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Chord-arc constants for submanifolds
of arbitrary codimension
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Abstract. In this article we show that for k-dimensional submanifolds of R” which go through
infinity in a smooth way, smallness of the Gromov distortion and some Ahlfors regularity is
equivalent to smallness of the BMO norm of the unit normal and globally §-Reifenberg flatness
with small 8. This generalizes a result due to Semmes for hypersurfaces to surfaces of arbitrary
codimension.
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1 Introduction

In 1991 Stephen Semmes published three articles [31, 32, 33] in which he extended the
well-known chord-arc condition for curves to hypersurfaces of the Euclidean space.
These articles had a deep impact in various fields of mathematics like the study of
harmonic measures and the regularity of free boundaries (cf. [21, 22, 23, 24, 6, 20]) or
in the search for a sufficient criterion for the existence of bi-Lipschitz parametrizations
of two-dimensional manifolds (cf. [35, 13, 4]).

In the present work, we extend the definitions of Semmes’ constants to subman-
ifolds of arbitrary codimension and prove that the statement of the main theorem in
[31] still holds, i.e. that all of the these constants are small if only one of them is
sufficiently small.

Semmes considered complete, connected, and embedded C 2 hypersurfaces ' C R”
without boundary. Furthermore, he assumed that I' U {oo} is a C? hypersurface of
R"U{oco} = S". Among other things, this guarantees that I" goes through infinity and
that I" is an orientable manifold that divides the ambient space R” into two connected
components 24 and 2_ . Semmes extended the definition of the chord-arc constant
of curves to hypersurfaces by setting

dl‘(xd’) B
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where dr is the geodesic distance on I", k the k-dimensional Hausdorff measure,
and wy, denotes the volume of a k-dimensional ball with radius one. Furthermore, he
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defined

v(2) = VB0l dH"(2),

v(z)d H"(z).

1
y(I") := max sup —
{xer,R>o HHI N Br(x)) Jrngg(x)

(x =y, vBr)
R

sup sup
x€l',R>0 \yeI'NBr(x)
where v denotes the unit normal and

1
H=HT N Br(x)) JrABr(x)

VBr(x) =

So y controls the BMO norm of the unit normal and contains some flatness condition.
Finally, Semmes introduced two other constants «(I") and B(I") that reflect the bound-
ary behavior of Clifford holomorphic functions on €24 and Q_ (cf. [31, p. 200] for
more details). His main theorem in this context is that all four constants «(I"), 8(I"),
y(I"), and (I") are small if any of them is sufficiently small. Thus, he proved analogs
to some of the well-known relations between the chord-arc constant for curves, the
geometry of and the operator theory on such curves, and function theory on the corre-
sponding chord-arc domains (cf. [27, 36, 7, 10, 19, 29, 30]).

For curves, the constant 71 (I") 4 1 is known as Gromov distortion and the quantity
n1 () is referred to as chord-arc constant or Lavrent’ev constant. It plays a major
role in the context of boundary regularity of of minimal surfaces [17, 12, Kapitel 7.5],
minima of Cartan functionals [18], and geometric knot theory [14, 15, 16, 26, 11, 1].

In the present work, we consider k-dimensional complete, connected, and embed-
ded C'! submanifolds I' C R” without boundary such that I" U {occ} is a k-dimensional
C'! submanifold of R” U {oo} 2 S™. Let us call such objects k-dimensional chord-arc
submanifolds or k-dimensional knots with ends at infinity. More precisely, we will as-
sume that Py (I") U {e,+1} is a k-dimensional, compact, and connected submanifold
of S™ without boundary. Here,

Py :R" — S" —{ey41},  x (x,=2) + ent1 (1.1)

4
> _ .
|x]? + 4
is the inverse of the stereographic projection, and ey, . . ., e, +1 is the standard basis of
R”*1. Note, that we do not assume a priori that these submanifolds are orientable or
that anything else is known about the topology of these objects.

We do not have a chance to generalize the definition of « and B to submanifolds
of codimension greater than one since such submanifolds do not partition R” into two
connected components 24 and 2_. So we concentrate our effort on generalizing
the constants 7 and y to quantities defined on chord-arc submanifolds of arbitrary
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codimension. The straightforward generalization of 7 is given by

m(F)::sup{M—l:x,yeF,x;ﬁy}, (1.2)
lx — |
k
nz(r)::sup{“% (LN KR :xeF,R>O}, (1.3)
wy Rk
and
n(I") := max{n(T"), n2(D)}. (1.4)

Here, Kg(x) is the closed ball around x with radius r. _
For the generalization of y, let G; ; be the set of all orthogonal projections of R
onto j-dimensional subspaces of R* and let

N:T — Gy
map points x € I to the orthogonal projection of R” onto the normal space at x and

T'(x) := idg» — N(x) be the projection onto the tangent space. By Nty g C G, ,—k
we denote the set of all Ny g € G, ,,_; which satisfy

n.n—k

/ ING) = Ne gl dH5 () = inf { / ||N(y>—S||dJ€"(y)}
TNKR(x) SeG T'NKg(x)

and Ty g = {idrn — Nx r : Nx,r € 9tx.r}. Then we set

N(y) = Nxrll d 7* ()

y1(I") := sup sup fFﬂKR(x) ”k Y xRl Y , (1.5)

Bl (Ve rETx R HE( N KR(x))

N _
y2(T') := sup { sup M}, (1.6)

x€l, R>0 | yeKgr(x)NT,Nyx RENx R R
and

y(I) := max(y; (), y2(T)). (1.7)

Since an integral mean of the function N does not necessarily correspond to a k-
dimensional subspace of R” as the Grassmannian G, x is not convex, we exchanged
it by an element of 9Ny , in the definition of y. Nevertheless, we will see in the next
section that y; can be estimated from above and below by the BMO norm of the unit
normal.

The main result of this article is the following generalization of Semmes’ result for
hypersurfaces in [31]:
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Kr(x)

X Im(Tx,R)
[RVz

Figure 1. The constant y,(I") guarantees that for every x € I' and every R > 0 the
distance between a point in I' N Kg(x) and the affine space x + Im(Tx, g) is less or
equal to Ry, (T').

Theorem 1.1. (i) There are constants ¢ = e(n, k) > 0 and C = C(n,k) < oo such
that every k-dimensional chord-arc submanifold T C R"™ with y(I") < ¢ satisfies

1
) = Croyiog (o).
y(I)
(ii) There are constants ¢ = e¢(n, k) > 0 and C = C(n,k) < oo such that for every
k-dimensional chord-arc submanifold T' C R" the inequality n(T") < ¢ implies

y(T) < Cp(I)2.

Semmes has shown in [33] that for submanifolds of codimension one the smallness
of y1(I") implies y»2(I") < Cy(I") where the constant C only depends on the dimen-
sion of the manifold. So for submanifolds of codimension one, one can exchange y(I")
by y1(I") in the first part of Theorem 1.1. Except for curves in Euclidean space, it is not
known whether this is true for submanifolds of higher codimension. Whether small-
ness of 71 (I") might imply smallness of 7,(I") for manifolds of dimension greater or
equal to two is completely open as well, while the converse is certainly not true.

The main tool in the proof of the first part of Theorem 1.1 is that chord-arc submani-
folds with small constants y(I") contain big portions of C'! graphs with explicit control
over their Lipschitz constant (cf. Theorem 3.1). We show that — except for a small bad
set — the part of such a k-dimensional submanifold inside of a ball is contained in the
graph of a C! function. Semmes only obtains Lipschitz graphs for k = n — 1. Using
Lusin’s Theorem and some extension theorem one can then move on to get C! graphs.
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But doing so, one would lose the precise characterization of the part of the manifold
on the graph of the C'! function given in the statement of Theorem 3.1.

Aset A C R” is called globally 3-Reifenberg flat if and only if for every x € A and
every R > 0 there is a k-dimensional linear subspace L, g C R” such that

dg (AN BRr(x),(Lx,r +x) N Br(x)) < RS.

Here, d g denotes the Hausdorff distance between sets. After the proof of Theorem 3.1,
we will see that smallness of y implies global Reifenberg flatness with small § (cf.
Corollary 3.4). Thus we derive the following corollary from Theorem 1.1:

Corollary 1.2. For every 6 > 0 there is a constant ¢ = e¢(n,k,8§) > 0 such that the
following holds:

If ' C R" is a k-dimensional knot with ends at infinity and n(I') < &, then T is
globally §-Reifenberg flat.

