1(x+ Ω2y), w =
√

Ω2(x+ Ω1y) , (43)

it acquires the form

Ô = Ω1

[

−1

2

∂2

∂z2
+ z

∂

∂z

]

+ Ω2

[

−1

2

∂2

∂w2
+ w

∂

∂w

]

−
√

Ω1Ω2
∂2

∂z∂w
+

Ω1 + Ω2

2
. (44)

The eigenfunctions of Ô are polynomials. When the dependence on the variable w or on
the variable z is suppressed, they are conventional Hermite polynomials,

φn0 = Hn(z), φ0m = Hm(w). (45)

When both n 6= 0 and m 6= 0, the eigenfunction is

φnm(x, y) =

min(n,m)
∑

k=0

(

−Ω1 + Ω2

4
√

Ω1Ω2

)k
m!(n−m)!

(m− k)!k!(n−m+ k)!
Hn−m+k(z)Hk(w) , (46)
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The expression (46) is very similar to (10) and is obtained from the latter by substitut-
ing i∆ = i(Ω1 − Ω2) → −(Ω1 + Ω2) and replacing the arguments i

√
Ω1(Ω2q − ix) −→

z,
√

Ω2(Ω1q + ix) −→ w .
There is a price, however, that one has to pay for getting rid of negative energies in the

spectrum. The Hamiltonian (35) is not Hermitian and this means that the conventionally
defined norm ‖Ψ‖ =

∫∫

dxdy |Ψ(x, y)|2 is not preserved during evolution. In addition,
the eigenfunctions (46) do not represent an orthogonal basis with respect to this norm.
True, crypto-Hermiticity of the Hamiltonian implies that a norm with respect to which
the evolution is unitary can be defined, but this norm,

‖Ψ‖′ = 〈Ψ∗e−2RΨ〉 ,

has a complicated nonlocal structure.
The transformations (37) are singular at Ω1 = Ω2. This suggests that, as it was

the case for the standard PU oscillator, the point Ω1 = Ω2 is exceptional also in the
nonstandard realization. The emergence of Jordan blocks in this limit was noticed back
in [7], but the best way to see that is to follow, as Bender and Mannheim did [9], the
approach of Ref. [5] and to explore the fate of eigenfunctions (46) in the limit Ω1 → Ω2.

In this limit, the variables z and w coincide. The eigenfunctions (46) for a given n+m
also all coincide in this limit, φnm(z) ∼ Hn+m(z). To derive the latter, note that the
operator (44) acquires in the limit Ω1 → Ω2 the form

ÔΩ1=Ω2
= Ω

[

− ∂2

∂z2
+ 2z

∂

∂z
+ 1

]

(47)

and its eigenfunctions are simple Hermite polynomials, indeed. After massaging Eq.(46)
a little bit, we derive, as a byproduct, a nice mathematical identity

Hn+m(z) =

min(n,m)
∑

j=0

(−2)j n!m!

j!(n− j)!(m− j)!
Hn−j(z)Hm−j(z) . (48)

In contrast to the standard PU oscillator where the Jordan blocks had infinite dimen-
sion, their dimension is finite here. We have a single vacuum state with energy E = Ω,
the Jordan block of dimension 2 at the level E = 2Ω, the Jordan block of dimension 3 at
the level E = 3Ω, etc. At each level, there is a finite number of different nonstationary
solutions to the time-dependent Schrödinger equation and one cannot construct, as we
did before, bounded in x, t combinations that have the meaning of continuous spectrum
wave functions. As a result, unitarity is violated. 7

As was mentioned, the real problem associated with the ghosts is the quantum and/or
classical collapse, which might appear only in interacting theory. It is not so easy to

7In Ref. [9], a certain norm was constructed that is conserved during evolution. As a result, Bender
and Mannheim claimed that the system with the Hamiltonian (35) in the equal frequency limit is unitary.
However, their norm is nilpotent and, as was discussed at the beginning of Sect. 3, it amounts to projecting
the original Hilbert space onto a complicated unnaturally defined subspace. Even though the dynamics
in the latter is unitary (and the Hamiltonian loses its Jordan block structure and is Hermitian), this is
not the unitarity and Hermiticity in the standard meaning of these words.
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include interactions and analyze their effects in the Bender-Mannheim approach. First,
it is not clear whether the Hamiltonian (35) with the interaction term like λy4 is still
crypto-Hermitian. The canonical transformations (37) [or, which is equivalent, the simi-
larity transformation (38)] kill the complexity −ixpy, but bring about new complexities
coming from the interaction term ∝ y4. These complexities have the form ∆Hdiag ∝
iλ(Ω2

1P1X
3
2 −P 3

1X2) We failed to find a modified canonical transformation that would kill
all complexities.

Even if one succeeds in finding a nonlinear crypto-Hermitian generalization of the
Hamiltonian (35), it would be difficult to analyze its spectrum and to find out whether
the ground state is still present there. In particular, it would be difficult to implement
variational estimates due to a complicated nonlocal norm.

6 Conclusions.

Our main message is that the ghosts (the absence of the ground state in the spectrum),
do not represent a serious problem for free theory. Thus, it is not necessary to cope with
them there. The spectrum of the free PU oscillator runs from −∞ to +∞ representing a
pure point spectrum that is dense everywhere when Ω1 6= Ω2 and a continuous spectrum
when Ω1 = Ω2. The latter can also be interpreted via infinite-dimensional Jordan blocks
that appear in the limit Ω1 → Ω2 [5]. In spite of the absence of the ground state, unitarity
is preserved.

Generically, interactions break unitarity due to quantum collapse phenomenon. How-
ever, there are certain special cases when the theory involves neither classical nor quantum
collapse. A particularly interesting example is the exactly soluble nonlinear Hamiltonian
(33) that appears in the context of supersymmetric higher derivative quantum mechan-
ics [4] 8

By analytical continuation to complex coordinates, it is possible to consider a non-
standard realization of the free PU Hamiltonian with the positive definite spectrum (34).
When Ω1 6= Ω2, a unitary evolution operator can be defined. The presence of the ground
state may be considered as a certain advantage of this realization compared to the stan-
dard one. However,

1. It is misleading to say that choosing the nonstandard realization “solves the ghost
problem”. The analysis has been performed only for free theory and, in the free
case, there is no serious problem to solve anyway.

2. In constrast to the standard one, the nonstandard PU oscillator at equal frequencies
is not unitary.

8The Hamiltonian (33) had continuous spectrum, like the free PU oscillator with equal frequencies.
Another interesting nonlinear higher-derivative Hamiltonian,

H = pP + D(Ω2x + λx3) − γ

2
(D2 + P 2) ,

has the pure point spectrum that is dense everywhere, like the PU oscillator at different frequencies.
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3. As far as the original problem with the Lagrangian (1) is concerned, the nonstan-
dard realization does not look natural: (i) it is not so natural to assume that the
coordinate q is imaginary while its time derivative x = q̇ is real ; (ii) the norm in the
space (y ≡ −iq, x) that is preserved during evolution has a complicated nonlocal
structure.

4. It is not known yet what happens in the framework of nonstandard realization when
interactions are included.

I aknowledge warm hospitality at AEI in Golm, where this work was finished and
thank P. Mannheim for useful correspondence.
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