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Cycles in the multiverse
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Eternal inflation is a seemingly generic consequence of theories that give rise to accelerated expansion
of the universe and possess multiple vacuum states. Making predictions in an eternally inflating universe is
notoriously difficult because one must compare infinite quantities, and a wide variety of regulating
procedures yield radically different results. This is the measure problem of eternal inflation. In this paper,
we analyze models of eternal inflation which allow for the possibility of cyclic bubble universes: in each
bubble, standard cosmological evolution is replayed over and over again. Eternal inflation can generically
arise in cyclic models that include a dark energy dominated phase. In such models, several problematic
consequences of certain regulating procedures, such as the youngness and Boltzmann brain problems, are
substantially alleviated. We discuss the implications for making predictions in cyclic models, as well as

some general implications for understanding the measure problem in eternal inflation.
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I. INTRODUCTION

In the standard cosmological model, accelerated expan-
sion is invoked at least twice to explain our observations of
the cosmos: dark energy in the late universe, and cosmic
inflation in the early universe. This theory allows multiple
phases, characterized by vastly different rates of acceler-
ated expansion; inflation gave way to a dark energy domi-
nated universe with an expansion rate some 50 orders of
magnitude smaller. In fact, the possibilities may be much
more varied, since modern theories of particle physics
relying on spontaneous symmetry breaking generically
do not predict a unique vacuum state, let alone a unique
cosmological history.

Many such theories that allow multiple phases (or va-
cua) and accelerated expansion give rise to a phenomenon
known as eternal inflation. In the simplest example of
eternal inflation, different vacua are accessed by a first
order phase transition. In this picture, localized pockets
containing a new phase are formed from a “parent” vac-
uum undergoing accelerated expansion. These pockets
subsequently expand, but if they are formed at a rate slower
than the rate of expansion, the phase transition cannot
complete, and inflation becomes eternal. The original in-
flating vacuum continues to grow and spawn regions of all
the possible phases (for a review of eternal inflation, see
e.g. [1]). In this way, eternal inflation makes all possibil-
ities a reality.

There are many conceptual problems that must be con-
fronted in order to make sense of eternal inflation. Since
the many possibilities allowed by an underlying theory are
actually realized somewhere in spacetime, predictions for
what we might observe become intrinsically statistical. In a
finite universe with a finite number of possibilities, this
would not be a problem. However, in an eternally inflating
universe each possibility is realized an infinite number of

1550-7998/2012/85(10)/103509(16)

103509-1

PACS numbers: 98.80.Cq

times, and so a frequentist’s definition of probabilities
becomes ill defined without some prescription to regulate
the infinities. The most straightforward procedure is to use
a geometrical cutoff: count the frequency of some occur-
rence vs others at a finite time (say, by counting the volume
occupied by different phases), and then take the time at
which the ratio is evaluated to infinity. However, this
procedure is not unique, and choosing different time slic-
ings yields different sets of probabilities. This is an ex-
ample of the “measure problem” of eternal inflation.

To the extent that they are understood, the predictions
made by various measures (cutoff procedures) range from
being absurdly in conflict to fairly consistent with data (at
least for a few variables such as the cosmological con-
stant). For example, the generic prediction of measures that
weight by physical volume is that we should be as
“young” as possible (i.e. everything else constant, we
should exist at the earliest possible stage in the evolution
of the universe consistent with our existence). This is
known as the youngness problem. If there is a cosmologi-
cal constant in each pocket (as there is evidence for in our
universe), then because of the thermodynamic properties of
de Sitter space, many measures predict that we should be
“freak observers” (i.e. that we did not arise from our
observed cosmological evolution) formed by a thermal
fluctuation out of the vacuum at some very late time.
This is known as the Boltzmann brain problem. We will
discuss both of these issues at length below.

One strategy for making progress on the measure prob-
lem is to rule out those measures which make predictions
that do not agree with data, or are not internally consistent
(see e.g. the discussion in Ref. [2]). For example, one
would rule out those measures with a youngness or
Boltzmann brain problem. Another approach is to look
for guidance from fundamental theory, which perhaps
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would single out the correct prescription [3—7]. However,
this is a complex problem which is not yet resolved.

An alternative to the inflationary epoch in the standard
cosmological model is the ekpyrotic/cyclic universe sce-
nario [8—12]; for a review see [13]. This scenario purports
to address both the homogeneity and isotropy of our ob-
served universe and to provide the appropriate seeds for
structure formation. This is accomplished by invoking an
“ekpyrotic” phase in the early universe, in which there is
slow contraction accompanied by a rapid change in the
energy density. This contraction gives way to expansion
after a transition from big crunch to big bang, after which
the standard big-bang cosmology follows. Far in the future,
the universe will contract again, and the cycle repeats
itself. This picture is motivated by heterotic M theory, as
we describe in greater detail below.

There are at least two reasons why one must address the
question of measure in the cyclic universe. The first arises
when there can be differences between cycles, as there are
in the so-called Phoenix universe [14—16]. In this setup, the
amplitude of density fluctuations can vary from place to
place in each cycle. However, only those parts of the
universe that are sufficiently empty and flat make it from
the contracting to the expanding phase, leading to a selec-
tion factor for the amplitude of density perturbations.
Different possibilities are sampled in different spatiotem-
poral regions, requiring one to define a statistical measure
for predictions (and in an infinite universe, some cutoff
procedure). Second, the cyclic universe scenario invokes
accelerated expansion to smooth the universe prior to
ekpyrotic contraction. As argued above, once accelerated
expansion is added to any cosmological model, the exis-
tence of eternal inflation becomes a fairly generic possi-
bility. This is even more pronounced given that the cyclic
universe is motivated by M theory, where the many ways to
compactify extra dimensions give rise to many possible
four-dimensional theories. The picture of the multiverse
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might then contain both cyclic and inflationary cosmolo-
gies, as shown in Fig. 1.

Can the cyclic universe arise in local pockets spawned
from an eternally inflating universe? What are the impli-
cations for making predictions in such models? In this
paper, we address these questions, finding that by using
existing measures, the youngness and Boltzmann brain
(BB) problems need not (under a set of conditions we
outline in detail) arise in a theory where many cyclic
universes are seeded by eternal inflation. In addition, we
construct a model where both cyclic and standard infla-
tionary bubbles coexist, and find under which circumstan-
ces these problems reappear. One should keep in mind our
largest assumptions: (1) that there are multiple phases
(including cyclic phases) which can be seeded by eternal
inflation and (2) that the full theory allows a predictive
transition from a big crunch to a big bang following the
ekpyrotic phase. Both assumptions are plausible, however
unproven; we offer no new critiques of either the eternal
inflation or cyclic scenarios. Rather, we wish to illustrate
how the inclusion of cyclic universes can lead to drastically
different predictions for where we might find ourselves in
the multiverse. Our results also highlight how different
assumptions about the physics underlying the multiverse
can render previously discarded measure prescriptions
consistent with our observed universe.

The plan of the paper is as follows. In Sec. II, we
describe how eternal inflation might arise within the cyclic
universe scenario. In Sec. III, we outline how predictions
are extracted, and how the eternally inflating cyclic uni-
verse can avoid the youngness and Boltzmann brain prob-
lems. We add inflationary bubbles to the setup in Sec. IV
and show under which circumstances these problems re-
appear, and then conclude in Sec. V. Finally, we include a
discussion of tunneling to the cyclic universe in
Appendix A and a calculation for worldline based mea-
sures in Appendix B.

FIG. 1 (color online).

