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Abstract

We investigate the scattering matrix in mass-deformed N ≥ 4 Chern–
Simons models including as special cases the BLG and ABJM theories
of multiple M2 branes. Curiously the structure of this scattering matrix
in three spacetime dimensions is equivalent to (a) the two-dimensional
worldsheet matrix found in the context of AdS/CFT integrability and
(b) the R-matrix of the one-dimensional Hubbard model. The under-
lying reason is that all three models are based on an extension of the
psu(2|2) superalgebra which constrains the matrix completely. We also
compute scattering amplitudes in one-loop field theory and find perfect
agreement with scattering unitarity.
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1 Introduction

The calculation of scattering matrices in supersymmetric gauge theories has seen signif-
icant recent progress. Exciting new insights, such as connections between scattering
amplitudes and Wilson loops [1–5], and the discovery of novel hidden symmetries,
namely the dual superconformal invariance [6, 7], have led to a deeper understanding
of the gauge theory. Many of these results have been possible because of the devel-
opment of powerful new tools, such as twistor methods [8], recursion relations [9, 10]
and generalized unitarity [11–14], for calculating on-shell quantities in Yang–Mills
theories. Further, in the specific case of maximally supersymmetric four-dimensional
N = 4 Yang–Mills theory (YM) the existence of a string dual has provided a tractable
strong-coupling description and has resulted in several impressive results and conjec-
tures, for a recent review of the subject see [15].

It is interesting to see if one can extend these results to a broader class of theories
particularly those with less supersymmetry. One such class is the N ≥ 4 supersym-
metric Chern–Simons (SCS) matter theories constructed by Hosomichi et al. (HLLLP)
in [16, 17] which builds upon the construction of Gaiotto and Witten [18]. In the
construction of Gaiotto and Witten, the gauge group was chosen to be a particular
subgroup of the symplectic group Sp(2n), with no particular restrictions imposed on
the representations of the matter fields and where there is an su(2) × su(2) = so(4)
R-symmetry which is required for the N = 4 supersymmetry. In [16, 17], the matter
content was augmented by twisted hypermultiplets where the action of the su(2)’s on
the bosonic and fermionic degrees of freedom is interchanged relative to the untwisted
case. In the absence of further constraints on the representations of the two matter
multiplets, this construction also results in N = 4 supersymmetry. It was further
shown that if both matter multiplets are in the same representation the supersymme-
try extends to N = 5. In the special case, where the representations of the matter
multiplets can be decomposed into a complex representation and its conjugate, such
as bifundamental representations of SU(N)× SU(M), the supersymmetry was shown
to be enhanced to N = 6. When the representations are furthermore real corresponds
to N = 8.

The theories with N = 6 and 8 had been previously found in the context of the
low energy effective action of multiple membranes by Bagger, Lambert, Gustavsson
(BLG) and Aharony, Bergman, Jafferis, Maldacena (ABJM) [19, 20]. The N = 6
theory, of which there is an infinite SU(N)× SU(N) family [20], has been conjectured
for finite values of N and k, the Chern–Simons level number, to describe the low
energy dynamics of N M2 branes on R1,2×C4/Zk. The gauge theory also possesses a
well defined large N limit, which is obtained by taking both N and k to be large while
λ = N/k is held fixed. In this limit, the theory is expected to be dual to string theory
on AdS4 × CP3, which shares many similarities with the well studied case of string
theory on AdS5 × S5. Indeed, the conformal N = 6 SCS gauge theory also shares
some vital qualitative features with its four dimensional N = 4 YM counterpart,
including the fact that its spectrum at weak coupling is described by an integrable
quantum spin chain [21]. Furthermore, for the N = 4 Yang–Mills theory the planar
integrability, which may be thought of as feature of the ‘world sheet physics’ of the
gauge theory, is intimately tied to dual superconformal symmetry: a property of the
spacetime scattering matrix of the gauge theory [22, 23]. It is interesting to ask if
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similar relationships and structures appear in the N = 6 Chern–Simons scattering
amplitudes.

