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Eternal inflation produces pocket universes with all physically allowed vacua and histories. Some of

these pocket universes might contain a phase of slow-roll inflation, some might undergo cycles of

cosmological evolution, and some might look like the Galilean genesis or other ‘‘emergent’’ universe

scenarios. Which one of these types of universe we are most likely to inhabit depends on the measure we

choose in order to regulate the infinities inherent in eternal inflation. We show that the current leading

measure proposals—namely, the global light-cone cutoff and its local counterpart, the causal diamond

measure—as well as closely related proposals, all predict that we should live in a pocket universe that

starts out with a small Hubble rate, thus favoring emergent and cyclic models. Pocket universes which

undergo cycles are further preferred, because they produce habitable conditions repeatedly inside each

pocket.
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If eternal inflation occurs, it generates pocket universes
with all possible vacua. Moreover, since each type of
universe is itself produced an infinite number of times,
all possible histories within these pocket universes are
physically realized [1–3]. This implies that we should not
restrict ourselves to considering only pocket universes in
which slow-roll inflation occurs, but in fact all physically
allowed cosmological models will be realized an infinite
number of times.

Eternal inflation and ordinary inflation are, notwith-
standing the similarity in terminology, rather separate
concepts. Ordinary inflation is designed to dynamically
generate physical conditions that resemble those we
know to have been present some 13.7 billion years ago in
our region of the Universe [4–6]. For this idea to work, it is
essential that the phase of inflation occurs long enough to
render the universe sufficiently flat, and inflation must
occur at the right energy scale in order to produce density
perturbations with an amplitude that is in agreement with
the size of the temperature fluctuations that have been
measured in the cosmic microwave background radiation.
Modeling such a phase with a scalar field and a potential,
the requirement is that the potential must contain a region
that is flat over an extended region, and at a height of some
ð1015 GeVÞ4 or so.

By contrast, (false-vacuum) eternal inflation needs far
less specific conditions in order to operate successfully: it
is sufficient for there to exist a single sufficiently long-lived
metastable vacuum with a positive cosmological constant.
By sufficiently long-lived, we mean that the decay rate �
of this vacuum must be smaller than its expansion rate,
�<H4. Then, starting with a spatially finite universe,
regardless of what field configuration one starts with, there
is a nonzero probability for the spacetime to transition to a
metastable vacuum with a positive cosmological constant,
which means that eternal inflation will occur [7]. Once
underway, a horizon-sized region can form a new pocket

universe via quantum tunneling (mediated by a Coleman—
de Luccia instanton [8]). What physics takes place in this
newly formed bubble universe depends on the properties of
the potential on the other side of the potential barrier. If the
potential is sufficiently flat after tunneling, the new pocket
universe will start out with a period of inflation. If, on the
other hand, the potential is that of a cyclic universe, and if
cosmic bounces can occur (which remains an open ques-
tion at present), then the new pocket universe will undergo
cycles of evolution. And a horizon-sized region within the
new pocket universe can itself tunnel back to the original
metastable vacuum, or tunnel to a new vacuum of the
theory under consideration. Any such tunneling processes
that have a nonzero probability of occurring will of course
occur in due time. In this way, the whole landscape gets
populated.
The fact that eternal inflation will produce all possible

