
SOME APPLICATIONS OF THE ISOPERIMETRIC INEQUALITY
FOR INTEGRAL VARIFOLDS

ULRICH MENNE

Abstract. In this work the Isoperimetric Inequality for integral varifolds is
used to obtain sharp estimates for the size of the set where the density quo-

tient is small and to generalise Calderón’s and Zygmund’s theory of first order

differentiability for functions in Lebesgue spaces from Lebesgue measure to
integral varifolds.
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Introduction

In this work, and also in the work in [Men08b] and [Men08c] depending on it,
weak notions of regularity for integral varifolds in an open subset of Euclidian space
whose distributional first variation is given by either a Radon measure or a locally
to the p-th power summable function, 1 < p ≤ ∞, are investigated. As it is well
known, see e.g. [All72, 8.1 (2)], even in the second case with p = ∞ the singular
set where the support does not locally correspond to a submanifold of class C1 may
have positive measure. Therefore the notions of regularity studied here are decay
rates of height-excess and tilt-excess which provide a way to quantify the amount of
flatness entailed by the conditions on the mean curvature near almost every point.

Next, in order to precisely state the problem and the results, some definitions
will be recalled. Suppose throughout the introduction that n,m ∈ N, U is an open
subset of Rn+m, and µ is an integral n varifold in U , i.e., using [Sim83, Theorem
11.8] as a definition, µ is a Radon measure on U and for µ almost all x ∈ U
there exists an approximate tangent plane Txµ ∈ G(n+m,n) with multiplicity
θn(µ, x) ∈ N of µ at x, G(n+m,n) denoting the set of n dimensional, unoriented
planes in Rn+m. The distributional first variation of mass of µ equals

(δµ)(η) =
�

divµ η dµ whenever η ∈ C1
c (U,Rn+m)

where divµ η(x) is the trace of Dη(x) with respect to Txµ. ‖δµ‖ denotes the total
variation measure associated to δµ and µ is said to be of locally bounded first
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2 ULRICH MENNE

variation if and only if ‖δµ‖ is a Radon measure, in this case the generalised mean
curvature vector ~Hµ(x) ∈ Rn+m can be defined by the requirement

~Hµ(x) • v = − lim
%↓0

(δµ)(χB%(x)v)

µ(B%(x))
for v ∈ Rn+m

whenever these limits exist for x ∈ U ; here • denotes the usual inner product on
Rn+m. Moreover, µ is said to satisfy (Hp), 1 ≤ p ≤ ∞, if and only if it is of locally
bounded first variation, ~Hµ ∈ Lploc(µ,Rn+m), and, in case p > 1, satisfies

(δµ)(η) = −
�
~Hµ • η dµ whenever η ∈ C1

c (U,Rn+m).(Hp)

Also, adapting Anzellotti’s and Serapioni’s definition in [AS94], µ is called countably
rectifiable of class C2, or for short C2 rectifiable, if and only if µ almost all of U
can be covered by a countable collection of n dimensional submanifolds of class C2.
The notation follows [Sim83] which includes a list of basic notation on page (vii).

The following questions arise.

Question 1. Suppose n,m ∈ N, 1 ≤ p ≤ ∞, 0 < α ≤ 1, and 1 ≤ q ≤ ∞. Does
the condition (Hp) on an integral n varifold µ in U , U a nonempty, open subset of
Rn+m, imply

lim sup
%↓0

%−1−α−n/q‖dist(· − x, Txµ)‖Lq(µ xB%(x)) <∞ for µ almost all x ∈ U?

Question 2. Suppose n,m ∈ N, 1 ≤ p ≤ ∞, 0 < α ≤ 1, and 1 ≤ q ≤ ∞. Does
the condition (Hp) on an integral n varifold µ in U , U a nonempty, open subset of
Rn+m, imply

lim sup
%↓0

%−α−n/q‖T·µ− Txµ‖Lq(µ xB%(x)) <∞ for µ almost all x ∈ U?

Here S ∈ G(n+m,n) is identified with the element of Hom(Rn+m,Rn+m) given
by the orthogonal projection of Rn+m onto S.

Clearly, the two questions are related by Caccioppoli type inequalities, see e.g.
in [Bra78, 5.5], at least in the case q = 2 where the quantities considered agree
with the classical tilt and height excess. Also note that an affirmative answer to
one of the questions with α, q implies an affirmative answer to the same question
for any 0 < α′ ≤ 1, q < q′ < ∞ such that αq = α′q′ by use of the trivial L∞

bounds of the functions involved. The case α = 1 is of particular interest in both
questions. A varifold satisfying the decay estimate in the first question with α = 1
and q = 1 is C2 rectifiable, see [Sch04b, Appendix A]. In the second question the
case α = 1 is related to the local computability of the mean curvature vector from
the geometry of {x ∈ U : θn(µ, x) ≥ 1}, see [Sch01, Lemma 6.3] (or [Sch04a, Prop.
6.1] or [Sch04b, Theorem 4.1]). On the other hand the quantity αq to some extend
determines how well µ can be approximated by multivalued graphs near generic
points, see Almgren [Alm00, Chapter 3] and Brakke [Bra78, Chapter 5] and also
the forthcoming paper [Men08b]. Such kind of approximation has been fundamental
for regularity investigations, for example, in the work of Almgren in [Alm00].

Next, an overview of results concerning these two questions will be given. Brakke
answers both questions in the affirmative for any n,m ∈ N if

either p = 1, α = 1/2, q = 2 or p = 2, α < 1, q = 2

in [Bra78, 5.7]. Schätzle provides a positive answer in the case

m = 1, p > n, p ≥ 2, α = 1, q =∞
for the first question and in the case

m = 1, p > n, p ≥ 2, α = 1, q = 2
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for the second question, see [Sch04a, Prop. 4.1, Thm. 5.1]. Moreover, in subsequent
work Schätzle showed for arbitrary dimensions that the decay rates occuring in the
two questions hold if

p = 2, α = 1, q = 2

provided µ is additionally assumed to be C2 rectifiable.
In this paper, it is shown by an example of a unit density, C2 rectifiable n

varifold in Rn+1 that the answers to both questions is in the negative if p < n and
αq > np

n−p , see 1.2. In particular, in case 1 ≤ p < 2n
n+2 proving appropriate decay for

the classical height-excess or tilt-excess, i.e. answering the first or second question
in the affirmative for α = 1, q = 2, cannot serve as an intermediate step in studying
C2 rectifiability or local computability of the mean curvature vector. This was the
original motivation to consider exponents q 6= 2.