In [3], Corollary 1.2 is used to show that k-dimensional knots with ends at infinity
are diffeomorphic to spheres and unknotted if the constant 5 is small. This extends
a corresponding results in [11] and [1] for curves in R3 to submanifolds of arbitrary
dimension and codimension.

Comparing y with y in the case of hypersurfaces I', one trivially has y < 2y, while
it is not obvious that constant y is small if y is small, since the new constant y does
not take the orientation of the normal into account. For instance, let I' N K (0) consist
of two parallel hyperplanes near to the origin but such that the unit normal v on these
planes point in opposite directions. Then we get

1

H=HT N B1(0)) Jrna, ©) 0

I

which enters the definition of Semmes’ constant y while

1
H"=1(T' N K1(0)) Jrnk,©)

N — No||dF" ! = o0.

Hence, our generalization of Semmes’ main result in [31] is even new in the hypersur-
face case.

In Section 2 we provide variants of the Hardy—Littlewood maximal theorem and
the inequality of John and Nirenberg for spaces with a local doubling property. Later
on we apply these results to the intersection of a ball with a chord-arc submanifold I"
with small constant y(T") to prove that I contains big portions of C' graphs. Although
these intersections are spaces of homogeneous type for which corresponding results
are available in the literature (cf. [8, 9]), we cannot use those since in our context it is
not at all obvious how to control the defining constants of the spaces of homogeneous
type. Furthermore, we gather some elementary facts about the constant y(I") and
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cite a very useful characterization of chord-arc submanifolds which tells us that a C!
submanifold is a chord-arc submanifold if near infinity it is equal to the graph of a
C' function whose differential vanishes at co. For proofs of these statements we
refer to [2].

After that we prove in Section 3 that chord-arc submanifolds with a small constant
y(I') contain big portions of C' graphs. As an application of this result, we show in
Section 4 that 1 is small if y is sufficiently small.

To show that the inverse of this statement is true as well, i.e. that y is small if 5
is sufficiently small, we carefully carry over an iteration technique due to Semmes
from the hypersurface case to our situation of chord-arc submanifolds of arbitrary
codimensions in Section 5. Here, the difficulty is to find the corresponding inequalities
for the case of codimension greater than one where we cannot work with the unit
normal as Semmes does. Instead, we will work with the projection of the ambient
space onto the normal spaces.

2 Some preparations

Let (X, d) be a metric space. We denote by B;(x) := {y € X : d(y,x) < r} the
open ball of radius r > 0 around x € X and by K, (x) :={y € X : d(y,x) <r}
the closed ball of radius r > 0 around x € X. We call such a ball non-degenerate if
r > 0. For a closed ball K with center x and radius r in a metric space (X, d) and
a > 0letaK := Ky, (x). For a measure 4 on some set X, a i-measurable subset A
of X with0 < u(A4) < oo, and a u-integrable function f : X — R” we set

faoi= o, fapi=— [ ran.

Furthermore, we denote by | - | the Euclidean norm on R¥ and for a linear mapping
A :R" — R¥ we define
|A(v)]

Al :=
veRn—{0} |V|

2.1 Local doubling spaces

Let us gather some facts about spaces which satisfy a local doubling constant. We will
use these facts to show that chord-arc submanifolds contain big portions of C !-graphs.
For detailed proofs we refer to [2, Section 2.2].

Definition 2.1 (Local doubling property). We say that a metric space (X, d) with mea-
sure i has the local doubling property on scale R with doubling constant 1 < Cyq =
C4(R) < oo if and only if

(Kap(x)) = Cg - u(Kp(x)) < 00 2.1
R

forall0 < p < 7, x € spt(u).
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Definition 2.2 (Variant of the Hardy-Littlewood maximal function). Let R > 0 and p
be a measure on some metric space (X, d) with u(K;(x)) < oo for all x € X and
0 <r < R . Then we set for a y-measurable function f : X — R

SUPg<y < [fldp if x € spt(p),
(Mg f)(x) = | Po<r=R IKrco .
0 if x € X —spt(u).

Following the lines of the proof of the classical Hardy—Littlewood maximal theorem
one gets

Lemma 2.3 (Hardy—Littlewood maximal theorem for local doubling spaces). Let i be
a measure on a separable metric space (X, d) such that (X, d, 1) possesses the local
doubling property on scale SR > 0 with doubling constant Cg < co. Then

1/p
p
e =2 (C27) 1 e

forall f € LP(X,n),R), 1 < p < o0

Definition 2.4 (BMO norm). Let 1 be a measure on the metric space (X,d) with
WKy (x)) < coforall x € X, r > 0,and let f : X — R” be a u-measurable
function. We set

Iflovocxmen = s If=fewldn @2
xespt(u),r>0J K (x)

and let BMO((X, 1), R™) be the set of all y-measurable functions f : X — R” for

which || f'{lsmo((x, ).k < ©0.

Observing that actually only the local doubling constant is needed in the proof of
the inequality of John and Nirenberg as it can be found for example in [5], we are let
to

Lemma 2.5 (Inequality of John and Nirenberg on local doubling spaces). Let (X, d)
be a separable metric space and |t be a Radon measure on X such that the triple
(X, d, ) has the local doubling property up to scale 4R > 0 with doubling constant
Cy < o0. Then there is constant b = b(n, Cy) depending only on n and Cy such that

][ exp (b Lf(Y) = frkrol ) 3
Kr(x) I f lBMO((X 1), R)

Sforall x € spt(n), and f € BMO((X, u), R™).
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For subsets of a Euclidean space a local Ahlfors regularity condition implies that the
set satisfies a local doubling condition on any scale. Later on, this fact will allow us to
use the Hardy-Littlewood maximal theorem and the inequality of John and Nirenberg
for chord-arc submanifolds.

Lemma 2.6. Let (1 be a measure on the Euclidean n-space and let Ry > 0, k € N be
such that there are M < oo, m > 0 with

m,ok < uw(Kp(x)) < Mpk Vx € spt(n),0 < p < Ry.

Then (spt(i), | - |, t) has the doubling property on any scale R > 0 with doubling
constant
u if R < Ro,

m
n
M yn (%) if R > Ry.

Cy(R) :=2%.

2.2 Chord-arc submanifolds and constants

When dealing with chord-arc submanifolds we do not want to work with the image of
I" under the stereographic projection. The next proposition tells us that a complete,
connected, and embedded C! submanifold without boundary is a chord-arc subman-
ifold if and only if outside of a large ball around the origin it is the graph of a C!
function over a k-dimensional subspace of R” whose differential vanishes at co.

Proposition 2.7 (Proposition 4.2 in [2]). A set I’ C R” is a k-dimensional chord-arc
submanifold if and only if the following two conditions are satisfied:

o T is an embedded, complete, connected, k-dimensional C' submanifold of R"
that has no boundary.

o Thereare A € SO(n), R < 0o, ¢ € C(RF, R" k), such that A(T)— K g(0) =
graph(¢) — Kg(0) and lim ||, o, D¢p(x) = 0.

The next lemma tells how y; is related to the BMO norm of the normal spaces.
Lemma 2.8. For k-dimensional chord-arc submanifolds I' C R"™ we have

1
S (M) = IV llemocsex 1y = 2r1(1).

Proof. Forx € I', R > 0, and Ny g € N« g one estimates

f |W—Nmmwﬁsf IN = Nroll 6 + [Ngox — Ngoio |
I'NKg(x) I'NKg(x)

szf IN — NallJek < 2p,(D).
I'NKR(x)
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On the other hand

][ IN=Ngx|#* = inf (][ ||N—S||J€k)
'NKr(x) S€Gpn—k \JTNKR(x)

< N-N g inf | Ngqe)—S
<o IV = Nigoll 5 ot N =S

n.n—k

s2f N = Nl o
I'NKr(x)

3 Big portions of graphs

Let us set ngk)(x) :={y eR¥: |y —x| <R}, B;ek)(x) :={y eR¥: |y —x| <R},
Wi = Jfk(Kl(k)(O)), and Cp := Kgc)(O)xKg_k)(O). For T € G, we say that a
function g : Im(7') — Im(7')" is a function over T. In this case we define the graph
of g by graph(g) := {v + g(v) : v € Im(T)}.