With these motivations in mind, we explore the scattering amplitudes for a class
of SCS theories with N ≥ 4 supersymmetry which includes the N = 6 and 8 theories
as special cases. In fact we will study the one parameter family of supersymmetry
preserving massive deformations of the 4 ≤ N ≤ 8 superconformal theories. As in
the study of most conformal field theories, the three dimensional SCS models are
plagued with problems of infra-red divergences, which typically manifest themselves
in the low momentum behavior of massless propagators. One might hope that such
problems can be remedied by making the theory massive. In extended supersymmetric
gauge theories, making the dynamical matter fields massive is impossible to achieve
without violating some or all the supersymmetries of the massless cases. However, in
the special case of superconformal Chern–Simons models, it is indeed possible to add
masses to the matter fields while preserving all the supersymmetries of the massless
models, at the cost of losing (super)conformal invariance. This was established for
N ≥ 4 SCS theories in [16, 17] and in previous work for the mass-deformation of the
N = 8 M2 brane theory, [24] (more recent analyses of the mass deformations of SCS
and M2 brane theories theory can be found in [25,26]). Unfortunately, the only degree
of freedom contributed by the gauge filed, namely its zero mode, does lead to residual
mild infra-red divergences. To the order at which we carry out the computations in
this paper, these additional potential divergences are largely irrelevant, however we
expect them to play in important role at higher orders in perturbation theory, and
elaborate upon this issue later in the paper.

Rendering the SCS theories massive amounts to adding non-central extensions of
the supersymmetry algebras, which generically take on the form {Q,Q} ∼ P + mR:
R denoting the internal symmetry generators. The massive theories that we study,
typically have the mass deformed Poincaré algebras [26]

SL(2,R) n PSU(2|2) n R3 (1.1)

or
SL(2,R) n PSU(2|2)2 n R3 (1.2)

as their underlying symmetries which are among the exceptional super-Poincaré alge-
bras discussed in [27]. The appearance of the mass m in the supersymmetry algebra
adds a new parameter to the theory. Being part of the fundamental anti-commutation
relations of the supercharges, prevents the mass from ‘running’, in the sense of renor-
malization group flows. One may be tempted to view the mass-deformed theories as a
one parameter family of models extending each of the conformal N ≥ 4 SCS theories,
to which they reduce in the massless limit. However, note that m is the only mass
scale in the theory and thus all models which differ only in m only are expected to be
related by an overall rescaling of dimensionful quantities. In this sense the massless
limit is singular and it involves enhancement to superconformal symmetry. For physi-
cal quantities the limit may nevertheless be smooth as we shall observe in this paper.
Still one has to keep in mind that the IR singular behavior of some quantities may be
different in the limit and one has to replace the mass by an alternative IR regulator.

It is worth noting that these massive supersymmetry algebras have played an im-
portant role in a number of recent studies of supersymmetric gauge theories. For
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instance, in the case of N = 4 supersymmetric Yang–Mills theory in four dimensions,
su(2|2) played a crucial role as the symmetry of the scattering matrix [28] of the
spin chain describing the planar limit of the gauge theory [29]. It was shown that
the symmetry algebra uniquely fixes the spin chain scattering matrix up to an overall
prefactor. This S-matrix is, by the AdS/CFT correspondence, the worldsheet S-matrix
for the dual string theory [30, 31] but it was also shown that it is equivalent to Shas-
try’s R-matrix for the one-dimensional Hubbard model [32]. In the case of the spin
chain, the sl(2) automorphism of its symmetry algebra, does not translate into a real
symmetry of the system, as the quantum spin chain is not relativistically invariant.
As was pointed out in [33,30], the su(2|2) in conjunction with its sl(2) automorphism,
is nothing but a mass-deformed supersymmetric extension of the three dimensional
Lorentz algebra. From the point of view of the three dimensional algebra, the non-
Lorentz invariance implies that the physical spectrum of the spin chain corresponds
to a preferred reference frame, see [30].

Various other interesting supersymmetric three dimensional Yang–Mills theories
with mass deformed super-Poincaré algebras as their symmetries have also recently
been studied. In particular, the D2 brane worldvolume theory, namely, N = 8 su-
per Yang–Mills on R × S2 and its spectrum was studied in [33].1 In the same paper,
supersymmetric Yang–Mills Chern–Simons theories, with various degrees of supersym-
metry, were also formulated. A salient feature of these gauge theories is that they have
massive spectra, as well as propagating gluonic degrees of freedom. The gluons are
rendered massive by either requiring the spacial geometry to be S2, or by introduc-
ing Chern–Simons terms in their actions. In this regard, the theories studied in the
present paper depart substantially from the examples of the super Yang–Mills theories
mentioned above. In our case, there are no propagating gluons, the ‘gauge’ part of the
theories being described by pure Chern–Simons terms. Furthermore, the spacial part
of the geometries underlying the gauge theories will be taken to be R2.