In order to provide new cases where the questions are answered in the affirma-
tive, it will turn out to be useful in [Men08b, Men08c] to have a theory of first
order differentiability for functions in Lp(µ), µ an integral n varifold, similar to the
one developed by Calderón and Zygmund in [CZ61] for Lp(Ln), at one’s disposal.
However, other kinds of applications may occur in the future. The key to carry
over this theory from the Lebesgue measure case to the case of integral varifolds is
the following differentiation theorem which corresponds to [CZ61, Theorem 10 (ii)]
but whose proof uses techniques employed by Federer in [Fed69, 2.9.17].
Theorem 3.1. Suppose n,m ∈ N, 1 ≤ p ≤ n, U is an open subset of Rn+m, µ is
an integral n varifold in U satisfying (Hp), ν measures U with ν(U ∼ sptµ) = 0, A
is µ measurable with ν(A) = 0, and 1 ≤ q <∞. In case p < n additionally suppose
for some 1 ≤ r ≤ ∞ and some nonnegative function f ∈ Lrloc(µ) that

ν = fµ and q ≤ 1 + (1− 1/r)
p

n− p
.

Then for Hn almost all a ∈ A

lim sup
s↓0

ν(B̄s(a))
/
snq equals either 0 or ∞.

The bound on q is sharp as demonstrated in 3.3, 3.4. Its occurance is due to the
fact that in case p < n the number n2/(n− p) in the following proposition cannot
be replaced by any larger number, see 1.2: Suppose n,m ∈ N, 1 ≤ p < n, µ is
an integral n varifold in Rn+m satisfying (Hp), then for µ almost all a ∈ U there
exists ε > 0 such that

lim
r↓0

µ
(
B̄r(a)∼{x :µ(B̄%(x)) ≥ cn%n for 0 < % < ε}

)
rn2/(n−p) = 0

where cn is a positive, finite number depending only on n, see 2.9, 2.10. Similar
propositions with n2/(n−p) replaced by any slighly smaller number can be obtained
via integration of the monotonicity formula, see [Sim83, Theorem 17.6]. The opti-
mal bound is derived using the Isoperimetric Inequality. All these results will be
proved under the weaker condition θn(µ, x) ≥ 1 for µ almost every x ∈ U replacing
the integrality condition on µ.

The work is organised as follows. In the first section the example is constructed.
In the second section the Isoperimetric Inequality is used to derive some sharp
bounds on the size of the set where the n density ratio is small and in the last
section a theory of first order differentiation in Lebesgue spaces defined with respect
to a varifold is presented. Note that with the exception of 3.6–3.10 the work was
part of the author’s PhD thesis, see [Men08a].

For notation of geometric measure theory see [Sim83, Fed69].
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1. An example concerning height and tilt decays of integral
varifolds

In this section a family of integral n varifolds with prescribed decay rates of
height and tilt quantities is constructed. In fact, the decay rate for tilt can be
arranged to be slightly larger than the one of the height with the same exponent.
However, this feature that will only become relevant in [Men08b].

1.1. Definition. Suppose x ∈ Rn+m and 0 < % <∞.
Then Q%(x) := {y ∈ Rn+m : |yi − xi| ≤ % for i = 1, . . . , n+m}. To avoid ambi-

guity, Qn+m
% (0) will be written instead of Q%(0).

1.2. Example. Suppose n ∈ N, 1 ≤ p < n, 0 < αi ≤ 1, 1 ≤ qi < ∞ for i ∈ {1, 2},
such that

α2q2 ≤ α1q1,
1
p
> 1 +

α2q2

α1q1

( 1
n

+
1

α2q2
− 1
)

In case α1q1 = α2q2 the last condition reads α2q2 >
np
n−p .

Then there exists a rectifiable n varifold µ in Rn+1, T ∈ G(n + 1, n) and 0 <
Γ <∞ with the following properties:

(1) T ⊂ sptµ and (sptµ)∼T is an n dimensional manifold of class C∞.
(2) θn(µ, x) = 1 for x ∈ sptµ and Txµ = T for x ∈ T .
(3) For some ~Hµ ∈ Lploc(µ,Rn+1) there holds (δµ)(η) = −

�
~Hµ•η dµ whenever

η ∈ C1
c (Rn+1,Rn+1).

(4) Whenever x ∈ T and 0 < % ≤ 1

Γ−1%α2q2 ≤ %−nµ({ξ ∈ B̄%(x) : dist(ξ − x, T ) ≥ %/Γ}),
%−nµ(B̄%(x)∼T ) ≤ Γ%α2q2 ,

%−1−n/q2
(�
B̄%(x)

dist(ξ − x, Txµ)q2 dµ(ξ)
)1/q2 ≈ %α2 ,

%−n/q1
(�
B̄%(x)

|Tξµ− Txµ|q1 dµ(ξ)
)1/q1 ≈ %α1 ,

here a ≈ b means that a ≤ Γ1b and b ≤ Γ1a for some positive, finite number
Γ1 depending only on n, and αi, qi for i ∈ {1, 2}.

(5) Whenever 1 < r <∞, n+(1−1/r)α2q2 < s <∞ there exists a nonnegative
function f ∈ Lrloc(µ) such that f(x) = 0 for x ∈ T , and

%s ≈
�
B̄%(x)

f dµ whenever x ∈ T , 0 < % ≤ 1,

here a ≈ b means a ≤ Γ2b and b ≤ Γ2a for some positive, finite number Γ2

depending only on n and s.

Construction of example. Let a := α2q2/n+1, b := (α1q1−α2q2)/a+1 ≥ 1. Define
for i ∈ N0

Wi :=
{
Q2−i−2(x) : 2i+1x ∈ Zn

}
.

Clearly,
⋃
Q∈Wi

Q = Rn and Wi is pairwise disjoint. Let

Fi :=
{

]2−i−1, 2−i[×W :W ∈Wi

}
for i ∈ N0, F :=

⋃
i∈N0

Fi.