cosmological models begs the question as to which type of
cosmology is more likely. This question is far from trivial,
and sensitively depends on the measure that we choose in
order to regulate the infinite number of universes that are
generated. Historically, the first measure to be investigated
in detail was the global proper time cutoff [9,10]. This
prescription amounts to choosing a fixed proper time
(measured along timelike geodesics starting from the ini-
tial spatial hypersurface that one assumes) and counting all
pocket universes that have nucleated prior to this time. The
relative number of different types of pockets is then taken
to indicate their relative probability. At the end of the
calculation, one takes the chosen time to future infinity,
and the corresponding probabilities are used to make pre-
dictions (in the t ! 1 limit, these relative probabilities
become time-independent). For many people, this proposal
made/makes the most intuitive sense. This measure is
equivalent to weighting universes in proportion to their
physical volume, and thus this measure predicts that the
fastest-growing pocket universes will come to dominate all
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probabilities. In this way, inflationary vacua with a high
scale of inflation come out as preferred. However, precisely
because this measure hugely rewards the fastest growing
vacua, it turns out that it predicts that it is even more likely
to be in a universe that nucleated only a fraction of a second
ago from the fastest-expanding vacuum, and produced us
via a quantum fluctuation rather than via ordinary evolu-
tion (note that the horizon in the fastest-growing vacuum is
too small to accommodate a complex object of the size
of a brain; otherwise it would have been even likelier to
fluctuate directly out of the fastest-expanding vacuum)
[11]. Such nonsensical predictions have been termed the
‘‘youngness paradox’’ and have led to the eventual aban-
donment of this measure.

Any measure that wants to avoid the youngness paradox
is required to reward pocket universes less (or not at all) for
their volume. This simple observation immediately implies
that pocket universes with noninflationary cosmologies
should be taken into account too when calculating proba-
bilities, as it is then far less clear why they should be
unimportant. In fact, as we will argue here, it is the reverse
that happens, and the current leading measure proposals
(which do avoid the youngness paradox) turn out to favor
precisely those pocket universes that start out with a very
small expansion rate. The basic reason for this is simple,
but to state it we must first describe the measures which we
work with.

Principally, we will consider the light-cone time cutoff
measure [12]. This measure works essentially in the same
way as the proper time cutoff, but with a differently defined
time variable. For a given event in spacetime, one can
construct its future light cone. This light cone will intersect
the boundary at future infinity. Using timelike geodesics,
one can follow this intersected region back in time to the
initial hypersurface with which one started. On this hyper-
surface, the region one has obtained in this way occupies a
volume v. Light-cone time is then defined as

tlc � � 1

3
lnv: (1)

As shown in Refs. [12,13], the light-cone cutoff measure
leads to an attractor regime in the future, which implies
that the most likely vacuum to be in is the longest-lived
vacuum with a positive cosmological constant. This vac-
uum is often called the ‘‘master vacuum,’’ and it dominates
all probabilities that are calculated using this measure.

Another measure proposal of interest, and which at first
sight seems to be entirely unrelated, is the causal diamond
measure [14]. The prescription for calculating probabilities
using this measure is to follow a single worldline, and to
count the number of times that the worldline enters differ-
ent vacua. This corresponds to counting all nucleation
events that occur within the past light cone of the point
where the worldline reaches the future boundary of space-
time. Relative numbers of events then once more corre-
spond to relative probabilities. As discovered by Bousso

[15] (see also Ref. [16]), the causal diamond measure gives
equivalent predictions to the light-cone cutoff measure if
the worldline under consideration starts out in the master
vacuum. Moreover, there are two closely related measure
proposals, the scale-factor time cutoff [17] and the fat
geodesic measure [18], which give essentially equivalent
probabilities. The prescription for the fat geodesic measure
is that once more one considers a worldline that starts out
in the master vacuum, but then one counts only events that
occur within a given physical distance from the worldline.
Via a similar global-local duality as for the light-cone/
causal diamond pair, probabilities then coincide with those
calculated using the scale-factor time cutoff.
The bottom line of this discussion is that the current

leading measure proposals all lead to the same conclusion,
namely, that the most likely place to be in the multiverse is
in the master vacuum. Should the master vacuum happen to
be uninhabitable, then the most likely place to find oneself
in becomes a pocket universe which is habitable and
which can arise via the fastest tunneling sequence starting
from the master vacuum. As discussed by Douglas [19], it
is in fact very likely that the master vacuum itself
is unsuitable for complex structures to form. Indeed, in
order to be as long-lived as possible, the master vacuum
should be as close as possible to being supersymmetric.
Supersymmetric vacua are stable, and therefore infinitely
long-lived. However, they cannot accommodate a positive
cosmological constant. Thus, in the master vacuum, super-
symmetry must be broken. But it should be broken as
slightly as possible, in order for the vacuum to be as
long-lived as possible. This implies that the cosmological
constant in the master vacuum is likely to be very small
(see also Refs. [20,21]). One cannot directly estimate how
small, because nothing else is known about the master
vacuum. However, it seems reasonable to assume that it
will be as small, or even smaller, than the present-day
cosmological constant in our Universe. The fact that su-
persymmetry should be only very slightly broken also
implies that the master vacuum itself is likely unsuitable
for life. Supersymmetry is a symmetry between bosons and
fermions (and thus between forces and matter) and there-
fore seems unlikely to allow for complex structures to
form. Certainly, it does not allow for life as we know it.
Thus it seems clear that we should preferentially live in a