Theorem 3.1 (Decomposition Theorem). There are constants ¢ = e(n, k) > 0, C =
C(n,k) < oo, 0 <a=a(n,k) such that the following holds:

If T' C R" is a k-dimensional chord-arc submanifold with y := y(I') < ¢, then T’
has the following properties:

(i) The space (|- |, #*|T) is Ahlfors regular. More precisely, for every z € T
and every R > 0 we have the estimates

(1 - Cy)ex RE < #F (@ N KP(2) < (1 + Cylog(1/y) ax R (3.1)

(ii) Letz € I', R > 0, T; 4r € Tz 4R, and € [10y, 1/3]. After some translation
and rotation we can assume that z = 0 and Im(Tp 4r) = R¥ x {0}. We set

F:={xeCrnNl Mpr(T - T0,4R)(x) < u},
B = (\(fRﬂF)—F.
Then
INoar(y —x)| <3u|Toar(y —x)| forallx € F,y e €gNT, (3.2

¥#*(B) < C exp(—a%) R, 3.3)
and
Toar(€r N T) = K (0) x {0}. (34)

Furthermore, there is a function g € C'(RK , R" k) with |Vg| 10 < Cpt such
that the graph G of g satisfies F C G and TxyG = TxT forall x € F. Here
TxG and Tx T denote the tangential spaces in x of G and I" respectively.
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The proof relies on an iteration technique. Due to our a priori assumptions, a pg :=
po(I") > 0 exists such that

1
Ekak < H5T N KW(2)) <20 R¥  forall0 < R < ppandall x € T

This follows from the fact that I is an embedded C' submanifold that is — outside of
a large ball around the origin — the graph of a C! function over some k-dimensional
subspace whose gradient has a limit at co (cf. Proposition 2.7).

Then the following lemma shows that the conclusions of Theorem 3.1 hold for all
0 < R < 2pg. Since under these conclusions there is an Ahlfors regularity condition,
we can iterate this argument to prove that the conclusion of Theorem 3.1 holds in fact
forall R > 0.

Lemma 3.2. There is an &g = eo(n, k) > 0 and a constant C = C(n,k) < oo such
that the following is true:

IfT' C R" is a chord-arc submanifold of dimension k, y(I') < ey, and if there is a
p > 0 with

1

Ekak < H#5T N KW (2)) <20 R¥ forall0 < R<p,zeT (3.5)
then all the conclusions of Theorem 3.1 hold for 0 < R < 2p.
Proof. Letz € I',0 < R < 2p,and T; 4g € T, 4r. After applying a suitable rotation
and translation, we can assume that z = 0 and Im(7p4r) = R* x {0}. Then the
definition of y,(I") (cf. (1.6)) leads to

INeg CTNKRO) C KR OxK 0. (3.6)

Let us furthermore note that I is closed since the Hardy-Littlewood maximal function
as the supremum of continuous functions is lower semicontinuous.

Step 1:

There are constants 0 < a = a(n,k) and C = C(n, k) < o0
such that #%(B) < C exp(—auy ") R¥.

Proof. This estimate will be proved using the inequality of John and Nirenberg on balls
of radius 8 R and the Hardy-Littlewood maximal theorem for i,z on the metric space
R” equipped with the measure k [T (cf. Lemma 2.3 and Lemma 2.5). Lemma 2.6
and (3.5) tell us that J¢* | has the local doubling property on scale 32 R with doubling
constant C; = Cy(n.k) = 2¥72256" . That is all we need to apply Lemma 2.5 and
Lemma 2.3 as we do below.
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From (2.8) we get || T |[gmo(aex 1) = IIN lsmocgex 1) = 2v(T'). Using the inequal-
ity of John and Nirenberg in the form of Lemma 2.5, we get a constant 0 < b =
b(n, k) < oo such that

b
£ o0 (2170 - Tyl ) a5 =€ 6
I'NKg% (0) 14 8R

where T T dJ¥*. Let Tosr € Tosr- Since

O me;';;(m

1To.4R — T I < ][ | Toar — T(x)|| d #* (x)
Kk O Nk (0)

8

T = Tosl d (o)
I'NK,% (0)

o sk = T )
I'NKgR (0)

Jek ([ N K8 (0))

=2+ k (n) o)
HE( N K, R (0) JTNKR 0)

IT(x) — Togrll dH#*(x)

doubling
= Cy

we get from (3.7)
b
][ o SXP (—IIT(x) - TO,4R||) dx*(x) < C. (3.8)
I'NKg% (0) 14

Let x o ©) be the characteristic function of the set K. é’}a) (0). We now apply the Hardy—
8R
Littlewood maximal theorem (Lemma 2.3) to || T —To 4r || x K™ (0) and use the fact that
8R
forall x € Kfl? (0)

M4r(IT = Toarlx g o)) (%) = Mar(IT = Toar ) (x)

to get

/FQKW(O) (Em‘*R(”T — To.ar II)(x))p d 3% (x)
’ (3.9)

<orc3i L 1T (x) — Tourll? dIe*(x)

P = 1Jrnk® 0

for all p > 1. Since for a measure v on €2, a v-measurable function f : @ — R”, and
a v-measurable set A C Q we have

/|f|dv=/ |f|dv+/ |f|dvs/|f|2dv+v<A>, (3.10)
A AN[| f1>1] AN[| f1=1] A
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we get fora := b /2

][ exp (a M4r(|IT — T0,4R||)(x)) 4305 (x)
FnKj’};(o) 1%

1)/
- Z £ (T = Toarl) d e

K(Vl) (0)

(3.10)

(ay™" !
<2 {1 + Z ]{"OK(”)(O) . <W4R(||T - To,4R||)(x)) d%k(x)}

< 2{1+cd2032”‘][ W NT00) ~ Tosrl d%"(x)}

1= TNK(0)

T — T (3.8)
< 4¢3 ][ exp (b—” (x) °’4R”)) dik(x) < C.
TNk o) 14

Since €gr C K (n)(O) we finally get by repeated use of the doubling property

exp(ay ' Mur(IT — Toarl)(x))

H*(B) < / — d J* (x)
Nk ) exp(ay~'p)
< Cexp(—ay™' w4 (I N KR(0))
(3.5) & doubling

< C exp(—ay_lu)Rk.
Step 2:

For every x € F and y € I' N €g we have |[Nosp(x — y)| <
3u|Toar(x — y)| (ct. Figure 2).

Proof. Letx #y € ' N€g and x € F. We choose an Ny |x_y| € Ny |x—y|- Then

|AN0,4R(3C -y = |Nx,|x—y\(x -+ |Nx,|x—y\()C —-y)— NO,4R()C - )|

def. of y>(T")
< Ylx =Y+ Ny jx—y| — Noarll - [x = yl.

Using

| Naemy) = Noarll < ][ | Ne ey — NI dFE )

ran;”_yl(x)
T ][ INGE) = Noarll d J5 )
rnkg™ ()

xeF

=Vt
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Figure 2. This picture illustrates the statement proven in Step 2. For every point x
belonging to the good set F C I', we show that I' N €g is contained in the cone

{y e R" 1 [Noar(y — x)| = 3u|Toar(y — x)|}-

we get
INoar(x —y)| < 2y + w)|x — yl.

With [x — y[ < [Noar(x — y)| + |Toar(x — y)|, we get

2y +
[Noar(x — y)| < ﬁ|TO,4R(X = =3u|Toar(x — y)|

2y

if y <4/30and p € [10y, 1/3]. O

Step 3:

Toar(I' N ER) = K (0) x {0}.

Proof. We will use the modulo 2 degree deg [2, Section 3.2] to show that the function
f:TNer— KP0)x {0}, x> Toir(x)

is surjective. From (3.6) we get ' N €r C Kgc)(O) X Kg;k) (0). If y < 1/4, we thus
have

f Or(r N€r)) € (9px (K (0) x {0}. (3.11)
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We will now show that there is a yg € Bg{) (0) x {0} such that
deg(f, T N€R,y9) =1 mod 2.

It then follows from property the properties of the degree and (3.11) that deg(f, I’ N
€Rr,y) =1 mod 2forall y € Bg() (0). From this and known properties of the degree
our assertion follows.