Clearly,
⋃
S∈FS =]0, 1]× Rn and F is pairwise disjoint. Let T := {0} × Rn.
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Next, it will be indicated how to construct for every 0 < σ ≤ % <∞ a compact
n dimensional submanifold M of Rn+1 of class C∞ such that

M ⊂ Qn+1
% (0), (Γ0)−1%n ≤ Hn(M) ≤ Γ0%

n, |~HM | ≤ Γ0σ
−1,

Hn({x ∈M : |TxM − T | ≥ 1}) ≥ (Γ0)−1σ%n−1,

Hn({x ∈M : ~HM (x) 6= 0 or TxM 6= T}) ≤ Γ0σ%
n−1

where Γ0 is a positive, finite number depending only on n. To construct M , one may
assume % = 1. Choose a concave function f : [−1/2, 1/2]→ [0, 1] and 0 < Γ1 <∞
such that

f(−1/2) = σ/4 = f(1/2),

f(s) = σ/2 whenever s ∈ [−1/2 + σ/4, 1/2− σ/4]

and such that

N := {(s, t) ∈ [−1/2, 1/2]× R : |t| = f(s)} ∪ ({−1/2, 1/2} × [−σ/4, σ/4])

is a 1 dimensional submanifold of class C∞ with |~HN | ≤ Γ1σ
−1. Noting

H1(graph f |[−1/2,−1/2 + σ/4] ∩ [1/2− σ/4, 1/2]) ≤ σ,
one can take

M := {(y, z) ∈ R× Rn :(|z|, y) ∈ N}.
For each i ∈ N0 and Q ∈ Fi choose a n dimensional submanifold MQ of the

type just constructed corresponding to %i := 2−ia−2, σi := 2−iba−2 contained in Q
and let M be the union those submanifolds. Take µ := Hn x(T ∪M). (1) is now
evident.

To prove the estimates, fix x ∈ T and define for i, j ∈ N0

bi,j := #
{
Q ∈ Fj :Q ∩Q2−i(x) 6= ∅

}
, ci,j := #

{
Q ∈ Fj :Q ⊂ Q2−i(x)

}
.

Clearly, bi,j = ci,j = 0 if j < i. If j ≥ i, one estimates

bi,j ≤
(
2j−i+2 + 1

)n ≤ (5 · 2j−i)n, ci,j ≥
(
2j−i+2 − 1)n ≥

(
3 · 2j−i

)n
.

One calculates

µ(Q2−i(x)∼T ) ≤
∞∑
j=0

bi,jΓ0(%j)n ≤ (5/4)nΓ0(2−i)an(1− 2n(1−a))−1,

n− ba(1− p) + (1− n)a = −α1q1 + p(α1q1 − α2q2 + α2q2/n+ 1) < 0,

�
Q

2−i
(x)∼T |~HM |p dµ ≤

∞∑
j=0

bi,j(Γ0)p+1(σj)1−p(%j)n−1

≤ 5n(Γ0)n+1(2−i)ba(1−p)+n−1(1− 2n−ba(1−p)+(1−n)a)−1 <∞,
�
Q

2−i
(x)

dist(ξ − x, T )q2 dµ(ξ) ≤ 2−iq2µ(Q2−i(x)∼T ),

�
Q

2−i
(x)
|Tξµ− T |q1 dµ(ξ) ≤ (2n)q1

∞∑
j=0

bi,jΓ0σj(%j)n−1

≤ (2n)q1(5/4)nΓ0(2−i)ba+a(n−1)(1− 2n−ba−a(n−1))−1,

2(i+1)q2
�
Q

2−i
(x)

dist(ξ − x, T )q2 dµ(ξ)

≥ µ({ξ ∈ Q2−i(x) : dist(ξ − x, T ) ≥ 2−i−1}) ≥ (Γ0)−1(%i)n = (4nΓ0)−12−ian,
�
Q

2−i
(x)
|Tξµ− T |q1µ(ξ) ≥ (Γ0)−1σi(%i)n−1 = (4nΓ0)−1(2−i)ab+a(n−1).

Therefore (3) and (4) are proved and the first estimate of (4) implies (2).
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To prove (5), define f by f(y) := 2(na−s)i if y ∈
⋃
S∈Fi S for some i ∈ N0 and

f(y) = 0 else. Then for i ∈ N0

�
Q

2−i
(x)
|f |dµ ≤

∞∑
j=0

bi,j2(na−s)jΓ0(%j)n ≤ (5/4)nΓ0(2−i)s(1− 2n−s)−1,

�
Q

2−i
(x)
|f |r dµ ≤

∞∑
j=0

bi,j2(na−s)rjΓ0(%j)n

≤ (5/4)nΓ0(2−i)(s−na)r+na(1− 2n+(na−s)r−na)−1 <∞

because

n+ (na− s)r − an = α2q2(r − 1) + r(n− s) < 0.

The estimate from below is similar to the one from above. �

1.3. Remark. The integral n varifold µ constructed depends only on n and the
products αiqi for i ∈ {1, 2}. Moreover, the assumption αi ≤ 1 for i ∈ {1, 2} could
be replaced by αi <∞ for i ∈ {1, 2}.

1.4. Remark. Taking p = 1, α1 = α2, and q1 = q2 = 2 in the last two estimates of
(4) shows that for every n ∈ N, n > 1, 1/2 + (2(n− 1))−1 < α ≤ 1, there exists an
integral n varifold µ of Rn+1 of locally bounded first variation such that for some
A with µ(A) > 0

lim
%↓0

%−2α heightexµ(x, %, Txµ) =∞, lim
%↓0

%−2α tiltexµ(x, %, Txµ) =∞

for x ∈ A. In [Bra78, 5.7] Brakke showed in arbitrary codimension that the above
limits equal 0 almost everywhere with respect to µ if α = 1/2.

1.5. Remark. Similarly to the preceding remark, taking α1 = α2 = 1, q1 = q2 = q
and noting (1), one obtains for every p∗ = np

n−p < q < ∞ an integral n varifold µ

satisfying (Hp) which is countably rectifiable of class C2 such that for some A with
µ(A) > 0

lim
%↓0

%−2−n/q(�
B%(x)

dist(ξ − x, Txµ)q dµ(ξ)
)1/q =∞,

lim
%↓0

%−1−n/q(�
B%(x)

|Tξµ− Txµ|q dµ(ξ)
)1/q =∞

for x ∈ A. In particular, if p < 2n
n+2 then countable rectifiability of class C2 does

not imply quadratic decay of neither tiltexµ nor heightexµ. If p = 2, countable
rectifiability of class C2 is equivalent to quadratic decay of both quantities, see
[Sch04b, Theorem 3.1].