The cyclic/inflationary multiverse.
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II. THE CYCLIC UNIVERSE
AND ETERNAL INFLATION

The cyclic universe is inspired by the braneworld picture
stemming from heterotic M theory [17-19]. According to
this picture, we live on a (3 + 1)-dimensional brane and are
separated by a fifth dimension from a second brane. Both
of these branes are boundaries of the interior “‘bulk’” space-
time. This model can also be embedded in 11-dimensional
supergravity, in which case there is an additional six-
dimensional internal Calabi-Yau manifold at each point
in the five-dimensional braneworld spacetime. In Ref. [8],
Khoury et al. speculated that there could be forces between
the branes which would cause the boundary branes to
slowly attract each other (these forces can be modeled by
a potential for the interbrane distance modulus ¢; see
Fig. 2). From a four-dimensional effective point of view,
such an ekpyrotic phase corresponds to a slow contraction
of the universe. During this phase, quantum fluctuations
can be amplified to classical perturbations, similarly to
what happens in inflation. When the two branes eventually
collide, matter and radiation are produced with the pertur-
bations imprinted on them. This corresponds to the big
bang, with the universe bouncing from a contracting to an
expanding phase. The branes quickly separate again, but
due to Hubble friction they come to a halt on the plateau
marked ‘“‘dark energy” in Fig. 2. At this point, the ordinary
phases of radiation and matter domination occur, until
eventually the scalar field potential energy becomes the
dominant component in the universe and a phase of dark
energy ensues. This phase lasts until the scalar field rolls
down to negative values of the potential, at which time the
universe reverts from expansion to contraction, a new
ekpyrotic phase takes place, and a new cycle is underway
[9].

The region of the potential at large separation of the
branes has not been considered much so far. In the standard
setup, the field returns to the location marked ¢dark
energy”’ on the potential, but no farther. However, there
is nothing preventing the branes from starting at large
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FIG. 2 (color online). A potential that gives rise to slow-roll
eternal inflation and cyclic cosmologies. The inflating phase near
the local maximum can exit either to a decompactified phase
(left) or a cyclic pocket universe (right).
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separation on the first cycle, or from rare quantum fluctua-
tions pushing them far apart on subsequent cycles. It seems
reasonable to assume that, if very large brane separations
are allowed, the potential approaches zero asymptotically
due to decreasing interbrane forces [with our conventions
in the figure, this corresponds to V(¢p) — 0 as ¢p — —o0; in
this limit both the interbrane dimension and the Calabi-Yau
manifold become large]. In this case, there is a local
maximum of the potential at positive energy, and slow-
roll eternal inflation can take place. Some regions of the
universe will decompactify, while others will undergo
ekpyrosis and repeated cycling.

It is also possible that the brane potential has a local
minimum above the dark energy plateau as shown in Fig. 3.
In that case, false vacuum eternal inflation occurs when the
field resides in this local minimum. From the false vacuum,
tunneling to either side of the potential barrier is mediated
by the Coleman-de Luccia instanton [20]. Tunneling cor-
responds in real space to the nucleation of an expanding
bubble containing a new phase embedded in the false
vacuum. Inside each bubble is an infinite open
Friedmann Robertson Walker universe. If the tunneling
occurs to the left, inside the new bubble universe the scalar
will roll off to — oo, corresponding to the spacetime decom-
pactifying. The second possibility is tunneling to the right,
which corresponds to the nucleation of a cyclic bubble.
After an initial period of curvature domination, a dark
energy dominated phase ensues, which dilutes the curva-
ture and any initial inhomogeneities. The dark energy
phase is followed by the ekpyrotic contraction phase dur-
ing which perturbations are generated and classical anisot-
ropies are further suppressed [21]. As described above,
after the ekpyrotic phase the bubble interior undergoes a
crunch/bang transition, accompanied by the creation of
radiation and matter [22]. During the subsequent phases
of radiation and matter domination, stars, galaxies, and
ordinary observers are formed; dark energy subsequently
takes over for many billions of years, and then a new cycle
starts.

The original cyclic universe [9] assumed that there was a
single scalar field that was responsible for the background
dynamics and whose quantum fluctuations were amplified
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FIG. 3 (color online). The cyclic universe incorporating false
vacuum eternal inflation.
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into scale-invariant density perturbations. In that case, the
scale factor grows by 60 + N4, e-folds over the course of
one cycle: the 60 e-folds stemming from the growth during
the radiation and matter phases, and the N4, e-folds from
the dark energy phase. Note that the total contraction
during the ekpyrotic phase is, in fact, negligible. Hence,
in this case, it is clear that, even for a short dark energy
phase, the universe grows hugely from cycle to cycle.
However, it remains unclear whether this model actually
produces a scale-invariant spectrum of perturbations, as
this depends on the matching conditions at the bounce [23].
The perturbations that are present right before the bounce
have a very blue spectrum [24-26] and would not be
consistent with observation. Under certain assumptions
about the physics of the bounce [27] (namely, that the
evolution remains unitary, though it becomes nonlocal),
these blue perturbations can become scale invariant, but it
is important to remember that these assumptions remain
unproven at present.

Two-field ekpyrotic models [28,29] can produce scale-
invariant curvature perturbations prior to the bounce,
via a curvatonlike mechanism where scale-invariant
isocurvature/entropy perturbations are generated first and
converted into scale-invariant curvature perturbations just
before the bounce [30]. These models produce the required
density perturbations more robustly, but at the expense of
an instability: the two-field ekpyrotic potential is tachyonic
transverse to the background trajectory in scalar field
space. This instability means that only a portion of the
spacetime experiences a full ekpyrotic phase, while the
remaining regions become highly curved and undergo a
fatal mixmaster crunch from which they can presumably
not reemerge [14]. In the present paper, we are not inter-
ested in the details of this process—rather, we will simply
model this case by introducing a parameter p describing
the probability that a given spacetime region will make it
through the bounce and into a new cycle. Thus, the condi-
tion that the two-field cyclic universe grows from cycle to
cycle translates into the requirement that pe!'89+3Ne must
be greater than 1. Apart from this effect, the two-field
cyclic universe can be treated identically to the single-field
case. In particular, the second scalar field does not play a
prominent role during the tunneling process, as we show in
detail in Appendix A.

In addition to the specific scenarios outlined above, it
should be remembered that the braneworld picture arises
from the compactification of extra dimensions, which
implies the possible existence of a vast landscape of
possible four-dimensional vacua [31]. If each of these
vacua can be accessed from an eternally inflating parent
vacuum, then it is certainly possible that bubbles contain-
ing an inflationary universe coexist with bubbles contain-
ing a cyclic cosmology, with each being realized in
different regions. If both scenarios are shown to reproduce
our observations, we would have to compare the two
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theories in a very real sense and ask the following ques-
tion: does the multiverse prefer one cosmology over
another?

II1. MAPPING THE CYCLIC MULTIVERSE

Let us be specific, and define what it means to make
predictions in a multiverse (for a detailed discussion, see
e.g. [32]). A relevant quantity is the probability that a
randomly chosen object X (e.g. X = galaxy, baryons,
etc.) experiences a set of parameters a (e.g. a =
cosmological constant, fine structure constant, etc.). It is
convenient to split this quantity into two pieces:

?X(&) * Pq(&)nX,q(&)J (1)

where P, (@) is the “prior” probability that an object g is
associated with @, and ny ,(@) is the ““conditionalization”:
the number of X associated with g. For example, ¢ could be
“unit physical volume,” in which case P (@) is simply the
fraction of the total volume having a set of parameters .
The prior can therefore be thought of as a map of the
multiverse, and will be the quantity we are primarily
interested in for the remainder of this paper. We will refer
to a choice of ¢ along with a prescription for calculating
probabilities as a “measure.” The conditionalization is
required to make connection with observation. That is, a
particular set of parameters will be observed only if there
are observers. Aside from informing our choice of prior,
we do not consider the conditionalization further.