Let us fix ¢ = 1/3 in Steps 1 and 2 until the end of the current step. Using (3.5)
and Step 1 we get

k
1 R
HE(F) = 3% neg) — #5B) > > S (2) —-C exp(—3—) RF >0
14
if y is sufficiently small. So there is an xo € F and we set yo := Tpar(xo). We have

Mar(IT = Toarl)(x0) = sup ][ IT = Toarll d 3% < p < 1/3.
0<r<4R JTNK (x;)

Sending r — 0 we get from the C! smoothness of T’

1
[T (x0) — Toarll < 3
We know from Step 2 that f~!(yg) = {xo} since xo € F. Thus yy is a regular value
of f and we have
deg(f, T N€R,y9) =1 mod 2.

Step 4:

’ Construction of g. ‘

Let E := {x € R¥ : (x,0) € Toar(F)}. Step 2 shows us that for every x € E
there is a unique point y € F such that To4g(y) = (x,0). We set

§(x) := Vk41---2 ).

From Step 2 we get [g(x) — g(y)| = 3ulx — y|and [T (x, g(x)) — To4rll < p forall
x,y e E.

Using that g is a Lipschitz function whose graph is contained in the C! subman-
ifold I' and the last two estimates, it can be shown that there is an open set EDE
and h € C'(E,R"¥) with Lipschitz constant < Cu, ¢ = h|g, and graphh C T.
Using Kirszbraun’s theorem (cf. [25, Hauptsatz 2 1]), we get a Lipschitz continuous
extension /1 : RF — R"% of h with |[Vh| < Cu almost everywhere Convolv-
ing this function with a smooth kernel we get smooth functions /i, : : RF — Rk
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with [Vh,| < Cu and by — h in L°(RK R"%). Now let E be an open sub-
set with E CC E CC E and ¥ € C®(R¥,[0,1]) be a cutoff function satisfy-
ing X < ¥ =< xp. For m large enough we set g := ¥h + (1 — ¥ )hp. Then
g € CY(R¥,R" %), g|r = &, and for almost all x € R¥

V()| < [VY[1h(x) = hm(X)] + [VAE)| + [Vim(x)] < Cp

if m is big enough. Let G = graph(g). Then F C G and since g(l';]) = h(gj) cr
we furthermore obtain
TxG =TxI' VxeF.

Step 5:

(1 - Cy)op Rk < 25T n KW (2)) <
1+ C)/log(l/y))a)kRk.

For the upper bound we set 1 = a~'y log(1/y) in the estimates we have derived so
far. Since ylog (1/y) — 0 and log(1/y) — occasy — 0, we geta~ 'y log(1/y) €
[10y, 1/3] if y is small enough. Therefore,

k Step 1 k k k
H*(B) = Cexp(=log(l/y)) R" = CyR" < Cylog(1/y) R

if y < 1. Since F is part of the graph of a Lipschitz function on Bg{) (0) with Lipschitz
constant smaller than Cy log(1/y), we get

HE(F) < (1 + Cylog(1/y)w RE.
This yields
HE(C N KP0) < HE(B) + H*(F) < (1+ Cylog(1/y))ex R¥.

For the lower bound we first observe that

3.6) _
KPonr c enr < KPOxK)P0.

(k)
L K
et x € P =T

Thus, thereisa y € Ki;l_zk) (0) such that (x, y) € I' N €g. We calculate

(0). From Step 3 we know that 7o 4r(I' N €R) = Kg‘) (0)x{0}.

|(x, 9)[2 < (1 —16y*)R? + 16y2R* = R
and see that (x, y) € K}?’(O) NT and Ty 4gr((x, y)) = (x,0). So we have shown that

(k) )
K. 1_161/2(0)><{0} C Toar(KR’(0) N T).
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Hence,
k (n) k (n) k(g (k)
HE( N Kp(0) = H*(Toar(Kg (0)NT)) = H (KRW(O) x {0})
= (1 —16y>)* 2w RF = (1 — C(k)y)wi R¥
for y sufficiently small. o

Proof of Theorem 3.1. Let C(n,k),a(n, k), and g9(n, k) be the constants from the last
lemma. We choose ¢ = &(n, k) such that y < ¢ implies y < g9, C(n,k)y < 1, and
C(n,k)ylog(1/y) < 1. Due to our a priori assumptions, there is a pg = po(I") > 0
such that

1
E“”‘Rk < H*¥(' N Kr(2)) < 20 R¥

for all 0 < R < pg. Using induction and Lemma 3.2, the conclusion of the theorem
follows. o

Corollary 3.3. In the situation of Part 2 of Theorem 3.1 we furthermore have the fol-
lowing estimates:

(i) H*(Cr N{(T' —G) U (G —T)}) < Cexp(—ap/y)R".
(ii) Forall y € ' N € we have

ly = vk 8O- yi))| = Cedist(To.ar(), Toar(F)).
Proof. Since €g N (I' — G) C B, we get
H*(er N (T - G)) < #*(B). (3.12)

Using the fact that G is the graph of a Lipschitz function with Lipschitz constant
smaller than Cpu < C, we get

J* (RN (G —T)) < CH*(Toar(ER N (G —T))).

Since Ty 4r(FUB) = Tyar(€rNT) = K% (0)x {0} and F ¢ GNT we conclude

that To4gr(€Cr N (G —T')) C Tp4r(B) and thus
H*(Toar(ER N (G —T))) < CH*(Ty4r(B)) < CHF(B).
Together with (3.12) this leads to
HE (RN —G)U (G —T)}) < CH*(B) < C-exp(—ap/y)RF

and the first estimate is shown.



Chord-arc constants 287

Let y € I'. As Ty ar(F) is a closed set, there is a z € F with

|T0,4r(¥) — To,ar(2)| = dist(To4r (¥), To,ar(F)).

Wesety := (¥1,...,yr)and Z := (z1,...,2zx). Since z € F, we know z = (Z, g(2))
and hence

ly = (V. g = [Noar(y — (7.£(0"))|
= [Noar(y — 2)| + [Noar(z — (. g(9)))|

N N 3.2)
= [Noar(y —2)| +1g(Z) —g(P)| = CulTosr(y —2)|
= Cpdist(Toar(y), Toar(F)). m

Furthermore, we get the following relation between the constant y,(I") and the con-
stant N
3(T) := inf{6 € [0, 00) : I" is globally §-Reifenberg flat}.

Corollary 3.4. There is an e(n, k) > 0 such that for every k-dimensional chord-arc
submanifold with y(I') < & we have

§(I) < 8y,(I"). (3.13)

Proof. Let x € T" and R > 0. After some rotation and translation we can assume that
x = 0and Im(Ty 4r) = R¥ x {0}. From the definition of y»(I") one gets

sup  d(y, Im(Tyqr) N BE(x)) < 4y (D).
yel"ﬂBg’)(x)

Applying Proposition 3.1 we get that To4g(€g N I') = K ﬁ (0) x {0} if y(T") is small
enough.

Let y € Im(Tpag) N (BK(0) x {0}). If y» < } thereis an § € BY 5. (0) with
|y —J| < y». Then we getan z € I' N €g with Ty 4g(z) = ¥ and using the definition
of y»(I') and € C K&)(O) one gets |z — y| < 4Ry, and hence z € ' N BEQ")(O).
From |y —z| < |y — | + |V — z|8Ry> we finally derive

sup d(y.T N BY(0) < 8p». .
yem(Tx 4p)NBR (x)
4 Proof of the first part of Theorem 1.1

Let us briefly sketch the idea of the proof. For u,v € I we have to construct a short
curve on I joining u and v. If T" were the graph of a Lipschitz function with small
constant, this would be easy. Theorem 3.1 implies that I" N Kz(\nu)—v| (u) looks like the
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graph G of such a function, except on a small bad set. The idea is, to start with a curve
on this graph and then manipulate it on the bad set to get a curve on I'. Using that the
bad set is small, we can control the growth of length in this last step.

Proof of the first part of Theorem 1.1. Let us set y := y(I'), n := n(I"), n, := n(I),
and 7y := n(I"). From Theorem 3.1, inequality (3.1), and lim,\ o y log (1/y) = 0
we get 7o < Cylog(1/y) if y is small enough.