2. The size of the set where the n density quotient is small

In this section the Isoperimetric Inequality is used to derive basic facts on the
size of the set where the n density quotient is small. Although the general pro-
cedure of such estimates is clearly known, see 2.5, it appears to be rarely used in
literature. The sharpness of the results is necessary to determine the precise lim-
iting exponent up to which the differentiation theory in the next section can be
developed. Similarly, the accuracy of the bounds obtained in [Men08b] depends on
the results of this section.

2.1. The following situation will be studied:
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m,n ∈ N, 1 ≤ p ≤ n, U is an open subset of Rn+m, µ is a rectifiable n varifold1

in U of locally bounded first variation, θn(µ, x) ≥ 1 for µ almost all x ∈ U , and, in
case p > 1,

(δµ)(η) = −
�
~Hµ • η dµ whenever η ∈ C1

c (U,Rn+m)

for some ~Hµ ∈ Lploc(µ,Rn+m). In doing so, the following abbreviation will be used:

ψ = ‖δµ‖ if p = 1, ψ = |~Hµ|pµ else.

2.2. Theorem (Isoperimetric Inequality for varifolds). Suppose m ∈ N0, n ∈ N, µ
is a rectifiable n varifold in Rn+m with µ(Rn+m) <∞ and ‖δµ‖(Rn+m) <∞.

Then for some positive, finite number γ depending only on n

µ
({
x ∈ Rn+m : θn(µ, x) ≥ 1

})
≤ γ µ(Rn+m)1/n‖δµ‖(Rn+m).

Proof. This follows from [All72, Theorem 7.1] with a constant γ depending on
n+m (what would be sufficient for the purpose of this work). A slight modification
of [Sim83, Lemma 18.7, Theorem 18.6] yields the stated result. �

2.3. Definition. For n ∈ N let γn denote the best constant γ in 2.2.

2.4. Remark. Taking m = 0, µ = Ln x B̄n1 (0) yields

γn ≥ ω−1/n
n /n.

Does equality hold?

2.5. An important consequence of the Isoperimetric Inequality 2.2 and the starting
point for the estimates in the present section is the following fact which can be
derived by a variant of [Fed69, 5.1.6] or [All72, 8.3], see [LM08, Prop. 3.1] or
[Men08a, A.8, A.9].

Suppose n, m, p = 1, U = Br(a) for some a ∈ Rn+m and 0 < r <∞, and µ are
as in 2.1, a ∈ sptµ, and

‖δµ‖(B̄%(a)) ≤ (2γn)−1µ(B̄%(a))1−1/n whenever 0 < % < r,

then
µ(B̄%(a)) ≥ (2nγn)−n%n whenever 0 < % < r.

Also note, if p = n > 1 or p = n = 1 and ‖δµ‖({a}) < (2γn)−n, then

‖δµ‖(B̄%(x)) ≤ (2γn)−1µ(B̄%(x))1−1/n

whenever 0 < % < r, x ∈ sptµ ∩ B̄r(a) is satisfied for all sufficiently small positive
radii r.

2.6. Lemma. Suppose m,n ∈ N, and δ > 0.
Then there exists a positive number ε with the following property.
If a ∈ Rn+m, 0 < r <∞, m, n, p, U , and µ are related as in 2.1 with U = Br(a),

p = 1, a ∈ sptµ, and

‖δµ‖(B̄%(a)) ≤ (2γn)−1µ(B̄%(a))1−1/n for 0 < % < r,

‖δµ‖(Br(a)) ≤ ε µ(Br(a))1−1/n,

then

µ(Br(a)) ≥ (1− δ)ωnrn.

Proof (cf. [Men08a, A.10]). If the lemma were false, using 2.5, a compactness (see
e.g. [Sim83, Corollary 17.8, Theorem 42.7]) argument would lead to a contradiction
to the monotonicity formula (see e.g. [Sim83, (17.5)]). �

1Note that a definition of a rectifiable n varifold results from the definition of an integral n
varifold through replacement of the condition θn(µ, x) ∈ N by 0 < θn(µ, x) <∞.



8 ULRICH MENNE

2.7. Remark. 2.5 and 2.6 imply the following proposition.
If m, n, p, U , µ and ψ are as in 2.1, p = n, then

θn∗ (µ, a) ≥ 1 whenever a ∈ sptµ and ψ({a}) = 0.

Clearly, the condition ψ({a}) = 0 is redundant in case ‖δµ‖ is absolutely continuous
with respect to µ (i.e. δµ has no singular part with respect to µ).

2.8. Definition. For k ∈ N denote by N(k) the best constant in Besicovitch’s
covering theorem in Rk.

2.9. Theorem. Suppose m, n, p, U , µ, and ψ are as in 2.1, p < n, 0 ≤ s < ∞,
0 < ε ≤ (2γn)−p/(n−p), 4γnn < Γ <∞,

A =
{
x ∈ U : θ∗n−p(ψ, x) < (ε/Γ)n−p/ωn−p

}
,

denote by Bi for i ∈ N the set of all x ∈ U such that either B̄1/i(x) 6⊂ U or

ψ(B̄%(x)) > εn−p µ(B̄%(x))1−p/n for some 0 < % < 1/i,

and denote by Xi for i ∈ N the set of all a ∈ U such hat

lim
r↓0

µ
(
Bi ∩ B̄r(a)

)/
rsn/(n−p) = 0.

Then
{
x ∈ Bi : B̄1/i(x) ⊂ U

}
are open sets, Xi are Borel sets and

Hs
(
A∼

⋃
i∈NXi

)
= 0.

Proof. Clearly, Bi+1 ⊂ Bi, Xi ⊂ Xi+1 and Xi is a Borel set for i ∈ N. The sets
{x ∈ Bi : B̄1/i(x) ⊂ U} are open, as may obtained by adapting [Fed69, 2.9.14].