In this paper, we study the 2 ↔ 2 scattering processes in all the massive SCS
theories mentioned above. One of the main observations is that, as in the case of
scattering processes in the spin chain corresponding to N = 4 Yang–Mills theory in
four dimensions, the matrix structure of the two particle (spacetime) scattering matrix
is completely fixed by supersymmetry. For pure N = 4 SCS theories, without twisted
hypermultiplets, this means that relevant scattering matrix is completely determined
by supersymmetry up to a single undetermined function. Indeed the scattering matrix
for the Chern–Simons theory is formally identical to the spin chain S-matrix. For
the more general case of mixed N = 4 supersymmetry, i.e. SCS theories with twisted
hypermultiplets, supersymmetry leaves one with three undetermined functions. As
shown later in the paper, supersymmetry enhancement to 5 ≤ N ≤ 8 can be obtained
by imposing suitable constraints on the mixedN = 4 theories. The number of undeter-
mined functions reduces from three to two or one upon supersymmetry enhancement.
Importantly, being a direct consequence of the supersymmetry algebra, the structure
of the scattering matrix derived in this fashion is expected to hold to all orders in
perturbation theory.2 This result has a parallel in the spacetime scattering matrix

1This theory can be viewed as a dimensional reduction of N = 8 super Yang–Mills on R× S3 to
R× S2

2We should point out that divergences in scattering amplitudes may potentially deform the super-
symmetry transformation laws in analogy to what happens for conformal theories. For example, the
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of N = 4 super Yang–Mills theory in four dimensions, where all the four particle
scattering matrix elements can be determined in terms of a single function [34].

Apart from establishing the matrix structure of the scattering matrix, we com-
pute the undetermined functions for the mass-deformed SCS theories at the tree and
one-loop level. The perturbative calculations also lead to independent checks that the
relations between the various elements of the scattering matrix predicted by super-
symmetry are indeed satisfied. We perform the one-loop correction to the scattering
matrix in two different ways, i.e. by the use of standard Feynman rules as well as by
using unitarity. As is well known, perturbative corrections to scattering amplitudes,
can be computed efficiently by ‘gluing’ lower order amplitudes together using relations
derived from unitarity. However, in principle this only determines the piece of the
amplitude with branch cuts and so suffers from the ‘polynomial ambiguity’ whereby
there are undetermined rational functions of the kinematical variables. We demon-
strate explicitly, by calculating specific elements using standard off-shell methods, that
the amplitudes can indeed be completely evaluated using the discontinuities across the
cuts of the integrands, and that there are no rational functions unrelated to terms with
branch cuts. We then use this simplifying feature to compute all the two particle scat-
tering matrix elements, at the one loop order, using unitarity. Interestingly, while our
calculations yield non-trivial one loop corrections to the two particle scattering matrix
of N = 4 SCS theories, with or without additional hypermultiplets, we find that all
such corrections vanish identically for the cases of N ≥ 5 supersymmetry.

The paper is organized as follows. In Section 2 we elaborate upon the realization
of extended supersymmetry algebras and their mass-deformations in supersymmetric
Chern–Simons theories. In particular, we discuss the realization on the supersymmetry
algebra on the asymptotic/scattering states of the gauge theories in question. We also
introduce a particular basis for spinors in three dimensions that closely resembles the
often employed spinor-helicity basis in the case of four dimensional theories. Following
this discussion, Section 3, we set-up the four particle scattering picture in terms of
the asymptotic states and derive the constraints imposed upon the scattering matrix
elements by supersymmetry. We show that the constraints can be solved, leading to a
complete determination of the matrix structure of the 2 ↔ 2 scattering matrix of all
the massive N ≥ 4 SCS theories. Further, the explicit correspondence between two-
dimensional worldsheet/spin chain scattering matrix and the Chern–Simons S-matrix
is described. Section 4 is devoted to the analysis of color structure of the scattering
amplitudes, which is left unspecified in the sections outlined above. Specifically, we
focus on the interpretations of color ordering and planarity, while leaving the choice of
the gauge group to be as general as possible. In the final two sections, Section 5 and
Section 6, perturbative calculations that verify the predictions of the supersymmetry
algebra as well as compute the unspecified functions at the tree and one-loop order,
are presented. As mentioned before, the perturbative computations are carried out
using both Feynman rules as well as unitarity methods whose one-loop validity is
established. We end the paper with an elaborate appendix, where most of the details
relevant to the Lagrangian formulation of the massive SCS theories as well as useful
details regarding the supersymmetry algebra are contained.