Let us set
dr(x,y) _

m+1
x#yel |x _y|

n =

and letu,v € I', u # v, R := 2lu —v| > 0, and T, 4gr € Ty ar. After a suitable
translation and rotation we can assume that ¥ = 0, Im(To4r) = RF x {0}, and
U := Toar(v) = Aeg forad € RT.

Let F :={x e T N€R : WMyr(T — Toar)(x) < pu}and B := (' N €R) — F.
Theorem 3.1 tells us that

k
Toar(DNCR) = K x {0} @.1
and that the set F is contained in the graph of a function g € C'(R¥, R"~¥) with

IVgllzee = Cpuand

Jfk(B) < Cexp (—aﬁ) RF.
Y

Using (K%(0) x {0}) — To4r(F) C Toar(( N€R) — F) = Ty ar(B) we get

JE (KK (0) x {0}) — Tour(F)) < #5(B) < Cexp (—a%) R, (4.2)

Because of (4.1), for every { € ngk) (0) x {0} C R" there is an x; € I' N Cg such that
To4r(xg) = ¢.
Let) <e < % We then get for 6 € BE(II?(O) x {0} C R"
dr(u,v) =dr(0,v) < dr(0,xg) + dr(xg, x5+6) + dr(Xi19.v)

< i(xgl + [x546 — v) + dr(xg. X5.40).

Since ' N€g C K;zk)(O) X Kg,';ek)(O) and Im(Ty4r) = R¥ x {0}, we get using the

definition of y (cf. (1.6), (1.7))

|x540 — V| < [Toar (X546 — V)| + [Noar (X549 — V)|
< 10] + |Noar(x546)| + [Noar(v)| < eR + 8yR
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and
|xg| < |To4r(x9)| + [Noar(xg)| < eR + 4yR.

Consequently,

dr(u,v) <ii(12y +2e)R + dr(xg, x5+9)

R=2lu—v| . (4.3)
= n

124y + 4e) - lu —v| + dr(xg, Xg+9)-

To estimate the last term, we need to find a curve ¢y : [0,A] — T on I from xy to

Xy+¢ using the graph of ¢ whose length we can estimate. To construct this curve, we
set E := To4r(F), Eg :={t € [0,A]: 0 +tey € E}, and E§ := (0,1) — Eg. We
know from (4.2) that

H*(KP(0) x {0}) — E) < exp (—a%) R¥. (4.4)

Since E is a closed set and the function t +— 6 + fej is continuous, the set E ec
is open and thus the union of countably many disjoint open intervals I; = (a;,b;),
j € J C N. Now let us define cg in the following way:

(i) Ift € Eg, then cy(t) is the unique point in I' N €g with Ty ar(c(¢)) = 0 + tey.

(ii) For j € J letc¢; : [aj,bj] — T be one of the shortest Lipschitz curves of
constant velocity joining the points

* cg(aj)and co(b;) if 0 < aj and b; < 1,
* cp(aj) and x549 if 0 <aj and b; =1,
* xgand cg(b;)if 0 =a; and b; < 1,
* xgand x51gifa; =0,b; = 1.

We set cg(t) :=c;(t)if t € [a;,b;].

From the construction of the curve, we get that ¢(0) = xg and c(X) = x549.
For t1, t; € Eg we get from Step 3 in the proof of Theorem 3.1

lcg(t1) — co(t2)] < [Toar(co(t1) — co(t2))| + [Noar(co(t1) — co(t2))] 45)
< (1+3p) - [Toar(co(t) —co())| = (1 +3p) - |61 —ta].

So cg is Lipschitz continuous on Ey. Next we want to derive a Lipschitz estimate for
cg on one of the components [a;, b;].
Let j € J.Ifa;,b; € Ey, inequality (4.5) proves

lco(aj) —co(bj)] = (1 +3p) - |t1 — 2.
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In the case that a; = O and b; € Ey, ora; € Eg and b; = 1 we get using
|To,ar(cola;) —cg(bj))| = |a; —bj| and Step 3 in the proof of Theorem (3.1)
leg(aj) —co(bj) = |Toar(co(a;) —co(b))] + [Noar(co(a;) —co(b)))l
< (143w Toar(colaj) —cobj)| = (L +3p) - la; — bjl.

In the case thata; = 0 and b; = 1 we get using

R R R
5| > [v| — | N =— —8y— =(1-8y)=
3] = o] = [Noar ()] = 5 =8y 5 = (1=87)3

that
R 1
lcg(aj) —co(bj)| = [u —v| = 3= sy

= (1 4 16y)|a; — bj|

0] = (I + 16y)|0|

if y is small enough.
Since i > 10y, we have in either case

H'(cg(la;.b)])) = length(cglia; 5,1) < fitlco(a;) — co(b))]

~ (4.6)
< +3plaj —bjl.
As cg |[aj ,b;] has constant velocity, we get
leg(t1) —co(r2)| = (1 4+ 3p)|ty — 2| forall 1y, 15 € [a;. by]. (4.7)

The estimates (4.5) and (4.7) show that cg is Lipschitz continuous on the whole
interval [0, A]. Inequality (4.5) implies

I (co(Eg)) < (143" (Eg) < (1 +3u)[Toar(w —v)| < (1 4 3p)|u — vl
Combining this with (4.7), we get
dr(xg, X549) < length(cg) = #'(co(Eq)) + #'(co(ES))

= H'(cg(Eg)) + ) H'(co(laj.bj])
jelJ
< (43wl —v]+ 1+ Wi Y laj — byl
JjEJ
= (143w —v| + (1 + iK' (ES).

(4.8)

Then (4.3) and (4.8) yield

dr(u,v) < Ju—vl- (14 3+ 7124y +4e)) + (1 + wyin X (ES))
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forall 6 € Kgl? (0) x {0} C R”. Taking the integral mean over all § € Bg;_l)(O) X
{0} C Be(ll?(O) x {0} C R" and using Be(I;q_l)(O) x [0,A] C Kgc)(O) and u < 1/3, we
get

dr(u,v) < |u—v|- (1 +3p + 7124y + 4e))

+ 27, HUES)dH*(0)

wy— ek =1 Rk /;e;’;”(mxm}

= u—v|- (1 +3u+ 7124y + 4de))

21, Lioin B P
wp_ ek~ Rk=1 /B;’j{”(o) H(({0) x [0,A] x {0}) — E)d H*~'(0)

< fu—v|- (1430 + 7124y + 4e))

+ 27 HE(K P (©0) x (0}) - E)

wk_lek—le—l
4.4 _ o
< lu—v|-(1+ Cu+ 7124y + 4e)) + Cie! kR exp (—a%) .

If we divide through |u — v|, take the supremum, and set u = IECV log(%) and e = y,
we derive

- 1 ~ _ 1 .
m §1+Cylog(;) + M (28)/%—Cyl kyk) =1+Cylog(;) + Cnry.

The C! smoothness of T" and Proposition 2.7 imply 7; < co. Hence,

1+ Cylog(3)

1
<1 +C)/log(—)
1-Cy y

m =<

if y is small enough and thus n; = 7j; — 1 < Cy log (%)

5 Proof of the second part of Theorem 1.1

As the first part, also the second part will be proved using an iteration argument that
starts using the C ! smoothness of the manifold I'. Let us introduce some notation and
then sketch the structure of the lengthy proof.

For a k-dimensional chord-arc submanifold I' C R” we set

§ =

No(v —
sup { inf  max ( sup M IN — No|| dek)}

’ (n)
xer ( No€Gin i YePNK® (x) R INK (x)

(5.1)
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and
3(R) :=
No(y —
sup { inf max( sup M, ||N—N0||dJ€k)}
@Sty (NG Ny epng@ T rNK ()

(5.2)
for R > 0. Thus, § = supg~§(R). We will show below that it is enough to control &
since in fact

y <56. (5.3)

Forx € I"and R > O let Eftx,R be the set of all projections NX,R € G,y satisfying

N - .
mox(sup MeRQZOL Ly k)
yeFﬂK%')(x) KR’ (x) (5.4)
Nl .
= inf max( sup M, ||N—No||d3€k).
NOEGn,n—k yanK%ﬂ(x) R Fanl)(x)

We set 5 5 y y

Ty.R = {idpn — Nx.R:NxRE€ ERx,R}. (5.5)

Hence to prove the second part of Theorem 1.1 it is enough to show

§ = sup 8(R) < Cn(I)?
R>0
if n is sufficiently small.