There are two broad choices of measure we consider in
this paper: global and local. Global measures assign prob-
abilities by comparing e.g. the relative proportion of vol-
ume taken up by various vacua [33,34]. Local measures
follow the worldline of a single observer and count histor-
ies [35] or the number of times a given vacuum is entered
[36,37]. In some cases, the global and local measures are
equivalent [38]. See e.g. Refs. [39-42] for a general dis-
cussion of the various measure proposals.

A. Rate equations

The rate equations describe how the volume f; of vac-
uum i (where the index i runs over all vacua) changes over
time [33]. The fractional volume in each vacuum is equiva-
lent to the prior P, defined above. Following the treatment
of Linde in Ref. [43], the rate equations generically take
the form

fi=0;,— R, + a3HFf, (2)

We should explain the meaning of the various terms: Q,
represents the total rate of production of vacuum i, while R,
represents the total rate at which volume is depleted from
vacuum { into other vacua. For a terminal vacuum j (also
sometimes called a “‘sink’’), by definition the correspond-
ing R ; = 0. The units of volume that the f; measure or,
equivalently, the units of time that the dot in the above
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expressions stand for, depend on the values of the
parameters « and . The most common choices are as
follows.

(1) a = 0: this corresponds to using comoving coordi-
nates, and f; measures the fraction of comoving
volume residing in vacuum i. Because the total co-
moving volume of a given region of space is con-
served, it is clear that the rate equations must satisfy
the consistency condition 3 ;(Q; — R;) = 0.

(i) a =1, B = 0: this corresponds to measuring time

in units of H~!, whatever the Hubble rate in vacuum
i happens to be. Thus, the unit of time is, in general,
different in each vacuum. Equivalently, with this
choice of parameters time is proportional to Ina,
where a denotes the local scale factor. For this
reason, this choice is typically referred to as
““scale-factor time”’ (and sometimes also as “‘pseu-
docomoving”’). The factor of 3 in the last term in the
rate equations is simply due to the fact that we are
considering three spatial dimensions.

(iii)) a = 1, B = 1: with this choice of parameters, time
is measured in units of proper time; i.e. time flows
as it would on an ordinary watch. Correspondingly,
the volume measured by f; is then ordinary physi-
cal volume.

In all cases, the expectation is that in the far future, the
multiverse comes to realize the perfect cosmological prin-
ciple on ‘‘superbubble’ scales, in that the distribution of
vacua becomes homogeneous, isotropic, and time indepen-
dent. All measures therefore evaluate probabilities in the
asymptotic future, where the rate equations are solved by a
stationary solution up to exponentially decaying terms
(transients). We can evaluate the volume fraction in each
vacuum at finite time and then take the time at which we
evaluate the ratio to infinity to obtain the prior probability
distribution.

It is also possible to use the rate equations to compute
the prior probability distribution for local measures.
Here, the quantity of interest is Q; = [ Q.dt rather than
f:» and the relative probabilities for vacuum i rather than j
are defined by Q,;/0 ;- The most prominent example of
such a measure is the ‘“‘causal diamond” measure [36],
which uses comoving volumes (@ = 0). In this case, the
ratio of charges is equal to the relative number of vacuum
entries. In Appendix B we present an alternative calcula-
tion of the prior using the methods of Ref. [36].

B. Basic setup—rate equations with comoving
volume weighting

By making a few assumptions, we can derive rate equa-
tions to tell us about the fraction of volume at different
times in different phases during the eternal inflation/cyclic
universe hybrid. We define three phases: the first is the
false vacuum phase, which we denote by F. The second
phase is denoted by D, and it comprises both the dark
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energy and the ekpyrotic phases. Both of these phases
have the effect of smoothing out the universe, and for our
purposes it makes sense to group them together. The third
phase that we consider is the R phase which describes the
radiation and matter dominated epochs during which most
stars, galaxies, and ordinary observers are created. The D
and R phases last for a proper time 7, and 7, respectively,
and the three phases have average Hubble rates Hy , . The
decay rate I'p from the false vacuum to the dark energy
phase is determined from the Coleman-de Luccia instan-
ton. Further, we assume that, for now, the rate I';, of up-
tunneling from D to F'is zero. We start off with a parcel of
volume completely in the false vacuum, and would like to
determine the fraction of comoving volume (defined by the
original domain) in each of the phases as a function of
time. Under the assumption that each bubble cuts out a
comoving Hubble volume (its asymptotic size in comoving
coordinates) when formed,1 the depletion of volume from
the false vacuum is described by the equation

% = —Ippfr(o). (3)
t

In this paper we will always assume that, initially, all the
volume resides in the false vacuum, f(0) = 1. With this
initial condition, the solution of the equation above is
simply

fr =-exp[—Tppt]. 4)

As explained in Sec. II, we make a distinction between
two classes of cyclic models: those for which the entire
bubble interior proceeds from the D phase through the
bounce to the R phase, and those for which only a fraction
p makes it through each crunch/bang transition. We treat
the former case first, and then generalize. First, by conser-
vation of comoving volume we know that the rate of
depletion of F should be equal to the total rate of growth
in D and R:

ﬁ = —(@ + %) (5)
dt dt dt

Initially, all of the volume goes from F to D, but after a
time ?p, bubbles will begin to go over to the R phase. The
rate at which comoving volume is depleted from D is equal
to the rate at which volume was added to D from F at time
t — tp. Then, after a time 7, + tz, bubbles will begin
reentering D. Comoving volume goes from R back to D
at a rate equal to the rate volume was added to D at time
t — tp — tg. The volume in each bubble will then cycle
back and forth between the D and R phases endlessly.
Using this information, we conclude that the volume

"Throughout the paper, we work in the ““square bubble ap-
proximation,” which ignores the difference in the time foliations
inside and outside the bubble. As shown in Ref. [44], this is a
good approximation.
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fraction at all times can be found by solving the following
set of rate equations:

fF = —I'prfr

Jo=Tprfr+ Z Z (=D Tppfr(t — ntp — mig)

n=1m=n—1

X O(t — ntp — mty),

fr=— z Z (=D)L ppfet — ntp — mtg)

n=1m=n—1

X O(t — ntp — mity), (6)

where 0 is the Heaviside step function.

In the limit where the lifetime of the false vacuum,
1/Tpp, is greater than the time spent in either the dark
energy/ekpyrotic or radiation/matter phases, we can make
an important approximation. Defining the ‘“decay rates”
Trp = tp" and T pr = 13!, we can approximate Egs. (6)
by the following system of equations:

fr=—Torfr fo=Tprfr —Urofp + Tprfr

Ir =Trofp = Upr/fr (7)
In Fig. 4 we show an example comparing the solutions to
the exact and approximate rate equations. It can be seen
that the agreement is excellent. In the following, we will
mostly use the continuous approximation, where cycles are
treated via transition rates. Writing the transition rates out
explicitly, we equivalently have

. . 1 1
fr=—="Toefr szrDFfF_t_fD+t_fR’
D R
1

. 1
fr=—fp——Jr (8)
tp IR

Because F' gets depleted continually, at late times fr

tends to zero, fr(t — o) = 0. In the late-time limit, it is
straightforward to verify that

f
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FIG. 4 (color online). A comparison of the solutions to Eq. (6)
(solid lines) and Eq. (8) (dashed lines) for tp = 6Hy ', tp =
2H; ', Tpr = 0.1Hp. The continuum approximation works very
well at estimating the average volume in each phase.
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fpt—=0) 1p
frt—00) 1’

The volume cycles endlessly between the D and R phases,
with the relative proportion in each phase set by the time
spent in each.