pocket universe that arises via a fast tunneling process
from the master vacuum. Producing a pocket universe
inside of which inflation occurs then requires a large
up-tunneling from the master vacuum, either directly, as
depicted in Fig. 1, or via some intermediate vacuum.
Susskind has used this observation of the required prox-
imity (in the landscape) to the master vacuum to argue that
the scale of inflation might consequently be expected to be
low [22]. However, it seems that the logical conclusion of
this argument leads to a different expectation, namely, that
universes which start out with a small expansion rate, and
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which can be reached via an approximately equal-height or
even a down-tunneling process are vastly preferred—see
Fig. 2. Indeed, there is no reason for the barrier between the
master vacuum and the small-Hubble-rate/small-density
vacua to be as large as between the master vacuum and
the inflationary ones, considering that the difference in
energy density between the small-H vacua and the infla-
tionary ones amounts to about 100 orders of magnitude!
This implies that pocket universes realizing Galilean gene-
sis [23] or other emergent universe scenarios [24,25] (in
which the energy density starts out small and grows large),
or those realizing the cyclic universe [26,27], are vastly
preferred over the usually exclusively considered infla-
tionary pockets. Furthermore, because cyclic universes
can produce habitable conditions repeatedly inside each
pocket, they are further preferred over noncyclic models.

Now let us present the calculation which underlies these
claims. It is very simple, and builds directly on the results
of Ref. [28]. We use the causal diamond measure, with the
initial condition that the entire universe starts in the master
vacuum, to perform the calculation. We consider seven
different phases, allowing us to treat cyclic and noncyclic

universes in a unified manner. The master vacuum itself is
denoted byM. It can up-tunnel to an inflationary vacuum I,
with rate �IM. In general, the symbol �ji stands for the

rate of transitioning from the phase i to the phase j. For
simplicity, we amalgamate the inflationary phase, the sub-
sequent radiation and matter phases, and the eventual dark
energy dominated phase. If one is interested in more
specific questions, such as for example the Boltzmann
brain problem, one needs to separate out these phases, as
was done for example in Ref. [28]. For our purposes, this is
however not necessary. We also assume that the inflation-
ary pocket can tunnel back to M and that it can decay to a
sink S. Again, for simplicity we denote all terminal vacua
collectively by S. The noninflationary pockets are sepa-
rated out into four phases: the first, denoted D1 is the
small-H dark-energy-like phase that occurs right after
bubble nucleation. We assume that this phase lasts for a
time tD1

, after which it transitions with probability pfirst to

a hot big bang phaseH1. We do not want to assume that this
automatically happens everywhere (hence, the inclusion of
the factor pfirst). After a time tH1

this phase goes over to a

new dark energy dominated phase D which lasts for a time
tD. To allow for cycling, we assume that after a time tD this
phase can go over to a new hot phase H with probability
pcycle and then back to D again after a time tH. From the

dark energy phasesD1 andD we allow for down-tunneling
to the sink S, as well as tunneling back to the master
vacuum M. Perhaps we should highlight that for emergent
scenarios, the habitable phase is H1, while inside cyclic
pockets ordinary observers can reside in H1, as well as in
any repeating occurrence of H. Denoting by fi the frac-
tional comoving volumes occupied by vacuum i leads to
the rate equations

_f M ¼��D1MfM��IMfMþ�MIfIþ�MD1
fD1

þ�MDfD;