In the proof, we will use the C' smoothness of " and Proposition 2.7 to get a
po := po(I") such that §(pp) is arbitrarily small. Lemma 5.7 then shows that there is a
constant a = a(n, k) > 1 such that §(apg) can still be estimated. But of course this is
not enough to prove the theorem using iteration since the estimate of 6(app) is not as
good as the estimate of §(pg).

To bridge this gap, we will spend almost all of this section to show that the smallness
of n and §(R) for some R > 0 even implies §(R) < C n%. This statement is the content
of Lemma 5.6. Using this, the theorem follows immediately by iteration.

The keys to the proof of Lemma 5.6 are the Proposition 5.4 and Lemma 5.5. Propo-

sition 5.4 tells us that if there are points xg, x1,...,Xx € [' such that the vectors
v = %, i =1,...,k, are almost orthogonal in the sense that the quantities

| (v vj) = 8ij
are small forall i, j = 1,...,k, then there is an Ny € G, ,_ such that

INo(y — x0)| < C(n, k)y* R

forall y € Kg')(xo) Nnr.
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We will then use Lemma 5.5 to find such points xg, X1, . .., X under the assumption
that §(R) and 7 are small.
The next lemma is the basic step that will finally lead to the proof of Proposition 5.4.

Lemma 5.1 (cf. Lemma 8.5 in [31]). For [ > 0 let ¢ : [0,I] — R”" be a curve
parametrized by arc-length and let P := ¢(0) and Q := c(l). Then we obtain for all

tel0,]] |
MELSAY

Proof. Applying a rotation and a translation, we may assume P = 0, Q = |P —Ql|ey.
For t € [0, 1] we estimate vector ¢(t) := (ci(t),...,cn—1(t)) € R" ! by

c-(r+i@-r)

1

1 1 3
|é<z)|5/0 |<é1(r>,...,c'n_1(z))|drsﬂ(/o |(c'1(r>,...,c'n_1<t)|2dr)

. 1 1 1 1
\c|_=l 2 2 - iy 2
= ﬂ(fo (1 c,,)dz) _ﬂ(z/o (1 c,,(t))dz)

= V2 - |P - Q)* < V21 (w)
Now ¢ (1) — cn(t) < |cn(l) — cn(t)] <1 —t yields ¢, (1) > |P — Q| — (I —t) and
Cn(l)_§|P—Q| Z(l—|P—Q|)(;_1) >_—(—|P - Q).

On the other hand, ¢, (f) < |c(¢)| < t implies

enlt) = 51P = Qlew <t =3P = 0| = 2( =P~ Q) =1~ |P -0

Hence, ’cn(t)—ﬂP — Q|en| < l(l_IPl_Q‘). Using the estimate for ¢(¢), we conclude
t n t
0~ (P+1@=P)) =60+ | F1P =0
1
[—|P— [ —|P— 2
< (L2 2l)  m (LEP 22l
/ [

Since x < /x for x € [0, 1], we obtain the desired estimate. O

For A C R”" let conv(A) denote the convex hull of A. Iterating the above lemma
we now prove
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Lemma 5.2 (Analog to Lemma 8.4 in [31]). Let ' C R" be a k-dimensional chord-arc
submanifold with 18n )7% < 1. Then for all x € T" and R > 0 we have

conv(I' N Kg)(x)) C {z e R” : dist(z,T) < 18nr)%R}.

Proof. Lety € conv(I' N Kgl)(x)). From Carathéodory’s theorem (cf. Theorem 17.1

in [28]) we get that there are ay,...,a, € I' N Kg')(x) and 0 < Aq,..., A, <1,
v <n+1,with }>’_; A; = lsuchthaty = Y_7_, A;a;. We show now inductively
that for j = 1,...,v we have

J Aia
dist (MF) <18(j — iR

i=1M

and thus prove the lemma. The estimate is trivial for j = 1. So let the estimate be true
for 1 < j < v,i.e. let us assume that there is a point P € I" with

I dia
‘—2’7‘ T pl<18(j — )n2R.
Dimi A
J
M Then the above estimate reads

i=1"1

Let us put P =

|P — P| < 18(j — )n*R. (5.6)

Furthermore we set Q := Q ‘= aj4 and thus get

S, Q- P)= Lo b (5.7)

+1
Zl_l i le—l i

and |P — Q| <|P—P|+|P — Q| <3R. Since P, Q € T, there is a Lipschitz curve
¢ :[0,1] — T parametrized by arc-length joining P and Q with ! < (1 + n)|P — Q|.
If we now apply Lemma 5.1 with zp = Z)’L‘ﬁ ‘A [ to this curve we get

i=1 M

<3l (—l_|Pl_ Q|)2

|P—Q|<I=<(1+n)|P—-Q))
=

+1
c(to) — (P + ’+1 Q- P))
YDA
1 (5.8)
3(1+ [P —Qln2
n<i,|P—Q|<3R .
< 1812 R.
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Hence,

gist [ 2r=1 44 ) T
J Ai -

Z{:lki -a
Y

i=1

)dm—(P+—( )‘

ctw) - (P + P =) 417

c(to) —

i=1

0=0
=

(5.8)&(5.6) 1 : 1 1
< 18Rn2 4+ 18R(j — 1)n2 = 18Rjn:. |

A consequence of the last lemma is the following estimate for the volume of the
convex hull of I' N Kgl)(x).

Lemma 5.3 (Analog to Lemma 8.7 in [31]). Let ' C R” be a k-dimensional chord-

arc submanifold, 18n 7]% < 1, and let V be a (k + 1)-dimensional affine subspace.
Then we have

JE*EH (conv(T N KW (x)) N V) < C(n,k)n? R
where C(n, k) 1= 3-36 - wg 4 -8k . n.
Proof. From Lemma 5.2 we get

conv(I' N Kg')(x)) C U Kl(;)m%R(Z)-

zel

Since conv(T' N K% (x)) € K% (x) and 18777 < 1 we obtain

covT NKPnc ) K7, @, (5.9)
18nn2R
ZEFOKZ('}?)(x)

Using Zorn’s lemma if you wish, we can find a maximal subset L C I'N K, (n) g (X) with

respect to the order “C” with the property that u # v € L implies |u — v| > 18mﬁ R.
From the maximality of the set we deduce that

(n) (n)
FﬂKzR(x)C l | KlSm;%R(Z)
and hence

cov(I N K () c | J K | (). (5.10)
sel 36nn2 R
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Since 18n772 <1, weget R + 9nn2R < 2R and thus B(n) ! (z) C B(")(x) for all
9n
- € L. Using the definition of n (cf. (1.3)) and the fact that the balls B™ | (2),

Inn2 R
z € L are pairwise disjoint, we get

HEEK™ | z)NTD) FHEEK™ | )N
onn2 R onn2 R

oy < r gy
= 1 — 1
= Jfk(K;Z;%R(z) NT) ~ 4 lopOnnrRyF Lo 9nn? R)

k
2
<3 -] .
9nn2

Combining this with (5.9) and (5.10), we finally get

HH conv(T NKP )Ny <+ JK™ | onV
sel 36nn2 R

<y J€k+1(K(”) R(z) ny)

zel

< (#L)wj11 (36177 RY !

k
2
<3 ) w1 (3607 R)KT!
9nn2

= C(n, k)2 R¥+!

where C(n, k) :=3'36~a)k+1-8k-n. o
Proposition 5.4 (Analog to Lemma 8.7 in [31]). Let xg, X1, ...,X; C I' be such that
the vectors v; 1= X Rx" i =1,...,k are almost orthogonal, i.e. that

|{vi,vj) = 8ij| < ex

foralli,j = 1,...,k, where ¢ := min{k_l/z(Zﬁ — 1),k_%/4}. Furthermore,
let 181177% < 1 and Ny denote the orthogonal projection of R™ onto the vector space
spanned by vy, ..., V. Then

1
INo(y — x0)| < C(n,k)n>R
forall y € T 0 KW (xo) with C(n, k) := 1236 - w4y - 32 -n

Proof. Let us translate the whole setting so that xo = 0. Let y € ' N Kg)(xo)
with u := No(y) # 0 and V be the vector space spanned by y and the vectors
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Vi,..., V. Then there is a unit vector v+ with (vJ-, vi) =O0foralli =1,...,k and
Vi,..., Vg € Rsuchthat y = Z;{:] ViXi + /LUJ‘. Let us consider the map
k+1

g Akt = A Ag) € ROFFT YT 4 < 1) — conv(T N KSR (0) NV,
i=1
k
A1y ee s Aggr) Zkixi + Akt1).