We will also investigate models where only a fraction of
the volume makes it through crunch. In this case, assume
that the crunch is avoided with probability p. Then comov-
ing volume goes from D over to R at a rate equal to the rate
volume was added to D attime ¢t — ¢, multiplied by p, with
the rest ending up in a crunch (in other words, all of this
volume leaves D, but only a fraction p of it ends up in R).
To account for the suppression of the volume added to R,
we should discount the rate at which volume goes back
from R to D by a factor of p. On the next cycle, we should
multiply by p, and so on. Therefore, to account for comov-
ing volume lost at each crunch, we should modify Eqgs. (6)
as follows:

d= (€]

fF = —T'pefr (10)

szFDFfF"'Z Z (=D p"Tppfpt — ntp — mig)

n=1lm=n—1

X@(t—ntD—mtR), (11)

fr="- Z Z (=D p"Uppf(t — ntp — mtg)

n=1m=n—1

X @(f — ntp — mtR). (12)

The continuum approximation is

fr=-Torfr, (13)
. 1 1
fD:FDFfF_t_fD+t_va (14)
D R
. P 1
fR:t_fD_[_fR; (15)
D R
. 1—p
fe= fo- (16)
Ip

Here, we have introduced f, the fraction of comoving
volume that ends in a crunch. The continuous approxima-
tion is compared to the solution of the discrete equations in
Fig. 5, where it can be seen that the agreement is good. In
this example, all of the comoving volume is eaten up by the
crunch at late times, regardless of how large p is.

C. Physical volume weighting
and the youngness paradox

The previous section allowed us to set up notation and
introduce the rate equations. We can now apply these to
the first measure of real interest, namely, the proper time
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cutoff/physical volume weighting measure. In some sense,
this is the most natural measure to consider, as (all else
being equal) it simply counts probabilities in proportion to
the actual physical volume of space that a given phase of
interest occupies. Given its simplicity, it is surprising that
this measure yields nonsensical results when applied to
inflationary bubble universes. This is often referred to in
the literature as the ‘“‘youngness problem” [45]. We will
briefly explain this problem and then show how the cyclic
universe can avoid it.

The false vacuum expands with Hubble rate Hy. Given
that nucleation rates are typically very small, this implies
that the volume of the false vacuum grows approximately
as e3fr’. When an inflationary bubble is nucleated, it will
initially expand at a fast rate during its post-nucleation
inflationary phase. However, if this bubble universe is to
look like ours, then the vacuum energy must decrease
drastically at the end of inflation and relax to the value of
the currently measured dark energy, some 100 orders of
magnitude below the inflationary energy density. Forever
after, the inflationary bubble then expands at the rate of
dark energy; i.e. it doubles in size every 10 X 10° years or
so. Since the energy density of the false vacuum must be at
least as large as the energy density during the inflationary
phase (which is typically around the grand unified scale),
this implies that the false vacuum expands at an enor-
mously higher rate, doubling every 1073% seconds or less.

This implies that every second it becomes 10°° times
more likely for a bubble to nucleate, and the vast majority
of bubbles in existence are extremely young. Why does this
lead to problematic predictions? Well, you could imagine
the entire chain of events that had to take place for you to
be able to read this paper: a bubble nucleation, an infla-
tionary phase, early density perturbations evolving into

FIG. 5 (color online). A comparison of the solutions to
Eq. (10) (solid lines) and Eq. (13) (dashed lines) for the same
parameters used in Fig. 4, but where only 50% of the volume
makes it through the crunch/bang transition (p = 0.5). We
exclude from this plot the volume fraction in the regions that
have crunched (which dominates the volume fraction at late
times). Again, the continuum approximation works well at
determining the volume fractions.
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galaxies, the birth of the solar system, the first life-forms
on Earth, all of Darwinian evolution, the whole story.
Could this whole chain of events have proceeded slightly
quicker? Could it have taken just 1 sec less? That certainly
seems conceivable; in fact, one can guess that the proba-
bility for this whole chain of events taking 1 sec less would
be roughly equal to the probability of it taking as long as it
took. However, the physical volume weighting measure
would predict that it would be roughly 10*° times more
likely to have taken 1 sec less, 103! times more likely to
have taken 10 sec less,... The origin of this conclusion is
easy to pinpoint: it is a direct consequence of the fact that
the false vacuum grows so much faster than the regions
harboring ordinary observers like us. As we will now show,
for cyclic bubbles this situation can be reversed, and con-
sequently the youngness problem can be avoided.

In order to weight by physical volume, we simply add a
factor 3Hp p p to the rate equations, where Hp p, p are the
average Hubble rates in F, D, or R. The regions that end up
in a crunch do not grow, and correspondingly, we set their
Hubble rates to zero. In the continuous approximation, this
yields %

fr=—Tppfr+3Hpfp, (17)
. 1 1
fD:rDFfF_t_fD+t_fR+3HDfDr (18)
D R
. p 1
fth_fD_t_fR+3HRfR’ (19)
D R
. 1—p
fe= ; - (20)
D

Conceptually, it is useful to treat the cyclic bubble regions
D, R, and C together, by defining fcyc = fp + fr + fc-
Then the last three rate equations above can be added to
yield

feve =Tpefr + 3Heyefeve (21
and, defining
I —
= fel 00) (22)
fr(t— o0)
at late times, we have
__dHp + Hp
Hove =955 ¢+ 9

With the initial conditions fz(t = 0) = 1, feyc(t = 0) = 0,
we obtain the solutions

“For the discrete rate equations, it would not be enough to add
factors of 3H p x to the rate equations; one also has to take into
account the growth that occurred between the inception of the
bubble and the time ¢ by multiplying the double sum terms in
Eq. (6) by factors of Exp[3(nHptp, + mHgtg)].
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fr= e(SHF_FDF)t, (24)
feye = Tor

3HF - FDF - 3HCYC

X [e(3HF_FDF)f — e3Hcvc’]' (25)

In addition, requiring (19) and (21) to be consistent with each
other implies the relation
d 1
4 3HR=3
Ip Ig

dHp, + Hy
1+d+c

I'pr fr(t— o0)
(1+d+c) frit— 00)°

(26)

We will consider two separate cases, depending on
whether or not the false vacuum Hubble rate (minus a third
times its decay rate) is bigger or smaller than the volume-
averaged Hubble rate Hcyc inside cyclic bubbles. If the
false vacuum grows faster, then the youngness paradox is
still present. However, if the bubble interiors expand faster
than the surrounding false vacuum, then, as hinted at
above, the youngness problem is avoided. In the context
of a landscape with many false vacua, the second case is
unlikely to be realistic, as the existence of a single false
vacuum with high enough energy density would invalidate
it. Nevertheless, this second case is of interest as a model of
the cyclic universe or eternal inflation considered by itself
(i.e. not as part of a landscape of vacua). In that situation,
the youngness problem really can be avoided, and this
constitutes a revealing counterexample to the assertion
that physical volume weighting and the youngness paradox
go hand in hand.

Case I Large false vacuum Hubble rate, 3H, — ' >
3Hcyc.