supersymmetry algebra requires the dimension of spacetime to be exactly three, while in dimensional
regularization it is 3− 2ε. Subleading terms in the ε expansion may not have the same structure.
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N0 N1 N2 N3 N4 N1 N2

Figure 1: The quiver structure of a generic N = 4 Chern–Simons theory
with unitary gauge groups (left) and of a N = 5, 6, 8 Chern–Simons theory
(right). The solid and double lines represent untwisted and twisted matter,
respectively. The circles represent gauge groups U(Nk) and gauge fields.

2 Supersymmetry and Asymptotic States

2.1 Extended Supersymmetry in Chern–Simons Theories

Let us start with a brief review ofN ≥ 4 supersymmetry in three-dimensional quantum
field theory coupled to a Chern–Simons gauge field.

The study of the conformal case with OSp(N|4,R) symmetry was initiated for
N = 4 supersymmetry in [18]; it was extended to include additional twisted matter
and N = 5, 6 supersymmetry by [16, 17], see also. This is in addition to the very
many earlier and parallel developments in the N = 6, 8 case briefly described earlier
[20,19,35]. It was shown that there is a correspondence between the permissible field
content of such a model and the classification of Lie superalgebras: In general, the
even part of the superalgebra specifies the gauge symmetry for the Chern–Simons
fields while the odd part specifies the matter content. For N ≥ 5 supersymmetry
there is only one type of matter multiplet and a simple Lie superalgebra fixes the
model completely. For N = 4 supersymmetry, however, there are two types of matter
multiplets, so-called untwisted and twisted hypermultiplets. The field content in each
of the two matter sectors is specified by a semi-simple Lie superalgebra. The even
part of the two superalgebras must coincide in order for the Chern–Simons sector
to be defined consistently. In particular, this leads to certain quivers of simple Lie
superalgebras, see [16, 17]. The general structure of these quivers is illustrated in
Fig. 1 for the example of unitary gauge groups: Considering only the untwisted matter
fields one finds a direct sum of superalgebras su(N2k−1|N2k). Likewise the twisted
matter fields define a direct sum of superalgebras su(N2k|N2k+1). For orthosymplectic
superalgebras the nodes must alternate between orthogonal and symplectic algebras.3

Globally, the alternating chain of nodes can be either open or closed. If the odd parts
of the Lie superalgebras coincide as well, the supersymmetry enhances to N ≥ 5. This
is equivalent to a closed quiver of length 2, see Fig. 1.

For N ≥ 5 supersymmetry the level N merely depends on which particular basic
Lie superalgebra the model is based upon. The cases are summarized as follows

osp(n|2m)
d(2, 1;α)

g(3)
f(4)

N = 5,
sl(n|m)

osp(2|2m)

}
N = 6, psl(2|2) : N = 8. (2.1)

The representation of the even part on the odd part distinguishes the three types of
superalgebras: An irreducible representation leads to N = 5 supersymmetry. If it can

3There may also be some more exotic quivers using bosonic algebras of lower rank which may
allow to switch between the orthosymplectic and unitary series. We also do not consider explicitly
the u(1) factors which are present in the unitary superalgebras su(N |M), see [16] for more details.
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be reduced into two conjugate representations supersymmetry enhances to N = 6. If
furthermore the two representations are isomorphic we obtain N = 8 supersymmetry.