i=1

Using y = Zf: L Vixi+ pv the Jacobian determinant of the function g can be shown
to satisfy

det ((Dg)* o Dg)) = W det((xi’x-/)i,jzl,...,k)

— 2R -~ det ((v;. vj)l',jzl,...,k )-

We set w; := ((v1,v;),..., (v, v;))T and letey, ..., e, denote the standard basis of
R¥. Using the inequality of Hadamard and the multilinearity of the determinant, we
obtain

det ((v,-, Uj)i,j=l,...,k) = det(wy, ..., wg)

> det(ey,...,ex) — | det(wy, ..., wg) —det(ey, ..., ex)|

k
= 1—|Zdet(el,...,e,~_1,wi — €, Wigl, ..., Wg)]
i=1

k
> 1— (sup{L. |wi]..... Jwe DD wi — e
i=0

Combining this with |w; — ¢;| < vk ¢ and |w;| < 1 + Vkeg, we get

3 1
det((vi’vj)i,j=],...,k) >1—-(1+ «/%sk)k_lkgek >1-2- 1= 75

Thus,

1
det(Dg* o Dg) > Equzk.

This implies that the function g is a diffeomorphism onto its image. Using Lemma 5.3
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and the area formula, we hence get

C(n, k)n> QR¥*! = H5+ ! (conv(T N K (x0)) N V) > J6*+! (Im(g))

1
— [ VaeDgT o Dg d ! = SRk (B
Ay 2

1 k+1 .
-(a) e
with € (n,k) 1= 3-36 wj418%n and thus u < 12- 36 wy4132%nn2 R. o

The next lemma will be used to prove the existence of points xy, . .., Xj satisfying
the assumptions of Proposition 5.4. Let

§(x, R)

No(v —
= inf (max( sup M, |N—N0|dJ€k)).
NUEGVI,H—/( yEFﬂK%”(x) R FmK%/l)(x)

(5.11)
Note that (5.2) and (5.11) imply §(R) = sup,cr §(x, R) and 8(x, R) < §(R) < 6.

Lemma 5.5. Let ' C R” be a k-dimensional chord-arc submanifold with n(I") < %
xel,and R > 0.

(i) If8(R) < sgri7gr> then

Tx,R(F N Kgl)(x)) ) fx,R(K((?lg(x,R))R(X))

forall Ty g € Tx.R.
(ii) If 8(R) < gr=er and No € Gy i with

No(y — 1
MO =0l Ly ern k™),
R 8
and (§(R) + 1) < g then
To(T N K§) () D To(K( ) g(x)

where Ty := idrn — Nj.

Proof. The proof relies on degree theory combined with calculations that are similar
to those used in the proof of Theorem 3.1.

We consider the map f] := Tx, From (5.4), (5.5), and (5.11) we get

R|rmK§;"(x)‘

(Ter@r @ N KL D) N (Trk(BE 500y () = 0. (5.12)
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We will show, that there is a point wg € Tx, R(B((fl 5(x.R)) g (X)) with

deg(f,T N KW (x),wp) = 1 422,

From the properties of the degree and (5.12) we then get the conclusion of this lemma.
Lety #zel'N Kg')(x) and ]\ny’|z_y| €Ny |z—y|- We see that

|NX,R(Z - y)| = |Ny,|z—y|(z —y)| + }(Ny,lz—yl - NX:R) (z —y)|
< (8(R) + | Ny oy = Nx.r ) 12 = ¥

and

Ry = Nl = . WBgemyy = NI
FmK\z—yl(y)

4 ][ IN = Nyl d g6k
FﬂK|(;ly|(y)

LR SR + Mo (N = Fer) ).

We are looking fora yp € ' N K(g)(x) with
2

Mg (N — Nx,r)) (o) < i

since for such a point we would get

~ 1
[Ner(z = o) < 5lz—yol ¥z eT N KR (x) (5.13)

if we combine the last two inequalities.
Using the Hardy-Littlewood maximal theorem (cf. Lemma 2.3) and the fact that
ok | has the doubling property by definition of 7, we see that

s ({y €T N K@) : M (N = Nep) () > i})

. 1
< g* ({y €1 Myr ((N - Nx,R)XK(Sn;(x)) ) > Z}) (5.14)

<4.27.2% IN — Nyl d #*.
Nk (x) ’
3R

Here y pon ) denotes the characteristic function of the set K §’2 (x). To estimate the
SR 2
2

(n)

last integral, let us choose a maximal subset L C I' N K5 R
2

(x) with the property
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that u # v € L implies |u — v| > %R. From the maximality of the set we get
U,er K(n)(z) D K(n)(x) N I'. Since the balls B (n)(z) z € L are pairwise disjoint

and n < —, we get

JOE(T N B(")(z)) 0

#HL=Y = Y xkrn B(”)(z))
e HEr B(”’( D ek (%R) ‘ez (5.15)
2 (1.3)
< — g HYC N B () £ 3- 10k
ok (1R)
and we see that
[ IN=Feldat <3 [ N = Rerld gt 50
FﬂK%R(x) el K%R(Z)

Forz e I'NK g"lg (x) there is a curve ¢ : [0,/] — I" parametrized by the arc-length
2

joining x and z, i.e. with ¢(0) = x and ¢(/) = z, and with [ < (1 4+ 7) - %R < 4R.
We set t; :=é-if0ri =0,...,8. FOI'N(T)R foéc(ri)’g we get

8
IN = Ne gl <IN =N, &+ D 1Ny 8 = Nog_y) 21 + 1N, 2 = Nl

c
i=1

oo

c(ti—1),R — C(’-’t 1) 7”)

20 (Ve = A

+|N, & — Nyrll-

X,5

S}

For v,u € T with K(K")(v) - Kg’)(u) we have
2

LA R SN LS A FLE SN L A E
2 FﬁKé ) 2 rnKé’ ()

FK(T N KR (v) JTnK )
2

1+n

< 8(R) + nZk(S(R) <(1+3-25.8(R),
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and we obtain, since |c(t(7)) —c(z(i — 1))| < %R,
IN = N gl <IN =N, ] +17-(1+3-2) - 8(R). (5.17)
Combining the inequalities (5.14)—(5.17) one gets
g0 ({y e P KD M (8 - ) 00> 1))
2

k(T N K(é')(x))

<10°-176F8(R) < 1.

Sowecanfindayye ' N K(B”)(x) such that
2

M2k (N = Nx,®)) (0)| <
and we have by (5.13)
1
NG =)l < 5lz =yl ¥z e NKR () (5.18)
and
|N(vo) = Ny, = lim |N — Ny g| d*

r=0JK, (yo)nr

< [Mag (N = Nx,R)) (00)] < -~

(5.19)

From (5.18) and (5.19) one can now deduce that deg( f, I" N Kg)(x), wo) = 1 + 27
for wo := f1(yo) and so we the first part of the lemma is shown.

To prove the second part, we set f> := To| K and translate R” so that we can
assume x = 0. Arguing as above, it is enough t find a point wg € TO(B(")M) )
with deg(f>, ' N K(")(O) wp) = 1 + 27 since

To@r (" N K§Y(0) N To(B ) (0) = 0.

First we estimate || Ng — NO,R II. Letéy,..., e, be an orthonormal basis of Im(fo,R).

Using the first part, we can find v, ...,vy € I'N Kg)(O) with TO,R(UZ') = (1 -
S(R))Re;. If we fix w; 1= WTO(W)’ we get

o
“1= T 5m)R

§(R)<3}
=

[w; — | To(vi) — To,r(v)]

|No(vi) — No,r(vi)]

x|

|No,r(vi)| + [No(vi)]) < 2(8(R) + )

—~

2
<
~ R
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fori = 1,...,k. Let A, B : RK — R” be the linear mappings represented by the
matrices (wy, ..., wg) and (ey, ..., eg). Then we get

1
A—B| <2k(6(R <—=x<1
4= BIl < 2KER) + p) < > <

Hence, the vectors wy, ..., wy are linearly independent since otherwise there would
be a vector u € S¥~! with
Au) =0

and thus
14— Bl = |(4—-B)w)| = |Bu)|—[Aw)| = 1.
Hence, we can apply the normal equations (cf. [34, pp. 235-237])
To=Ao(A*0A) o A*

and
Tor = Bo (B* o B)_1 o B*

and we can estimate
7o~ Tox] = 14 = BI | (4% 0 4)~' | 14%)
+ B H (A4*0A)' = (B*oB)™ H 1A%
+ B H(B* o B)_IH 1A% — B|].
Combining this with

I1BIl =1,
A% = Al < | Bl + A — Bl <2.