Define for i ∈ N the set Ai of all x ∈ U such that B1/i(x) ⊂ U and

ψ(B̄%(x)) ≤ (ε/Γ)n−p%n−p whenever 0 < % < 1/i.

The sets Ai are closed (cp. [Fed69, 2.9.14]) and satisfy A ⊂
⋃
i∈NAi. Let C denote

the set of all x ∈ sptµ such that

lim sup
%↓0

ψ(B̄%(x))
µ(B̄%(x))1−p/n < εn−p

and note µ(U ∼C) = 0 by [Fed69, 2.9.5]. By [Fed69, 2.10.6, 2.10.19 (4)] it is enough
to prove a ∈ X2i for a point a ∈ Ai with θs(ψ xU ∼Ai, a) = 0.

For this purpose the following assertion will be proved. For each x ∈ B2i ∩
B1/(2i)(a) ∩ C there exists 0 < % <∞ with

B̄%(x) ⊂ B2|x−a|(a)∼Ai, µ(B̄%(x)) < ε−nψ(B̄%(x))n/(n−p).

Choose y ∈ Ai with |y − x| = dist(x,Ai) and let J be the set of all 0 < % < 1/(2i)
with

µ(B̄%(x)) < ε−nψ(B̄%(x))n/(n−p).

Then J 6= ∅, because x ∈ B2i, B̄1/(2i)(x) ⊂ B1/i(a) ⊂ U , and, since x ∈ C,
inf J > 0. Therefore t := inf J satisfies

0 < t < 1/(2i), µ(B̄t(x)) ≤ ε−nψ(B̄t(x))n/(n−p),

µ(B̄%(x)) ≥ ε−nψ(B̄%(x))n/(n−p) for 0 < % < t.

Noting

|y − x| = dist(x,Ai) ≤ |x− a| ≤ 1/(2i), t+ |y − x| < 1/i,

B̄t(x) ⊂ B̄t+|y−x|(y) ⊂ B1/i(y) ⊂ U,
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one estimates

ψ(B̄t(x))n/(n−p) ≤ ψ(B̄t+|y−x|(y))n/(n−p)

≤ (ε/Γ)n(t+ |y − x|)n < εn2−n(1 + |y − x|/t)n(2nγn)−ntn

and, using the inequalities derived from the definition of t and 2.5,

µ(B̄t(x)) ≤ ε−nψ(B̄t(x))n/(n−p) < 2−n(1 + |y − x|/t)nµ(B̄t(x)),

hence

(1 + |y − x|/t)n > 2n, |y − x| > t

and the assertion follows by taking % ∈ J slighly larger than t.
Let 0 < r < 1/(2i). Then the preceding assertion in conjunction with Besicov-

itch’s covering theorem implies the existence of countable, pairwise disjoint collec-
tions of closed balls F1, . . . , FN(n+m) satisfying

B2i ∩ B̄r(a) ∩ C ⊂
⋃N(n+m)
j=1

⋃
S∈FjS ⊂ B2r(a)∼Ai,

µ(S) < ε−nψ(S)n/(n−p) for S ∈
⋃N(n+m)
j=1 Fj .

Hence

µ(B2i ∩ B̄r(a)) = µ(B2i ∩ B̄r(a) ∩ C)

≤
∑N(n+m)
j=1

∑
S∈Fjµ(S) ≤ ε−n

∑N(n+m)
j=1

∑
S∈Fjψ(S)n/(n−p)

≤ ε−n
∑N(n+m)
j=1

(∑
S∈Fjψ(S)

)n/(n−p) ≤ ε−nN(n+m)ψ(B2r(a)∼Ai)n/(n−p)

and the conclusion follows by taking the limit r ↓ 0. �

2.10. Remark. This theorem deserves some explanations.
First, note that if ‖δµ‖ is absolutely continuous with respect to µ, then

Hn−p(U ∼A) = 0

and if p = 1, then

Hn−1(X ∼A) ≤ (Γ/ε)n−1ωn−1‖δµ‖(X ∼A) for X ⊂ U.
by [Fed69, 2.10.6, 2.10.19 (3)]. These estimates for the size of U ∼A suggest that

the theorem is most useful if n− p ≤ s ≤ n.
Clearly, if a ∈ (sptµ)∼Bi, then B̄1/i(a) ⊂ U and

(2nγn)−n%n ≤ µ(B̄%(a)) for 0 < % < 1/i

by 2.5. On the other hand, since the sets
{
x ∈ Bi : B̄1/i(x) ⊂ U

}
are open and

Bi+1 ⊂ Bi, Xi ⊂ Xi+1 for i ∈ N, one infers that Hs almost all a ∈ A ∩
⋂
i∈NBi

satisfy
lim
r↓0

µ(B̄r(a))
/
rsn/(n−p) = 0.

2.11. Remark. Similar to the preceding remark one obtains using 2.6 instead of 2.5
that Hn almost all x ∈ U satisfy

either θn∗ (µ, x) ≥ 1 or θn
2/(n−p)(µ, x) = 0

and, in case ‖δµ‖ is absolutely continuous with respect to µ, that Hn−p almost all
x ∈ U satisfy

either θn∗ (µ, x) ≥ 1 or θn(µ, x) = 0.

Moreover, the exponent n2/(n − p) cannot be replaced by any larger number as
may be seen by taking µ xRn+1∼T with µ as in 1.2. Hence, the same holds for
the exponent sn/(n− p) in the last equality of 2.10 if s = n.
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Since n2/(n − 1) ≥ n + 1 if n > 1, this remark seems to be the underlying fact
used in the proof of [LM08, Theorem 3.4].

2.12. Remark. It can happen that Hn
(
A ∩ (sptµ) ∩

⋂
i∈NBi

)
> 0. In fact taking

µ xRn+1∼T with µ as in 1.2 one sees from 2.10 and 1.2 (4) that T ⊂
⋂
i∈NBi.

3. A differentiation theorem

In this section the theory of first order differentiation of functions in Lebesgue
spaces defined with respect to a rectifiable varifold, similar to the one of Calderón
and Zygmund in [CZ61] for the special case of Lebesgue measure, is developed.
First, an abstract differentiation theorem for measures, 3.1, is proved which then
allows to establish the differentiation theorem for functions, 3.7. The first part of
that theorem states an approximability result by functions which are Hölder con-
tinuous with exponent α which, in the particular case α = 1 implies a Rademacher
type theorem for differentiability in Lebesgue spaces, see 3.9. The second part of
3.7 may in fact be regarded as an application of this theory and is designed for use
in [Men08b].