(2)

_f I ¼ �IMfM � ð�MI þ �SIÞfI; (3)

_f D1
¼ �D1MfM � �MD1

fD1
� 1

tD1

fD1
; (4)

_f H1
¼ pfirst

tD1

fD1
� 1

tH1

fH1
; (5)

_f D ¼ ��MDfD � 1

tD
fD þ 1

tH1

fH1
þ 1

tH
fH; (6)

_f H ¼ pcycle

tD
fD � 1

tH
fH; (7)

_f S ¼ �SIfI þ 1� pfirst

tD1

fD1
þ 1� pcycle

tD
fD; (8)
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FIG. 2 (color online). Tunneling from the same master vacuum
along a different direction � to a cyclic pocket universe can
occur with a much faster rate.
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FIG. 1 (color online). From the master vacuum, tunneling up
to an inflationary pocket universe along the c direction is
possible, but the corresponding rate is small.
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where an overdot denotes a time derivative. The causal
diamond measure instructs us to compare only the numbers
of times various vacua are entered, rather than their volume
fractions. Thus, we need to compare the time integrals of
the following ‘‘incoming probability currents’’ [29] (which
can be read off directly from the rate equations as the
positive sign terms on the right-hand sides of the vacua
of interest):

_Q I ¼ �IMfM; (9)

_QH1
¼ pfirst

tD1

fD1
; (10)

_QH ¼ pcycle

tD
fD: (11)

In terms of comoving volume, the entire multiverse starts
out in M and will eventually end up in S. Thus, the time
integrals of the left-hand sides of Eqs. (3)–(7) from the
initial time t ¼ 0 to t ¼ 1 are 0. The corresponding right-
hand sides then give us precisely the relations which we
need to calculate the probabilities we are interested in. In
particular, the probability to be in an emergent/cyclic
pocket compared to the probability to be in a slow-roll
inflationary one is given by

QH þQH1

QI

¼ �D1M

�IM

pfirst

ð1� pcycle þ �MDtDÞ
1þ �MDtD
1þ �MD1

tD1

;

(12)

� �D1M

�IM

pfirst

ð1� pcycle þ �MDtDÞ : (13)

Let us first discuss the case where the noninflationary
pocket corresponds to a noncyclic, emergent-type uni-
verse. Then pcycle ¼ 0 and we obtain the following ap-

proximate relation:

QH þQH1

QI

� pfirst

�D1M

�IM

: (14)

Given that the tunneling rate �D1M is likely vastly larger

than the up-tunneling rate �IM, we confirm the expectation
that it is much more likely to be in a noninflationary pocket
than in an inflationary one, as long as it is not exponentially
suppressed to make it from the small-H phase to the hot big
bang phase. The same approximate formula will hold also
for cyclic pockets where the probability pcycle to make it

from one cycle to the next is not very close to 1. However,
as soon as the probability to cycle becomes close to 1, the
relative probability to be in a cyclic universe gets enhanced
significantly [28,30]. This is because in that case a signifi-
cant fraction of the comoving volume of the multiverse
experiences habitable conditions repeatedly inside each
cyclic pocket. We can illustrate this effect by calculating
the probability to be in the first cycle vs a subsequent cycle,

QH1

QH

¼ 1� pcycle þ �MDtD

pcycle

: (15)

Thus, when pcycle *
1
2 , it is more likely to be in a later

cycle rather than the first one after bubble nucleation.
We will add a few remarks that specifically concern

the ekpyrotic/cyclic universe: the currently best under-
stood incarnation of this model involves two scalar fields
[31]. The first scalar � drives the background dynamics,
while the second scalar s is responsible for generating
scale-invariant perturbations. This second field is conjec-
tured to have an unstable potential. This has two conse-
quences: the first is that the probability to transition to the
first hot big bang phase can only be large when the spread
in field values of s is small after tunneling, and the second
is that, as discussed in Refs. [32–34], in this model typi-
cally pcycle � 1. Let us first estimate pfirst. We can adapt a

very similar calculation performed by Garcia-Bellido et al.
in Ref. [35], where they show that right after tunneling

hð�sÞ2i1=2 � HM

2��1=2
; (16)

where, in the thin-wall limit, the parameter � is given by

� � 2V;ssM

3H2
M

þ 1

8
H2

MR
4
0ðV;ssD1 � V;ssMÞ: (17)