In that case the solutions above imply that

fr(t— )  3Hp —I'pr = 3Hceyc
feye(t — o) Fpr

Plugging this back into (26) gives

27)

_ fplt—00)  1p _ _ 1

In comparison to the comoving volume case, the D regions
are much larger now compared to the R regions. This is
because of the fast expansion of the background, which
feeds directly into D. Correspondingly, the crunch regions
are small, as they do not expand. We can obtain an explicit
expression for ¢ by combining the consistency conditions
above with Eq. (20), which yields

_felime) (1= pid
fr(t—00)  t,3Hr —T'pp)

(30)
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~ l_p (31)
p

Thus, when p is smaller than 1/2, the collapsed regions are
actually larger than the radiation/matter regions, which are
then completely subdominant. Of course, because of the
fast background expansion, which by assumption is faster
than the expansion inside the bubbles, there is a youngness
paradox in the same way as one would have for inflationary
bubbles.

Case II: Small false vacuum Hubble rate, 3H, — I'pp <
3Hcyc.

This is the case of real interest. The solutions (24) and
(25) imply that for a small false vacuum Hubble rate

fr(t— o)

—_— = 32
feye(t — o) 62

Requiring (18) and (19) to be consistent with each other at

late times gives a quadratic equation for d:

J 3t t

———D+—D(HR—HD)]——D=O. (33)
DIR

d2+d[
p pig p

This equation has one positive and one negative solution,
and picking the positive one we obtain

1Tl tp 3t
d= __I:__AWL—D(HR _HD)]
2lp ptr P
1 1 t 3t 2 t
+—\/[———D+—D(HR—HD):| +4-L2 (34
2\Lp ptx P PIr

The regime of physical interest is where the Hubble rate in
the radiation/matter phase is significantly larger than the
other rates in the problem, i.e. Hg > Hp, 1/tg, 1/tp. Then

_fpli—oo) 1
fr(t— 00)  3tgHpg

In other words, the late-time ratio of radiation/matter
regions to the dark energy/ekpyrosis regions is large,
fr(t — )/ fp(t = ) = 31xHy, and independent of p.
For a realistic cyclic universe, the radiation/matter phase
lasts about 10 X 10° years, during which time the universe
expands by a factor ¢%°, which would give fg(t — o)/
fp(t — 00) = €%, implying that the radiation/matter phase
completely dominates the volume fraction. The false vac-
uum volume fraction is completely negligible, and so are
the collapsed regions: combining (19) and (20) gives

d

<L (35)

_felt—mo0) 1-p
fr(t— ) 9thDH12e

Xl. (36)

These results hold as long as the bubbles grow faster than
the surrounding false vacuum 3Hcyc > 3Hyp — I'pp, or
Hyp = Hy. Thus, using numerical values appropriate to
our own universe, these results hold as long as the false
vacuum energy density stays below (10 GeV)* or so.
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The most important implication is that the cyclic uni-
verse, even with the modification that the dark energy
plateau contains a false vacuum (as envisioned in Fig. 3),
does not suffer from a youngness problem. On the contrary,
the most likely place to be is in the radiation/matter phase
in a late cycle inside an old cyclic bubble.

D. Causal diamond measure and Boltzmann brains

Having just discussed the prototypical global measure,
namely, weighting by physical volume, we now turn our
attention to the prototypical local measure, namely, the
causal diamond measure [36]. As briefly explained at the
beginning of this section, the idea behind the causal dia-
mond measure is to follow a single worldline and count the
number of times different vacua are entered. A closely
related prescription would be to count the transitions them-
selves [35]. One motivation for counting only vacuum
entries (as emphasized by Linde [34,43]) is that, for infla-
tionary bubbles, only the spacetime region immediately
following the phase of inflation can harbor ordinary ob-
servers; the entire future part of the bubble is simply empty
de Sitter space. And it does not particularly matter just
how big this empty de Sitter region is, if one cannot live
there anyway.

The causal diamond measure suffers from the
“Boltzmann brain” problem. As just described, inside
inflationary bubbles ordinary observers are formed shortly
after the end of inflation. Then, dark energy comes to
dominate, and the age of normal observers ends. The
only way to recreate normal observers is for a Hubble
patch to tunnel up to the false vacuum and then nucleate
a new inflationary bubble. This process is extraordinarily
rare. It is exponentially more likely that a smaller fluctua-
tion occurs, producing a galaxy, solar system, planet, or
even a single disembodied brain; anything will be more
probable than going all the way back to the false vacuum.
Thus, such “freak” observers, called Boltzmann brains,
will proliferate without bound. This is the BB problem.

Since BBs arise as thermal fluctuations, they can only
exist in regions where the cosmological constant is posi-
tive. In Minkowski space, for example (which typically
arises as a supersymmetry-preserving solution in string
theory), such freak observers do not exist. Thus, if all
regions of positive cosmological constant decay into
zero- or negative-cosmological constant spacetimes on a
time scale that is shorter than that of producing a BB, the
BB problem does not arise [46]. Whether all possible
positive energy vacua (in particular, within string theory)
satisfy this requirement is unknown at present (though
see [47]).

Inside a cyclic bubble formed from an eternally inflating
parent vacuum, there will be no chance for Boltzmann
brains to form. The time scale for producing a BB is far
longer than the duration of the dark energy dominated
phase. However, since we are contemplating fairly low
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energy scales for the false vacuum (our only requirement
is that the false vacuum Hubble rate is larger than it is
currently), we might worry about freak observers that
form there.

To stick to the spirit of the causal diamond measure,
when considering the cyclic universe, we should count
each entry into the radiation/matter phase separately, as if
it were a different vacuum. In addition, each encounter
with a BB should be counted as the entry into a new
vacuum. Thus we introduce two new vacua Bl and B2,
each corresponding to the false vacuum with a BB. These
vacua are cycled between on a time scale 7. In order to
model the decay to Minkowski (or anti-de Sitter) space, we
allow all three (physically equivalent) vacua F, B1, B2 to
decay to a terminal vacuum S with a rate I'gz. The inter-
relationship of these vacua is shown in Fig. 6, and the
corresponding rate equations are

. 1
fr=—"Tppefr+Tepfp— ng —Usefr 37)

. 1 1 1
S = t_fF + t_fB2 - t_fBl —Usefpr = Uprfe, (38)
B B B

. 1 1
= t_fBl - t_fBZ — Usefpr = Uprfso (39)
B B
fs=Tse(fr+ fa1 + f) (40)
. 1 1
fo=Tpr(fr+ fo1r + f5) = LCepfp — t_fD + t_fR’
D R
(41)
. p 1
fth_fD_t_fR’ (42)
D R
. 1—p
fec= ; fo- (43)
D

We are only interested in counting entries into various
vacua; hence, we are only interested in those terms in the
rate equations which reside on the right-hand side of the
equations and enter with a plus sign. Since we would like to
compare ordinary observers (residing in R) to BBs (resid-
ing in B1 and B2), the “incoming probability currents’ of
interest are

FIG. 6 (color online). Relationships between the different va-
cua that we consider in this section.
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Or ="/ (44)
D
. 1
0 i :t_(fF+fBZ)x (45)
B
. 1
Op = t_fBl- (46)
B

Defining the total ‘“‘charge” Qpp = Qp; + Qpy, We are
thus interested in the ratio of charges

Or _ 1y I* 1o )

Oss  tp [*(Ur+ foi+ fr)

Our initial condition is that all of the volume resides in the
false vacuum F. In the far future, all the comoving volume
will be in the terminal vacua S and C. Thus, the non-
terminal vacua B1, B2, D, R have a vanishing comoving
volume fraction both initially and at late times, and in
integrating the left-hand sides of Eqgs. (38), (39), (41), and
(42), from the initial time up to infinity, we find that these
integrals are zero. The right-hand sides of the integrated
Egs. (41) and (42) lead to

FDF/OO(fF + ot ) = (FFD +1;—Dp>joof1)-
(48)