3.1. Theorem. Suppose m, n, p, U , and µ are as in 2.1, ν measures U with
ν(U ∼ sptµ) = 0, A is µ measurable with ν(A) = 0, and 1 ≤ q < ∞. In case
p < n additionally suppose for some 1 ≤ r ≤ ∞ and some nonnegative function
f ∈ Lrloc(µ) that

ν = fµ and q ≤ 1 + (1− 1/r)
p

n− p
.

Then for Hn almost all a ∈ A

lim sup
s↓0

ν(B̄s(a))
/
snq equals either 0 or ∞.

Proof. For i ∈ N let Bi denote the set of all x ∈ U such that either B̄1/i(x) 6⊂ U or

‖δµ‖(B̄%(x)) > (2γn)−1µ(B̄%(x))1−1/n for some 0 < % < 1/i.

First, the case A ⊂ {x ∈ U : θ∗n(µ, x) > 0} will be treated. In this case A is
measurable and σ finite with respect to Hn by [Fed69, 2.10.19 (1) (3)]. Hence one
may assume A to be compact. Define

Ai = {a ∈ A : ν(B̄s(a))/ ≤ i snq for 0 < s < 1/i}

whenever i ∈ N, 1/i < dist(A,Rn+m∼U). The sets Ai are compact (cp. [Fed69,
2.9.14]) and their union equals{

a ∈ A : lim sup
s↓0

ν(B̄s(a))/snq <∞
}
.

It therefore suffices to show for each i ∈ N with 1/i < dist(A,Rn+m∼U)

lim
s↓0

ν(B̄s(a))
/
snq = 0 for Hn almost all a ∈ Ai.

In fact, this equality will be proved for all a ∈ Ai satisfying

‖δµ‖({a}) = 0, θn(µ xU ∼Ai, a) = 0, θn(frµ, a) = 0 if r <∞,

lim sup
s↓0

µ(Bj ∩ B̄s(a))
/
sn

2/(n−p) = 0 for some j ∈ N, j ≥ 2i, if p < n

as Hn almost all a ∈ Ai do according to [Fed69, 2.10.19 (3) (4)] and 2.9.
In case p = n one chooses j ∈ N, j ≥ 2i, using 2.5 such that

Bj ∩ B̄1/j(a) = ∅.
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Let 0 < s < 1/j. For x ∈ B̄s(a) ∩ (sptµ)∼(Bj ∪ Ai) there exists y ∈ Ai with
|x− y| = dist(x,Ai), hence

t := |x− y| ≤ |x− a| ≤ s < 1/j ≤ 1/(2i),

B̄|x−y|/2(x) ⊂ B̄3|x−y|/2(y) ∩ B̄2s(a)∼Ai,
ν(B̄t/2(x)) ≤ ν(B̄3t/2(y)) ≤ i3nq(t/2)nq ≤ c µ(B̄t/2(x))q

where c = i3nq(2γnn)nq. Therefore one infers from Besicovitch’s covering theorem
the existence of countable, pairwise disjoint collections F1, . . . , FN(n+m) of closed
balls such that

B̄s(a) ∩ (sptµ)∼(Bj ∪Ai) ⊂
⋃N(n+m)
k=1

⋃
S∈Fk S ⊂ B̄2s(a)∼Ai,

ν(S) ≤ c µ(S)q whenever S ∈
⋃N(n+m)
k=1 Fk,

hence

ν(B̄s(a)∼Bj) = ν(B̄s(a) ∩ (sptµ)∼(Bj ∪Ai)) ≤ cN(n+m)µ(B̄2s(a)∼Ai)q,
lim
s↓0

ν(B̄s(a)∼Bj)
/
snq = 0.

To conclude the proof of the first case, one observes

ν(Bj ∩ B̄s(a)) = 0 if p = n,

ν(Bj ∩ B̄s(a)) ≤ µ(Bj ∩ B̄s(a))1−1/r‖f‖Lr(µ x B̄s(a)) if p < n

implying

lim
s↓0

ν(Bj ∩ B̄s(a))
/
snq = 0

because (1− 1/r) n
n−p + 1/r ≥ q in case p < n.

It remains to treat the case A ⊂ {x ∈ U : θn(µ, x) = 0}. Using 2.5 and 2.11 one
obtains

A ∩ sptµ is countable if p = n,

θn
2/(n−p)(µ, a) = 0 for Hn almost all a ∈ A if p < n

and the claim follows by using Hölder’s inequality as in the preceding paragraph
noting by [Fed69, 2.10.19 (4)]

θn(frµ, a) = 0 for Hn almost all a ∈ A if r <∞. �

3.2. Remark. This theorem generalises [Fed69, 2.9.17] and [CZ61, Theorem 10 (ii)].
The case treated by Federer roughly corresponds to the case p = n, q = 1 with
µ satisfying a doubling condition. The case treated by Calderón and Zygmund
corresponds to p = n, m = 0, µ = Ln+m and ν absolutely continuous with respect
to µ. The method of proof is based on Federer’s proof and 2.9 is used because of
the absence of a doubling condition.

3.3. Remark. If q = 1, the condition ν(U ∼ sptµ) = 0 cannot be omitted as may be
seen from [Fed69, 2.9.18 (2)].

3.4. Remark. If p < n the condition q ≤ 1 + (1− 1/r)p/(n− p) cannot be omitted
as can be shown using 1.2. In fact given µ and T as in 1.2 a counterexample is
provided by ν := µ xRn+1∼T in case r = ∞ and if 1 < r < ∞ applying 1.2 (5)
with s = nq and α1q1 = α2q2 slightly larger than np

n−p yields a function f such that
ν := fµ does not satisfy the conclusion of 3.1. Finally, if r = 1 the condition is also
violated for a slightly larger r, hence reducing this case to the previous one.