Here V;ssM and V;ssD1 denote the effective masses of the s
field in the master and first dark energy vacua, respectively,
and R0 is the size of the bubble at nucleation. It seems
reasonable to assume that V;ssM � jV;ssD1j, since the mas-

ter vacuum is very stable by definition. Moreover, since a
bubble necessarily nucleates within a horizon-sized region,
we have that R0 & HF, so that one obtains

hð�sÞ2i1=2 � H2
M

ffiffiffiffiffiffiffiffiffiffiffi

V;ssM

p
: (18)

Both HM being small and V;ssM being large help to make

�s small and thus pfirst large. Thus, the two-field cyclic
universe is highly preferred relative to inflationary pockets
according to Eq. (14). However, as mentioned above, the
probability for a given comoving volume to transition to a
subsequent cycle is typically small in these models (even
though the transitioning physical volume can be large due
to the large net expansion that occurs during each cycle).
Thus, the calculation above implies that it is most likely to
find oneself in the very first cycle, rather than a later one.
This is to some extent a shame, as it implies that certain of
the attractive features of cyclic models (such as the ability
to fine-tune parameters dynamically over many cycles
[36]) may be lost in this way. Of course, it is conceivable
that the first cycle is still uninhabitable because certain
parameters are not adjusted to the emergence of life yet,
and that later cycles fine-tune themselves to allow for life.
Under such circumstances, the earliest habitable cycle
would be the most likely one. We should add that, although
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the instability discussed above as well as other potential
instabilities related to the bounce appear as a drawback
from the measure point of view, they have the potential of
explaining certain cosmological quantities precisely by
selecting out universes of a specific type—see for instance
[37] for a possible explanation of the amplitude of the
primordial density perturbations. In any case, though, the
present discussion also motivates a closer reexamination of
the single-field cyclic model, in which such an instability is
absent. As is evident from Eq. (13) with pcycle ¼ 1, if such

models are indeed viable (for contrasting views see, e.g.,
Refs. [38,39]), they will vastly dominate over anything else
in the landscape!

In concluding, we should discuss the main possible

objection to the results presented above: it concerns the

crucial aspect that underlies the preference of the multi-

verse for pocket universes that start out with a small

expansion rate, namely, that inside these pocket universes

the null energy condition (NEC) must be violated in order

to reach the hot big bang phase. This can happen either

over an extended period of time, such as in Galilean

genesis or emergent scenarios [40,41], or over a quick

period, such as in the cyclic model. One may then wonder

whether the NEC-violating aspect will turn out to be the

Achilles’ heel of these models. At present, however, such a
pessimistic view seems unwarranted: from an effective
field theory point of view, there exist models—in particular
the ghost condensate [42] and Galileons [43]—that allow
for NEC violation without leading to the appearance of
ghosts. Even the inclusion of supersymmetry into these
models does not lead to catastrophic instabilities [44,45].
Furthermore, string theory contains many objects that do
violate the NEC, but are nevertheless well behaved and
stable—examples include orientifolds and negative-
tension orbifolds [46,47]. In fact, string theoretic models
of inflation typically make use of these objects [48] (see
also Ref. [49]). In the braneworld incarnation of the
cyclic model also, a negative-tension orbifold plane sig-
nificantly affects the dynamics at the time of the bounce
[50,51], while semiclassical calculations indicate that the
bounce itself may be well behaved [52]. Although this
certainly does not constitute conclusive evidence yet that
a bounce is possible in string theory, it certainly makes it
conceivable. To the extent that the results of the present
paper change the typically stated predictions of eternal
inflation, they also motivate further work on the crucial
quantum gravity issues of NEC violation and singularity
resolution.
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