Substituting into Eq. (47), we immediately obtain

Or _ ptpl'pr
Opg (1 —p+1pl'pp)

For completeness, we show that the same result can be
obtained using Bousso’s original matrix method [36]—see
Appendix B for the derivation. There are a number of
things to note about this relation. First, the only effect of
the sink § seems to be to justify sending the volume
fractions to zero at late times when p # 1; the result is
independent of I'gx. The factor ¢51" 5 in the denominator
is expected to be extremely tiny, since it compares a time
scale a few orders of magnitude larger than the current age
of the universe to a (immensely larger) time scale for up-
tunneling from D to F. Thus, the BB problem is avoided as
long as

(49)

(1—=p+1plep)
14

When p = 1, this condition is clearly satisfied.> When p is
not exponentially close to 1, this condition amounts to
requiring that the false vacuum decays to cyclic bubbles
faster than it nucleates BBs. This is the standard require-
ment for a BB problem to not arise in this measure.

tgl'pp >

(50)

3This result is in agreement with that of Ref. [40], which
showed that tightly coupled vacua that cycle between each other
quickly dominate this probability measure.
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We conclude that theories where p = 1 will robustly
avoid a BB problem, while theories with p # 1 must have
a sufficiently fast decay rate to avoid a BB problem. It is
interesting to see that when p # 1, the rate of production of
ordinary observers inside cyclic bubbles becomes irrele-
vant, as a consequence of the argument given above: in
terms of comoving volume, the late-time cycles inside of
cyclic bubbles become insignificant. Consequently, if we
assume that it is faster to down-tunnel from the false
vacuum than to fluctuate a BB, the most likely place to
live, according to this measure, is as an ordinary observer
in an early cycle inside of a cyclic bubble universe.

IV. INCLUDING INFLATIONARY BUBBLES

So far, we have focused on the cyclic model of the
universe, considered by itself. Our main addition, com-
pared to previous discussions of the cyclic universe, was to
allow for a phase of false vacuum eternal inflation to
coexist with the cyclic universe, and in this context we
have shown that the cyclic universe does not necessarily
lead to the probability paradoxes that can occur for false
vacuum eternal inflation combined with exclusively infla-
tionary bubbles. In the present section we will consider the
case where inflationary bubbles and cyclic bubbles coexist.

The motivation for doing so is that, if the string theory
landscape exists, and if both inflationary and cyclic solu-
tions are allowed as vacua of string theory, then eternal
inflation will physically realize both cosmologies. In that
case, one may of course wonder which type of universe we
are more likely to inhabit on theoretical grounds.*

Physical volume weighting

When considering physical volume weighting, we
ignore the subdivision of the false vacuum into F, B1, B2
regions and just denote the false vacuum as the F region
again. Likewise, we can ignore up-tunneling from the
inflationary and cyclic bubbles to the false vacuum. Our
experience from Sec. IIIC further suggests that we can
ignore the crunch regions inside of cyclic bubbles, and that
correspondingly we can set p = 1. Inside each of the
inflationary bubbles, we include two phases: actively in-
flating volume is denoted by the subscript / (with inflation
lasting a duration ¢#;), and volume in the post-inflationary
phase is denoted by P.

The rate equations, for physical volume weighting, then
read

fr=—Wp +Tpp)fr+ 3Hpfp, (51)

. 1
fr=Twfr— Efl + 3H,f}, (52)

4Hopefully, we will also know soon (perhaps already from
results of the PLANCK satellite) which type of universe is
favored by observational data.
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. 1
fp :t_[fl +3Hpfp, (53)
. 1 1
fD:FDFfF_TfD+7fR+3HDfD’ (54)
D R
. 1 1
fRzng_ng—i_:;HRfR- (55)

We can lump together P and / into fixg = f; + fp,and the
D and R regions into cyclic bubbles with volume fraction
feye = fpe + fru and corresponding rate equations

Fixe = Uiefr + 3Hefing (56)
feve =Tpefr + 3Heyefeve (57)
with
iH, + Hp dH,p + Hy
T g =TI TR (sg
INF T cyc 174 (58)
where we have defined the late-time ratios
==y Spt= ) g
fp(t— ) fr(t— )

With the initial conditions fr(t = 0) = 1, fixg(t = 0) = 0,
Sfeye(t = 0) = 0, we obtain the solutions

fF = e(SHF_F[F_FDF)t, (60)
Fie = U'yr
M 3Hp =Ty = Tpp — 3Hy
X [e(3HF_F1F_FDF)l — eSHINF[]’ (61)
Fove = Upr
Y€ 3Hp — T — Tpr — 3Heye
X [3(3HF*FIF*FDF)T — e3Hevel], (62)

In addition, and analogously to the case where there are only
cyclic bubbles, we have the consistency conditions

i Lip fr(t— o)
© £ 3Hp = +3Hpp + . (63
no o N f— Y
d 1 IﬂDF fFoo
— ——+3H, = 3H + . 64
Ip 1§ K R () S rRMoo )

The case of physical interest is where the false vacuum
energy density is larger than the energy density in the infla-
tionary phase, so that we may assume 3Hp — I';p — I'pp >

3Hng- In that case
Jr (t_)oo)z?’HF_FIF_FDF_?’HINF. 65)

JINE Usr
The assumption that the false vacuum lies above the infla-
tionary scale implies that it will also lie above Hy. Thus we
have
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fF (t—>00) _ HF_FIF_FDF_?’HCYC
fCYC I‘DF

(66)

Plugging into the consistency relations gives
i =t;3Hy —Tjp — Upp — 3Hp) =~ 3t;Hp, (67)

1
d=tD<3HF_F1F_FDF_3HR+t_)%3tDHF' (68)
R
With the assumptions above, we have the approximate late-
time ratios

fr

P o) = (10 L = ) OtiHy

1_‘IF

(69)

ﬁu oy =2 L1 (70)
tr Upr
The false vacuum vastly dominates over everything else. For
comparable nucleation rates, the P regions dominate over
the R regions by a huge factor 75, /;. This is because of the
rapid background expansion, which favors, first of all, the
false vacuum, and second, those vacua that it directly and
most rapidly feeds into. Thus, adding inflationary bubbles
can reintroduce the youngness problem.

Causal diamond measure

The extension of the causal diamond probability calcu-
lations to the case where inflationary bubbles are included
is rather straightforward. It is important to include the
possibility of up-tunneling, both from the inflationary bub-
bles and from the cyclic ones. We also include the possi-
bility that the inflationary bubbles can decay into the sink §
with rate I'gp. This time, we only consider Boltzmann
brains in the inflationary bubbles, as the false vacuum
Hubble rate must necessarily be very high (implying that
the horizon in the false vacuum is far too small to harbor a
BB). Thus, the BBs of interest principally form in the
inflationary bubbles, after inflation has ended and dark
energy has taken over. To model this, we once again
employ the ““epicycle” vacua B1, B2, where now the vacua
P, B1, B2 are physically identical. The full rate equations
now read

fr="Torfr = Cipfr +Cep(fp + fo1 + f52)
+ Uepfps (71)
, 1
fr=Twfr— Efly (72)
. 1 1
fPZEfI_ng_FSPfP_FFPfP’ (73)
1
o= fP —fBz - gfm —Uspfpr = Urpfp, (74)
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. 1 1
fo=— o ——fe—Uspfeo = Urpfpo (75)
I3 Ig
fs=Tsp(fo + foi + f2). (76)
. 1 1
fD:FDFfF_FFDfD_t—fD"‘t—fR, (77
D R
. p 1
fth_fD_t_fR’ (78)
D R
. 1-p
fe= fo (79)
and the incoming probability currents of interest are