3.5. Remark. Note that the preceding two remarks remain valid if Hn is replaced
by µ in the conclusion of 3.1.
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3.6. Definition. Whenever A is φ measurable set with 0 < φ(A) < ∞ and f ∈
L1(φ xA) one defines

�
A
f dφ = φ(A)−1

�
A
f dφ.

3.7. Theorem. Suppose n, m, p, U , and µ are as in 2.1, Z is a separable Banach
space, f : U → Z is µ measurable, 0 < α ≤ 1, 1 ≤ q < ∞, and A is the set of all
x ∈ sptµ such that

lim sup
%↓0

%−αq
�
B̄%(x)

|f(ξ)− z|q dµ(ξ) <∞ for some z ∈ Z.

In case p < n additionally suppose that f ∈ Lrloc(µ,Z) for some 1 ≤ r ≤ ∞
satisfying

αq/n ≤
(

1− q

r

) p

n− p
.

Then A is a Borel set and the following two statements hold:
(1) For every ε > 0 there exists a function g : U → Z which locally satisfies a

Hölder condition with exponent α such that

µ(A ∩ {x : f(x) 6= g(x)}) ≤ ε.

Moreover, for every function g which locally satisfies a Hölder condition
with exponent α there holds

lim
%↓0

%−αq
�
B̄%(x)

|f(ξ)− g(ξ)|q dµ(ξ) = 0

for µ almost all x ∈ A with f(x) = g(x).
(2) If ε > 0, Di(a) denotes for a ∈ dmn f , i ∈ N the set of all x ∈ U such that

either B̄1/i(x) 6⊂ U or
�
B̄%(x)

|f(ξ)− f(a)|q dµ(ξ) > εµ(B̄%(x)) for some 0 < % < 1/i,

Yi denotes for i ∈ N the set of all a ∈ U such that

lim
r↓0

µ(Di(a) ∩ B̄r(a))/rn+αq = 0,

then the sets Yi are µ measurable and

µ
(
A∼

⋃
{Yi : i ∈ N}

)
= 0.

Proof of (1). Let π : Rn+m × Z → Rn+m denote the projection and for i ∈ N let
Ei denote the set of all (x, z) ∈ sptµ× Z such that B1/i(x) ⊂ U and

�
B̄%(x)

|f(ξ)− z|q dµ(ξ) ≤ i%αq whenever 0 < % < 1/i.

Then Ei is closed (cp. [Fed69, 2.9.14]), π|Ei is univalent, and both π(Ei) and
A =

⋃
{π(Ei) : i ∈ N} are Borel sets by [Fed69, 2.2.10].

To prove the first part of (1), the problem is reduced to the case µ = Ln xK
for some compact set K (not necessarily satisfying a condition on δµ) via [Fed69,
3.2.18]. This case can then be treated by adapting [Fed69, 3.1.8, 3.1.14], see also
[Ste70, VI.2.2.2].

Concerning the second half of (1), one observes that every such function g sat-
isfies

lim sup
%↓0

%−αq
�
B̄%(x)

|f(ξ)− g(ξ)|q dµ(ξ) <∞

for Ln almost all x ∈ A with f(x) = g(x) and 3.1 may be applied with ν, r, q, A
replaced by |f − g|qµ, r/q, 1 + αq/n, {x ∈ A : f(x) = g(x)} if p < n and |f − g|qµ,
∞, 1 + αq/n, {x ∈ A : f(x) = g(x)} else. �
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Proof of (2). For any 0 < % < ∞, x ∈ Rn+m denote by bx,% the characteristic
function of B̄%(x), define Ui = {x ∈ U : dist(x,Rn+m∼U) > 1/i} and observe that
the function mapping (a, x, ξ) ∈ (dmn f)× U × (dmn f) onto

bx,%(ξ)|f(ξ)− f(a)|q − εbx,%(ξ)
is µ×µ×µ measurable for every 0 < % <∞. Applying Fubini’s theorem, one infers
that the function mapping (a, x) ∈ (dmn f)× Ui onto

sup
{�
B̄%(x)

|f(ξ)− f(a)|q dµ(ξ)− ε µ(B̄%(x)) : 0 < % < 1/i
}

is µ × (µ xUi) measurable for each i ∈ N, since the supremum by restricted to a
countable, dense subset of {% : 0 < % < 1/i}. For the same reason

sup
{
r−m−αqµ(Xi(a) ∩ B̄r(a)) : 0 < r < 1/j

}
depends µ measurably on a for each i, j ∈ N. Therefore the sets Yi are µ measurable.

For i ∈ N let Ai denote the set of all a ∈ (dmn f)∩ (sptµ) such that B1/i(a) ⊂ U
and whenever 0 < % < 1/i

µ(B̄%(a)) ≤ i%n,
�
B̄%(a)

|f(ξ)− f(a)|q dµ(ξ) ≤ i%αq.

Ai are µ measurable sets as may be verified using the first paragraph of the proof
of (1) and noting the fact that the last condition may be replaced by the two
conditions

a ∈ π(Ei), lim
%↓0

�
B̄%(a)

f(ξ) dµ(ξ) = f(a).

Note µ(A∼
⋃
{Ai : i ∈ N}) = 0. For i ∈ N let Ci denote the set of all x ∈ sptµ such

that either B̄1/i(x) 6⊂ U or

‖δµ‖ B̄%(x) > (2γn)−1µ(B̄%(x))1−1/n for some 0 < % < 1/i.

Moreover, define

Xi =
{
x ∈ U : θn+αq(µ xCi, x) = 0

}
for i ∈ N,

note n+ αq ≤ n2/(n− p) if p < n, and observe by 2.9 in case p < n, by 2.5 in case
p = n, that

µ(U ∼
⋃
{Xi : i ∈ N}) = 0.

Using (1), one constructs sequences Ki of compact subsets of U and gi : U → Z
such that

Ki ⊂ Aj for some j ∈ N, f |Ki = gi|Ki,

gi locally satisfies a Hölder condition with exponent α,

µ(A∼
⋃
{Ki : i ∈ N}) = 0.