This classification can be translated into a classification of continuous automor-
phisms of the superalgebras. The psl(2|2) superalgebra is the only superalgebra with
an Sp(1) outer automorphism. For sl(n|m) and osp(2|2m) there exist U(1) automor-
phisms whose action coincides with the gl(1) and so(2) parts of the superalgebra,
respectively. The remaining basic superalgebras have no continuous outer automor-
phisms.4 The classification in terms of automorphisms is natural when one views
N -extended supersymmetry from the point of view of N = 4 supersymmetry: When
breaking OSp(N|4,R) to manifest OSp(4|4,R) notation there must be an additional
SO(N − 4) flavor symmetry. For N = 5 this requires no automorphism while for
N = 6 the required automorphism is SO(2) ' U(1). Finally, for N = 8 we need
an SO(4) ' Sp(1) × Sp(1) automorphism. Each of the two psl(2|2) superalgebras
provides one copy of Sp(1). Here one could also consider a manifest OSp(5|4,R) nota-
tion where the single psl(2|2) superalgebra provides the SO(N − 5) = SO(3) ' Sp(1)
automorphism.

Let us now turn to the massive case, which was investigated in [16,17] (see [24–26]
for related work particularly in the context of massive M2-brane theories). There
appears to be a one-to-one correspondence between the massive and conformal N ≥ 4
supersymmetric Chern–Simons theories; for each conformal model there is a mass
deformation with the same amount of supersymmetry and for each massive model
there is a conformal limit. The only additional parameter in the massive models is one
overall mass scale m. The classification in terms of superalgebras remains the same.
This result is somewhat curious because the massive models preserve less bosonic and
only half of the fermionic symmetry and might, in principle, be less restrictive. We
define the general mass-deformed N = 4 Chern–Simons theory in App. B.

In the massive case, the bosonic spacetime symmetry reduces to the Poincaré group
SL(2,R)nR3. Supersymmetry will be specified by some supergroup G which enters the
full super-Poincaré algebra as SL(2,R)nGnR3. This means that the Lorentz algebra
SL(2,R) acts as an automorphism on G and that the algebra of supercharges closes
onto the momenta R3. For N = 4 supersymmetry the internal bosonic symmetry is
SO(4). It joins with the supersymmetry generators into the supergroup G = PSU(2|2).
Altogether the mass-deformed N = 4 super-Poincaré group is (1.1)

SL(2,R) n PSU(2|2) n R3. (2.2)

It is one of the exceptional cases of super-Poincaré algebras discussed in [27]. It is
exceptional, because the supercharges close not only onto the momentum generators,
but also onto the internal symmetries. This type of closure of spacetime supersym-
metry is otherwise known only from the superconformal cases. Here it requires the
introduction of a mass scale m to give the relation {Q,Q} ∼ P + mR a consistent
dimension.

For N ≥ 5 supersymmetry the supergroup G splits into two pieces, G = GA ×GB

with GA = PSU(2|2) and GB a supergroup of odd dimension 2(N − 4). The Lorentz
group SL(2,R) must act on GB as an automorphism and GB must close onto the

4One can thus identify the three types of superalgebras in (2.1) with the fields R,C,H, respectively.
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momenta R3. The three cases are given by GB = GN−4 with

G1 = R0|2, G2 = U(1) n PSU(1|1)2 n U(1), G4 = PSU(2|2). (2.3)

We shall discuss the associated superalgebras in more detail below. Here the role of
the automorphisms of the superalgebra defining the field content is even more evident:
They serve as the even part of GN−4. For N = 6 the two U(1) automorphisms appear
in G2 while for N = 8 the two Sp(1) automorphism are equivalent to the two SU(2)
factors in G4.5 The supergroup G2 resembles G4 in that the mass appears in the
anticommutation relation {Q,Q} ∼ P+mR. However, this particular U(1) generator
will commute with the remaining algebra unlike what happens in G4. Conversely, the
supergroup G1 is almost trivial and the mass does not appear there.

Our main concern in this paper will be the case of N = 4 supersymmetry where
the super group is a single copy of G4. Let us nevertheless close this part with some
remarks on N ≤ 4. There appears to be the possibility of combining any two of
the superalgebras G1,2,4. For instance there could in principle be a massive N = 4
supersymmetric model which preserves only G2×G2 instead of G4. In fact the former
is a subgroup of the latter and thus one can expect it to be less constraining. In the
massless limit, however, both types of modes would result in the same supergroup
OSp(4|4,R).