. 1
Op=—/1 (80)

I
0r =21 81)

Ip

. . . 1
Qg = Op +Q32:t—(fp+f31 + fp2)- (82)
B

The questions we are interested in are as follows. What is
the relative probability of being an observer inside a cyclic
bubble rather than inside an inflationary bubble? What is
the ratio of ordinary observers to BBs? The answer to the
first question can be expressed as

Or Yy I fo

Op tp [*f1

As in Sec. IIID, the integration of Eqs. (77) and (78)
implies that

FDF[ fr= (FFD +Tp) /me- (84)

Combining this with the integral of Eq. (72) we obtain

(83)

r
Or _ P~ pr . (85)
Op Typ(1=p+itpl'pp)
When the entire cyclic universe makes it through the
crunch, we obtain

Or _ Tor
Qp  Typtpl'pp’

We may assume that the down-tunneling rates I'pr and I'; ¢
are comparable, so that the ratio above becomes equivalent
to a semiclassical up-tunneling time scale divided by the
classical time scale of the cyclic universe, and hence this
ratio is enormous. In this case, it is vastly more likely to
live in a cyclic universe than in an inflationary one. This
result is again intuitively clear: the causal diamond mea-
sure rewards the repeated, infinite production of ordinary

(p=1). (86)
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observers that occurs inside of cyclic bubbles, compared to
the one-time production of ordinary observers inside infla-
tionary bubbles.

When the cyclic universe loses comoving volume at
each crunch (p # 1), the situation changes, since now
cyclic bubbles lose their advantage. As described above,
at late times the depletion of comoving volume inside
cyclic bubbles means that they are essentially treated in
the same way as inflationary bubbles, and this is reflected
by the approximation

Or U'pr

— = p—= 1). 7

0, 't (p#1) &7)
Now the probabilities of being in a cyclic or an inflationary
universe have become comparable and depend on the de-
tails of the tunneling potential and the severeness of the
instability of the cyclic model under consideration.

We can also compare the likelihood of being an ordinary
observer rather than a BB by considering the ratio

QPQZBQR 2 (e +t}ljf31 + f52) <f1 f Ji* p fm fD)

o fp
Jo(fp + fo + f2) ([1 ip@sp + Trp)]

pUpell + 13(Tsp + FFP)])

Lip(L = p+tplpp)
= tz(Ugp + FFP)(l + g—i) (83)

where we have used the integrals of Egs. (72)—(75). In the
absence of cyclic bubbles, we would have obtained a ratio
proportional to 75l°gp and reached the conclusion that to
avoid a BB problem the inflationary bubbles must decay
faster than BBs are formed. When the observers inside of
cyclic bubbles dominate, as they do when p = 1 or when
the rate to form cyclic bubbles is high enough, the BB
problem can be solved even for slow decays of the infla-
tionary bubbles to the sink. To illustrate this, assume that
p = 1, in which case we obtain

Op+0Or tgI'pplgp
Er TSRk o Ip LDFCSP (89)
Ogg tp Uep Ty

As discussed above, the first two ratios are huge, implying
that there will be no BB problem as long as the decay to the
sink is not extremely slow. A similar result is expected to
hold for the ‘““fat-geodesic” measure introduced in Ref. [2]
(since a congruence of neighboring geodesics will also
undergo endless cycles in this case).

A final comment: one can also generalize the results
above to the case where the cyclic universe can decay
(from the dark energy phase) to a Minkowski or an anti-
de Sitter sink. If we denote the corresponding rate by I'yp,
then the only effect of this extra decay channel is to replace
I'yp by I'pp + I'gp in Egs. (84)—(89) above. The conclu-
sions remain essentially unchanged.
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V. DISCUSSION

In the standard picture of eternal inflation, different
phases are seeded from a rapidly inflating parent vacuum
through the formation of bubbles, each of which can con-
tain an inflationary cosmology, and possibly describe our
observable universe. As we have described in detail above,
there exist many ambiguities and subtleties in defining a
probability measure suitable for making predictions in an
eternally inflating universe. However, many of the prob-
lems that arise for various measures can be traced back to a
simple fact: during eternal inflation it is much easier to
fluctuate to a lower energy state than a higher energy state.
The youngness problem arises because space is inflating
much more rapidly outside of pocket universes than inside.
The Boltzmann brain problem arises because it is much
easier to make observers via a small fluctuation than to
replay the entirety of cosmological evolution.

The model we have introduced in this paper, which
incorporates cyclic universes into the picture of eternal
inflation, at face value would seem to avoid these prob-
lems. In a cyclic bubble universe, cosmological evolution
leads periodically to states with higher energy density.
Thus, in forming a cyclic bubble, a chain of events is set
into motion by which the energy inside the bubble can
temporarily exceed that of the background space it is
embedded in. The volume inside the bubble can then
grow faster than on the outside, relieving the youngness
problem. Cyclic bubbles continually produce observers by
normal cosmological evolution, and the nucleation rate for
cyclic bubbles can be fast, alleviating the Boltzmann brain
problem. A similar conclusion would be reached in models
where the production of false vacuum (higher energy den-
sity) bubbles is not highly suppressed, as in the *“‘de Sitter
equilibrium cosmology” of Albrecht [48,49]. These two
examples are illustrative of what is generally necessary to
avoid a youngness or BB problem, and suggest that some-
thing like a rather drastic violation of the null energy
condition is required. Whether or not this is reasonable is
of course subject to debate.

The analysis we have performed in this paper confirms
the intuition described above. However, the conclusions
are somewhat sensitive to the details of the physics con-
necting the big crunch of one cycle to the big bang of the
next. When there are only cyclic and terminal vacua, the
volume fraction of the universe is always dominated by
regions containing matter and radiation at late times. Thus,
the youngness paradox is nonexistent. Again, when there
are only cyclic and terminal vacua, the existence of a BB
problem is dependent on whether there is any loss of
volume at the crunch/bang transition. When there is no
loss of volume, the BB problem is nonexistent. When there
is volume loss, the false vacuum must produce cyclic
bubbles faster than it produces BBs to avoid a problem.
Let us emphasize that there is still a measure problem for
the eternal inflation/cyclic universe hybrid; there are many
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possible cutoff procedures, and no a priori way to choose
which is correct. However, our results suggest that many
commonly considered choices lead to predictions consis-
tent with observations.

We have also analyzed a model that contains both cyclic
and inflationary bubbles formed from the same false
vacuum. This might be expected more generally if both
inflationary and cyclic cosmologies are realized in a fun-
damental theory. We found that when weighting vacua by
physical volume, the youngness paradox is reintroduced if
the false vacuum energy scale is large and inflationary
bubbles are produced more rapidly than cyclic bubbles.
This is the regime where the volume fraction inside infla-
tionary bubbles is larger than the volume in the radiation/
matter dominated portions of cyclic bubbles. In the causal
diamond measure, the cyclic bubbles generically dominate
the measure as long as they are produced more frequently
than the inflationary bubbles. In the case where there is no
loss of volume at the crunch/bang transition, cyclic bubbles
in fact always dominate. In cases where the cyclic bubbles
dominate the measure, the BB problem is largely absent,
although subject to some conditions on the rate of decay of
the false vacuum.