Also note Ai ⊂ Ai+1, Ci ⊃ Ci+1, and Xi ⊂ Xi+1 for i ∈ N.
From the observations of the preceding paragraph, [Fed69, 2.10.6, 2.10.19 (4)]

and (1) it follows that it is enough to prove a ∈
⋃
{Xj : j ∈ N} whenever a ∈ A

satisfies for some i ∈ N, some compact set K, and some g : U → Z

a ∈ Xi, a ∈ K ⊂ Ai, θn(µ xU ∼K, a) = 0, g|K = f |K,
g locally satisfies a Hölder condition with exponent α,

r−n−αq
�
B̄r(a)

|f(ξ)− g(ξ)|q dµ(ξ)→ 0 as r ↓ 0.

For this purpose define h = sup{|g(x) − g(y)|/|x − y|α :x, y ∈ K,x 6= y}, choose
j ∈ N, j ≥ 2i, and 0 < R < 1/(2i) satisfying

2q−1i2
(
(1/j +R)αq + hq(2R)αq

)
≤ ε2−n(2γnn)−n.
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Next, it will be shown
�
B̄%(x)

|f(ξ)− f(a)|q dµ(ξ) ≤ ε2−n(1 + |ζ − x|/%)nµ(B̄%(x))

whenever x ∈ sptµ ∩ B̄r(a)∼Ci, ζ ∈ K, |ζ − x| = dist(x,K), 0 < r ≤ R, 0 < % <
1/j. Noting

%+ |ζ − x| < 1/j + |x− a| ≤ 1/j +R < 1/i,

B̄%(x) ⊂ B̄%+|ζ−x|(ζ) ⊂ B1/i(ζ) ⊂ U,
|ζ − a| ≤ |ζ − x|+ |x− a| ≤ 2|x− a| ≤ 2R,

2q−1i2
(
(%+ |ζ − x|)αq + hq|ζ − a|αq

)
≤ ε2−n(2γnn)−n,

one estimates
�
B̄%(x)

|f(ξ)− f(a)|q dµ(ξ) ≤
�
B̄
%+|ζ−x|(ζ)

|f(ξ)− f(a)|q dµ(ξ)

≤ 2q−1
(�
B̄
%+|ζ−x|(ζ)

|f(ξ)− f(ζ)|q dµ(ξ) + |f(ζ)− f(a)|qµ(B̄%+|ζ−x|(ζ))
)

≤ 2q−1i
(
(%+ |ζ − x|)αq + hq|ζ − a|αq

)
µ(B̄%+|ζ−x|(ζ))

≤ ε2−n(2γnn)−n(1 + |ζ − x|/%)n%n

and 2.5 implies the assertion. Therefore, if
�
B̄%(x)

|f(ξ)− f(a)|q dµ(ξ) > εµ(B̄%(x)),

then

(1 + |ζ − x|/%)n > 2n, % < |ζ − x| ≤ |x− a| ≤ r, |x− a|+ % < 2r,

B̄%(x) ⊂ B2r(a)∼K ⊂ U.

This implies that for each x ∈ sptµ ∩ B̄r(a) ∩Dj(a)∼Ci with 0 < r ≤ R there
exists 0 < % < 1/j such that

B̄%(x) ⊂ B2r(a)∼K ⊂ U,
�
B̄%(x)

|f(ξ)− f(a)|q dµ(ξ) > εµ(B̄%(x)),

because a ∈ Ai, x ∈ B̄r(a) implies B̄1/j(x) ⊂ U . Hence one infers from Besicovitch’s
covering theorem

µ(B̄r(a) ∩Dj(a)∼Ci) ≤ N(n+m)ε−1
�
B2r(a)∼K |f(ξ)− f(a)|q dµ(ξ)

for 0 < r ≤ R. Recalling a ∈ Xi, the proof may be concluded by showing

r−n−αq
�
B2r(a)∼K |f(ξ)− f(a)|q dµ(ξ)→ 0 as r ↓ 0

which is a consequence of
�
B2r(a)∼K |f(ξ)− f(a)|q dµ(ξ)

≤ 2q−1
(�
B2r(a)

|f(ξ)− g(ξ)|q dµ(ξ) +
�
B2r(a)∼K |g(ξ)− g(a)|q dµ(ξ),

�
B2r(a)∼K |g(ξ)− g(a)|q dµ(ξ) ≤ µ(B2r(a)∼K)(h0)q(2r)αq

for 0 < r ≤ R with h0 = sup{|g(x)− g(y)|/|x− y|α :x, y ∈ B̄R(a), x 6= y}. �

3.8. Remark. If p < n the assumption αq/n ≤ (1−q/r)p/(n−p) cannot be omitted
in order to obtain the second part of (1) as may be seen from the family of examples
constructed in 1.2; in fact one can take α1 = α2 = α, q1 = q2 = q, and f = χRn+1∼T
in case r = ∞, and in case r < ∞ one can assume q < r and apply 1.2 5 with r,
s, α1 = α2, q1 = q2 replaced by r/q, αq + n, 1 and a number slighly larger than
np/(n− p) to obtain a function f ∈ Lr/qloc (µ) such that the second statement of (1)
does not hold for f , g replaced by f1/q, 0.
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3.9. Remark. If dimZ < ∞ and α = 1, (1) in conjunction with [Fed69, 3.2.18,
3.1.16] implies that for µ almost all a ∈ A

lim
%↓0

�
B̄%(a)

(|f(ξ)− f(a)− 〈(Taµ)(ξ − a), (µ, n) apDf(a)〉 |/|ξ − a|)q dµ(ξ) = 0

where the notion of approximate differentials, see [Fed69, 3.2.16], is employed.

3.10. Remark. (2) can be seen in two ways as a refinement of the simple fact that

θ∗n+αq(µ x {x ∈ U : |f(x)− f(a)|q > ε} , a) ≤ ε−1θ∗n+αq(|f(·)− f(a)|qµ, a) <∞
whenever a ∈ A. Firstly, |f(x)− f(a)|q > ε is replaced in the definition of Di(a) by�
B̄%(x)

|f(ξ) − f(a)|q dµ(ξ) > ε for some 0 < % < 1/i. Secondly, in the conclusion

θn+αq(µ xDi(a), a) = 0 occurs instead of θ∗n+αq(µ xDi(a), a) < ∞. Whereas the
first improvement is vital for the applications in [Men08c], the second one is only
used under the stronger assumption

lim
r↓0

r−n−αq
�
B̄r(x)

|f(ξ)− z|q dµ(ξ) = 0 for some z ∈ Z

for µ almost all x ∈ U .
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