2.2 Mass-Deformed N = 4 Super-Poincaré Algebra

The mass-deformed D = 3, N = 4 super-Poincaré algebra of (2.2) consists of the
bosonic Poincaré generators Lαβ = Lβα, Pαβ = Pβα, the internal su(2) ⊕ su(2) gen-
erators Rab = Rba, Ṙȧḃ = Ṙḃȧ and eight supercharges Qαbċ. The Lorentz and internal
algebra is specified by its action on spinor indices (|X...〉 denotes any state with the
indicated indices)

Lαβ|Xγ〉 = 1
2
εβγ|Xα〉+ 1

2
εαγ|Xβ〉,

Rab|Xc〉 = i
2
εbc|Xa〉+ i

2
εac|Xb〉,

Ṙȧḃ|Xċ〉 = i
2
εḃċ|Xȧ〉+ i

2
εȧċ|Xḃ〉. (2.4)

It remains to specify the anticommutator of supercharges

{Qαbċ,Qδeḟ} = εbeεċḟPαδ − 2mεαδεċḟRbe + 2mεαδεbeṘċḟ . (2.5)

In addition to the standard momentum generator Pαδ it contains the internal rotation
generators Rbe and Ṙċḟ which otherwise only appear in superconformal algebras. These
dimensionless generators are multiplied by a common mass m for the correct mass
dimension. The constant m is physical and it sets the mass scale of this model. Due
to its appearance in the supersymmetry algebra it is protected from running.

For completeness we shall write the reality conditions of the generators in the
relevant real form of the supersymmetry algebra. For the sl(2) Lorentz and su(2) ⊕
su(2) internal rotations we require

(Lαβ)∗ = Lαβ, (Rab)
∗ = εacεbdRcd, (Ṙȧḃ)

∗ = εȧċεḃḋṘċḋ. (2.6)

5It is curious to observe that mass-deformed N = 8 Chern–Simons theory is, in some sense,
constructed upon four copies of the superalgebra PSU(2|2).
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The supersymmetry and momentum generators obey

(Qαbċ)
∗ = −εbdεċėQαdė, (Pαβ)∗ = Pαβ. (2.7)

2.3 N = 4 Asymptotic Particle Representation

We can now turn to the transformation properties of the asymptotic particles. These
particles can belong to any D = 3 quantum field theory whose spacetime symmetry is
the above mass deformed N = 4 super-Poincaré algebra. We assume that the particles
are on shell, gauge-invariant and do not interact. In particular, this means that the
action of the supercharges is linear (i.e. the symmetry is not spontaneously broken)
and that the supersymmetry algebra closes exactly without additional gauge terms or
terms proportional to the equations of motion. In particular it applies to the mass-
deformed N = 4 Chern–Simons theories outlined in App. B at arbitrary coupling.
At weak coupling it is furthermore safe to identify the asymptotic particles with the
fields.

For a fixed time-like momentum pαβ = pµσ
µ
αβ, the stabilizer of the mass-deformed

super-Poincaré algebra is u(2|2). The smallest non-trivial particle multiplet thus cor-
responds to the (anti) fundamental representation of u(2|2) consisting of two bosons
and two fermions. On shell these can be identified with the (twisted) hypermultiplets
of massive N = 4 super Chern–Simons theory:

(untwisted) hypermultiplet: |φa〉, |ψȧ〉, twisted hypermultiplet: |φ̃ȧ〉, |ψ̃a〉. (2.8)

These both transform under su(2) ⊕ su(2) according to the general rule (2.4) but we
note that the roles of the two different su(2) indices are switched in the twisted case
relative to the untwisted case. The most general representation of the supercharges
on the hypermultiplets compatible with su(2)⊕ su(2) symmetry is given by

Qαbċ|φd〉 = εbduα|ψċ〉, Qαbċ|φ̃ḋ〉 = εċḋvα|ψ̃b〉,
Qαbċ|ψḋ〉 = εċḋvα|φb〉, Qαbċ|ψ̃d〉 = εbduα|φ̃ċ〉. (2.9)

Closure of the supersymmetry algebra (2.5) implies the constraint

vαuβ = −pαβ − imεαβ. (2.10)

Note that (uα, vα) and (vα, uα) are effectively the incoming/outgoing polarizations for
the massive spinors ψ and ψ̃, cf. the oscillator representation of free fermions in (B.15).