1
lide — A™ Al < Sk((R) + p) < —=—

2.8
oo = e =2
1 — [lidgs — A% o A]]
H (A* o A)™' —(B*o B)™' H - H (4% 0 A) ™" — idgs

= |(470 )7 | - idps — 4% 0 4]

1
<10k - (B(R) + p) < .8
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we get

|To — To.r| < (5.20)

0| =

In the proof of the first part we have shown that there is a yo € I' N Kg/)z(O) C
K™ (0) with |[Iag (N — No,g)) (v0)| < 1 and that this implies

(1—pw)R
- 1
|Nor(z = y0)| < 51z =yl VzeTNKR ()
and HN (yo) — No.r ” < }1. Combined with (5.20) this leads to

|No(z — y0)| < [(No — No,r) (z = y0)| + | No,r(z — yo)| < %lZ = Yol

forall z € K;:)(O) and

0| W

IN(y0) — Noll < IN(vo) — No,gll + | No — No.r|| <

From these estimates and setting wg := Tp(yg) we get deg( f>, ' N Kg‘)(O), wy) =
1+ 27. o

Let us now show that in fact
S(R) < Cn?

if §(R) and n are small enough.

Lemma 5.6. There is an ¢ = e(n, k) > 0 and a constant C = C(n,k) < oo such
that for every k-dimensional chord-arc submanifold ' C R" of dimension k, then
n,8(R) < & implies S(R) < C(n,k)n?.

Proof. Letx e ', R > 0, TX,R S ‘i‘x,R, and let ey, ..., e; be an orthonormal basis
of Im(f’x,R). Lemma 5.5 shows that there are xq,...,x; € ' N Kg’)(x) such that
Tx,R(xi —x) = (1 =68(R))Re;. We get

Kxi—x Xj—X

X ] < | (ke — ). T =)

+ (N, (xi — x), Nx r(xj — x))) —8ij

< 28(R)* < &
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k7

ﬁ, %} is as in Proposition 5.4. By
k2 4k?2 1

Proposition 5.4 there is an No € Gy ,— such that [No(y — x)| < Cn2R for all

yeln Kg)(x). So it remains to prove that

if 8(R) is small enough and & := min {

][ IN — Noll dJe* < Cnt.
INK Y (x)

Let us translate and rotate the whole picture in such a way that we get x = 0 and
Im(Ty) = R¥ x {0}. By Lemma 5.5

(n) (k)
Th('NKL (0) DK 0 0}.
0( R ( )) (l—Cn%)R( )X{ }

Defining
. (n) (k) n—k (n)
X =({I'NK,’0))Nn{ K 0) xR >DI'NkK 0
( & ¢ )) ( a—cnhr? ) a-crhr®
we get

HE (T KR ) = X) = 5% (0 1 KR0)) = 5500
(1.3) N k
< (14 pwrR* — (1 — oy ((1 - Crlz)R) (5.21)
<Cn2R*
if 77 is small enough since the function & — 1 + 52 —(1—- 52)(1 _ Cé)k isOaté =0

and differentiable at this point.
Let J(y) be the Jacobian determinant of F := Tp|r, i.e.

J(y) := y/det(DF*(y) o DF(y)).

Using the area formula and the fact that by Lemma 5.5

T\ MNX#0

(k)
forally e K 0) x {0} we get
r Y R 77%) ( ) { } g

| smarto = (TG () 1 X) dHE ()
X KL @ x{0} (522)

> wp((1— Cn2) R,

Now, we show that
IT(y) — Tol*

Jy)<1-—
() = i

(5.23)
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In order to prove (5.23) we first deduce
det(DF*(y) o DF(y)) = det(idgn — Ty o N(y) o Tp).
This is true because DF(y) = To|r, T, DF*(y) = T(y) o Ty and thus
det(DF*(y) o DF(y)) = det(T(y) o Tolr,r) = det(T(y) o To o T(y) + N(»)).
Furthermore, we have used

T(y)oToo T(y) + N(y) = T(y) o (idrn — No) o T(y) + N(»)
=T()+Ny)—T()oNyoT(y)
=idgn — T(y) o Ngo T(y).

Since idgn — T (y)o Ngo T (y) is a symmetric matrix, the inequality between arithmetic
and geometric mean leads to

trace(idrz — T'(y) o Ny o T(J’)))n

J2(y) = det(idgs — T(y) 0 No o T()) < ( :

Now,

trace(7T'(y) o Noo T(y)) = trace(T(y) — T(y) o To) = k — trace(T (y)Tp)

1 1
= S trace ((T(y) = T)*) = SIT(y) = Tol?

yields

IT() - T0||2)2 3 (1 T - To||2)5 o IT» =Tl

Jy)<|1-
W) = ( 2n 2n 4n

Thus (5.23) is proven. Combining (5.23) with (5.22), we get
[ 170y =l asek ) < an [ 1= a0yt

< dn (HE(X) — (1 = Cp)R))

< 4n ((1+ moxR* — (1 = Cp)RIF) = Cn2 RE,
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and thus [y [[N(y) — Nol2d #*(y) < Cr)%Rk. Using (5.21) we finally get

][ IN = Nol| d 3¢*
TNK Y (0)

5][ IN = NolP d e
CNK Y (0)

i
kT N K (0))

G2l
< Cn>. O

<4J€k(I‘ N KW 0) - X) + /X IN — N0||2dJ€k)

Lemma 5.7. Let 0 < ¢ <
8(aR) < 17e.

%, a = X1+ ¢ < 2 and assume that §(R),n < e. Then

Proof. For R <r <aR and x € T" we calculate

][ IN = Nyl d ek
Nk (x)

1 ~
B @ / IN — Ny gl d 3k
k(T 0 K (0) \ 0k -k o)

+[ IN = Ny gll d ek
rNKY (x)

@ N K 0)) - KR )
- HE (T 0K (x))

JF ([ N KW (x))

K (T N K™ (x)) Jrok e
<L mM@R) — (1 =R
- (1— Rk
<4(dk =14 @+ y) +8(R) < 176,

IN — Ny gl d #*

+ 3(R)

Now let y € Kﬁn)(x) NI.ifye Kgl)(x), then we get
| Nx,r(y = x)[ < 8(R)R.

Ify ¢ Kg)(x), there is a curve ¢ : [0,]] — T parametrized by arc-length, with
c(0)=x,c(l) =yand! < (1 + n)randthereisaty € [R,[] with c(tp) € 8Kg’)(x).
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We get

INe,r(y = x)| < [Nx,g(c(l) = c(t0))| + [Ny, r(c(t0) — c(0))]
<le() —c()| +8(R)R = (I —19) + S(R)R
<A +nr—R+8R)R=r—R+8RR+nr

r>R>

2 a—1 a>1
< (T+5(R)+n)r S @=1+8R) +n)r

< 3er. O

Proof of the second part of Theorem 1.1. Let 0 < ¢ := g(n, k) < % be so small that
the conclusions of Lemma 5.6 and Lemma 5.7 hold and let C = C(n, k) be the con-
stant from Lemma 5.6. Let us now consider a k-dimensional chord-arc submanifold
with C 7]% <&

Since chord-arc submanifolds are C ! and since Lemma 2.7 holds, there is an Ry > 0
such that §(Ro) < {5. Applying Lemma 5.7, we get §(aRg) < ¢ fora := {/1+ &
and hence Lemma 5.6 implies

1 &
8(aRp) <Cn2 < —.
(@Ro) = Cn2 =
Repeating this procedure, we get inductively §(a’ Ry) < C n% for all / € N and hence
5 < Cn%. By (5.3) we finally get y < 5C ;ﬁ. O
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