Beyond the particular examples we have considered, our
results motivate the construction of a more general set of
conditions necessary for particular measures to yield re-
sults consistent with our observable universe. We hope to
explore this question in future work.
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APPENDIX A: TWO-FIELD TUNNELING AND
QUANTUM FLUCTUATIONS

Figure 7 illustrates the two-field potential in the tunnel-
ing region. The two scalars are o and s, with o being
oriented along the ekpyrotic ridge and s the coordinate
transverse to o. Up to a shift in ¢, and to quadratic order in
s, the potential after tunneling is

V=V, — Ve (1 + es?), (A1)

where in realistic models € ~ O(10?) (“‘realistic”” meaning
that the spectral tilt then turns out to be at the percent
level).
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FIG. 7 (color online). The tunneling path from a false vacuum
(on the right) to the two-field ekpyrotic phase (on the left).

The dominant channel for vacuum decay corresponds to
the instanton solution with the smallest action. This means
that the preferred tunneling path is to the ridge (s = 0), and
o = 0O right after bubble nucleation. Since in the vicinity of
the ridge we have that V , > V , the classical trajectory
after tunneling corresponds to slowly rolling down the
ridge in the potential. If the entire bubble were to do that,
then the subsequent phase of dark energy domination,
followed by the 120 e-folds of ekpyrosis, would ensure
that the spacetime inside the bubble was sufficiently flat
right before the crunch, so that (with the usual assumptions
made in the cyclic model) all of it would make it through
the crunch/bang transition. Whether or not this is the case
depends on the quantum fluctuations of the transverse field
s. Following Garcia-Bellido et al. [50], we can estimate the
fluctuations in s as follows.

The (outside) bubble geometry is described by the line
element

ds* = dr* + a%(7)[—dp?* + cosh?p(dO?* + sin’0dp?)],
(A2)

and the scalar profile depends on 7 alone. The above
coordinates in fact cover only the exterior of the light-
cone emanating from the origin 7 = 0. The interior line
element is obtained from the one above by performing an
analytic continuation,

(A3)

r=p-+ iz, a(t) = —iag(ir).

2

The equation of motion for the (gauge-invariant) fluctua-
tions &8s is

t= —ir,

[6s — V85 =0, (A4)

where V  is evaluated on the tunneling solution oy(7),
s = 0. With the ansatz

85 = ag (DF (DY piu(p, 6, )

and the introduction of a conformal coordinate 7, defined
via agdn = dr, the equation of motion separates into a
three-dimensional Klein-Gordon equation

(AS5)
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(S)DYplm = (pz + l)Yplm (A6)
and a Schrodinger-type equation
d’F, R
— e + d%[V,ss - E]F" = p’F,, (A7)

where R denotes the four-dimensional Ricci scalar.
Thus, Y, are mode functions on the 2 + 1-dimensional
de Sitter space spanned by p, 0, ¢ (there exist explicit
expressions for these mode functions in terms of Legendre
functions and spherical harmonics). In the Schrédinger
equation, the effective potential is

R
chf = a%l:v,ss - _:I’

G (A8)

and its shape is sketched in Fig. 8.

Since ap — 0 as n — £ oo, the effective potential tends
to zero at both ends. Thus, there is a continuous spectrum
of modes with positive “energy” p?. However, there are
also discrete modes (bound states) with p> < 0. Note that
in the true vacuum, in the vicinity of the nucleation point,
we have that

Vs © _pepier (A9)
1%
The exponential is very small there; hence, this implies that
Vil 1Vl
S~ 2 K, Al10
I I (A10)

and in fact, we can use the same approximation throughout
to obtain an estimate of the wave function of the lowest
mode. If the V  term is dropped entirely in the
Schrédinger equation, then there is a (non-normalizable)
solution with p> = —1 and F « a. Once V ;s 1s taken into
account, the solution becomes normalizable and the eigen-
value shifts to the value p> = —1 + y with

H? R
= [ana(v,, - 5 +2m2).

The lowest mode is (now in terms of the bubble interior
coordinates)

(A11)

Vet
A
>
\/ false n
bubble vacuum
true wall
vacuum

FIG. 8. A sketch of the effective potential defined in Eq. (AS).
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Hyp sinh((1 — y)'/2r)

Y~
A 2y /2 sinhr (A12)
Near r = 0, we have
H
0\1/2 F
(@sP)? =~ 2 (A13)
and in the thin-wall limit
ZVY\‘F 1
Y= ——+ _H2R4(V,ssT - V,ssF)’ (A14)
3H2 8 0

where V v and V - stand for the effective masses of the s
field in the true and false vacua, respectively, and Ry, is the
size of the bubble at nucleation. If we design the tunneling
potential such that y = 1, then the correlation length 1/y of
the fluctuations is roughly one horizon size, with a (bubble)
quantum fluctuation amplitude similar to the one of the
ordinary (cosmological) quantum fluctuations in s. In this
case virtually the entire bubble interior makes it through the
first crunch, and even the first cycle is perfectly habitable.

APPENDIX B: CAUSAL DIAMOND MEASURE AND
MATRIX CALCULATIONS

Bousso’s measure proposal [36] is to consider only the
causal patch associated with a single worldline, and count

PHYSICAL REVIEW D 85, 103509 (2012)

the number of times the worldline intersects a given vac-
uum. Thus, neither the volume nor the lifetime of a given
vacuum matters, only transitions between vacua. Inside a
cyclic bubble, each cycle is separated from the next by a
big bang, and hence, in keeping with the spirit of this
proposal, it makes sense to treat subsequent cycles as
separate vacua (moreover, it is conceivable that certain
physical properties could evolve from cycle to cycle). We
consider the same setup as in Sec. III D. Transitions be-
tween vacua are encoded in a matrix 7. Following [36] we
denote by «;; the probability per unit proper time for a
geodesic worldline in vacuum j to enter vacuum i. The
elements of the transition matrix 7 are simply the normal-
ized versions of these transition probabilities, i.e. 7;; =
K;;/ > ;K;. This normalization ensures that for nontermi-
nal vacua the total probability to leave the vacuum is 1.
Hence, each column lists the normalized probabilities to
transition from the corresponding vacuum to the vacuum
associated with the row in question. For terminal vacua the
probability to leave the vacuum is zero by definition, and
thus columns of 7 corresponding to terminal vacua are
zero. In our case, the sequence of vacua in rows and
columns is F, Bl, B2, S, D, R, C. The transition matrix
7 is then

FF[)

Starting with an initial probability distribution P, =
(1,0,0,0,0,0,0), after one iteration this gives 1Py, then
1*P,, and so on. The late-time unnormalized probability to
be in a given vacuum is the sum of all these probabilities,
namely,

(BI)

The inverse of (1 — 77) may be singular (this is the case
when there are no terminal vacua/sinks), in which case
we can calculate the inverse of (1 — en), and after
normalizing probabilities at the end, set € = 1. In our
case this complication does not arise, and we immedi-
ately obtain that the late-time probability distribution is
proportional to

(0 0 0 0 ot 0 0)
T Ty 0 R 0 0 000

0 e 0 O 0 00
ety ity Wpitesry 0 0 0.0
Ty Wy ey 0 0 10

0 0 0 0 4= 00
K 0 0 0 0 = f= 00 )

[
P (FDFFFDID» (1= p+Teptp)

1+ t5(Ugp + I'pp)

15[2 + 15(Lgp + Tpp)]’
1

>< )
152 + 15(Usp + T'pp)]

X Lsp, Tpp(1 + tplpp), pLpp, (1 — p)FDF)' (B2)

(1 —=p+Teptp)

(1 —=p+Teptp)

Thus, in particular, the ratio of entries into the ordinary-
observer-containing R vacuum to the Boltzmann brains
B1+ B2 is

Or _  ptplpr
Opg  1—=p+itplep

in agreement with the result derived in Sec. III D using
the rate equations.

(B3)
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