The mass of the asymptotic particles is constrained by the atypicality condition
of the fundamental representation of u(2|2) to equal the mass m appearing in the
supersymmetry algebra (2.5). In particular, this implies that the mass of the hyper-
multiplets cannot run in this model.6

Let us investigate the relation (2.10) in some more detail. It implies that the
particle momentum pαβ = pµσ

µ
αβ is a function of the spinors uα and vα. Therefore

the representation of the stabilizer is specified through a pair of spinors (uα, vα) obeying
the constraint

εαβvαuβ = −2im. (2.11)

6Depending on the renormalization scheme the bare and physical masses can differ by a finite
amount.

8



The solutions of this constraint form the three-dimensional group manifold SL(2).
Conversely, the mass shell in three dimensions is merely the two-dimensional hyperbolic
space H2 = SL(2)/U(1). Thus representations of the little supersymmetry algebra
carry one additional U(1) label as compared to the bosonic subalgebra. This label can
be adjusted by changing phases of the spinors

uα → e+iαuα, vα → e−iαvα, (2.12)

which does not change the relations (2.10,2.11). In (2.9) it can be seen to determine
the relative phase between the bosons and fermions. The U(1) degree of freedom
turns out to be inessential and it can in principle be fixed by restricting to a particular
choice of phase u(p), v(p) for each momentum p, e.g. (A.9). This is possible because
the mass shell is topologically trivial and there is no global obstruction in choosing a
U(1) element at each point of the SL(2)/U(1). Nevertheless, it is not always advisable
to do this for two reasons: The spinors u(p), v(p) are not covariant under Lorentz
transformations, they are merely covariant up to phase. Secondly, it is sometimes
convenient to complexify momenta. This however leads to a non-trivial topology
of the above U(1) fibration and there is no globally consistent choice u(p), v(p). In
particular, this leads to potential sign ambiguities if one tries to define the spinors
u(p), v(p) for the two mass shells with positive and negative energies with a single
analytic formula. Therefore we prefer to specify representations through the spinors
u, v. However, in particular if the sign of the particle energy p0 is well-known, it is
safe to specify the spinors through the particle momentum p as in (A.9).

Finally we would like to discuss unitarity conditions of the representation. Ac-
cording to (2.7) and (2.9) hermiticity of the supersymmetry generators implies the
unitarity condition

u∗α = +vα. (2.13)

This also leads to a real momentum pµ according to (2.10). Moreover, the energy p0 is
positive definite as usual in supersymmetry algebras. Conversely, particle multiplets
with negative energy obey

u∗α = −vα (2.14)

and they transform in a graded unitary representation where all bosonic generators
are hermitian and the supercharges are anti-hermitian.

The two types of representations discussed above are just the simplest non-trivial
representations of the mass-deformed N = 4 super-Poincaré group (2.2). The rep-
resentation theory follows closely the one of su(2|2), cf. [32] and references therein:
There are short/atypical representations 〈k, l〉 of dimension 4(k+ 1)(l+ 1) + 4kl. The
corresponding particles have an algebraically fixed mass m = k+ l+1. The fundamen-
tal representations discussed above are the special case 〈0, 0〉. Additionally there are
long representations {k, l} of dimension 16(k+1)(l+1). Their mass is unconstrained.7

It would be interesting to study the spectrum of composite states in supersymmetric
Chern–Simons theories.

7If one picks the particular value m = k + l + 2, however, the representation reduces to 〈k + 1, l〉
and 〈k, l+ 1〉. In other words, one can combine two particle multiplets 〈k+ 1, l〉 and 〈k, l+ 1〉 to form
a long multiplet whose mass is henceforth unconstrained in close analogy to the Higgs mechanism.
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2.4 N = 5, 6, 8 Supersymmetry and Multiplets

Let us also discuss the algebras and representations for N = 5, 6, 8 supersymme-
try. This is applicable to Chern–Simons theories with coinciding representations for
untwisted and twisted matter (see App. B) which have manifest N = 5, 6, 8 super-
symmetry. In general the higher supersymmetries anticommute with the N = 4
supercharges and thus they have to transform between untwisted and twisted N = 4
hypermultiplets.

In the simplestN = 5 case there are two additional supercharges Q̃α. Their algebra
g1 closes onto the momentum generators

{Q̃α, Q̃δ} = 2Pαδ. (2.15)

The additional supercharges Qα must act like

Q̃α|φb〉 = +vα(p)|ψ̃b〉, Q̃α|ψḃ〉 = −vα(p)|φ̃ḃ〉,
Q̃α|ψ̃b〉 = −uα(p)|φb〉, Q̃α|φ̃ḃ〉 = +uα(p)|ψḃ〉. (2.16)

For N = 6 supersymmetry the additional algebra g2 consists of four supersymme-
tries Q̃±α and two bosonic generators B̃ and C̃. Their non-trivial commutation relations
are

[B̃, Q̃±α ] = ±Q̃±, {Q̃+
α , Q̃

−
β } = Pαβ − imεαβC̃. (2.17)

There are two types of multiplets with opposite eigenvalue of the central charge C̃. For
C̃ ' −1 the action of the supercharges reads

Q̃+
α |φb−〉 = +vα(p)|ψ̃b−〉, Q̃+

α |ψḃ−〉 = −vα(p)|φ̃ḃ−〉,
Q̃−α |ψ̃b−〉 = −uα(p)|φb−〉, Q̃−α |φ̃ḃ−〉 = +uα(p)|ψḃ−〉,
Q̃+
α |ψ̃b−〉 = 0, Q̃+

α |φ̃ḃ−〉 = 0,

Q̃−α |φb−〉 = 0, Q̃−α |ψḃ−〉 = 0. (2.18)

The action on the conjugate multiplet with C̃ ' +1 reads

Q̃−α |φb+〉 = +vα(p)|ψ̃b+〉, Q̃−α |ψḃ+〉 = −vα(p)|φ̃ḃ+〉,
Q̃+
α |ψ̃b+〉 = −uα(p)|φb+〉, Q̃+

α |φ̃ḃ+〉 = +uα(p)|ψḃ+〉,
Q̃−α |ψ̃b+〉 = 0, Q̃−α |φ̃ḃ+〉 = 0,

Q̃+
α |φb+〉 = 0, Q̃+

α |ψḃ+〉 = 0. (2.19)

In supersymmetric Chern–Simons theories the splitting into the C̃ ' ±1 multiplets
originates from the structure of the superalgebra which defines the field content, cf.
Sec. 2.1.

Finally, for N = 8 supersymmetry there is a complete copy the the N = 4 superal-
gebra g4 consisting of the generators R̃ãb̃, R̂âb̂ and Q̃αb̃ĉ. The su(2)⊕ su(2) generators
act on spinor indices as usual

R̃ãb̃|Xc̃〉 = i
2
εb̃c̃|Xã〉+ i

2
εãc̃|Xb̃〉,

R̂âb̂|Xĉ〉 = i
2
εb̂ĉ|Xâ〉+ i

2
εâĉ|Xb̂〉. (2.20)
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Figure 2: The action of the extended N = 5, 6, 8 supersymmetries (left,
middle two, right) on one-particle asymptotic states.

Furthermore the supercharges obey the same relation as above

{Q̃αb̃ĉ, Q̃δẽf̂} = εb̃ẽεĉf̂Pαδ − 2mεαδεĉf̂R̃b̃ẽ + 2mεαδεb̃ẽR̂ĉf̂ . (2.21)

The representation on the fields is much like the one discussed in Sec. 2.3

Q̃αb̃ĉ|φdê〉 = +εĉêvα(p)|ψ̃db̃〉, Q̃αb̃ĉ|ψḋê〉 = −εĉêvα(p)|φ̃ḋb̃〉,
Q̃αb̃ĉ|ψ̃dẽ〉 = +εb̃ẽuα(p)|φdĉ〉, Q̃αb̃ĉ|φ̃ḋẽ〉 = −εb̃ẽuα(p)|ψḋĉ〉. (2.22)

Again, the additional indices ê and ẽ on the untwisted and twisted multiplets, respec-
tively, originate from the structure of the defining superalgebra.

Note that N = 6 Chern–Simons models at levels k = 1 or k = 2 are expected to
have N = 8 enhanced supersymmetry [20]. This may appear impossible considering
that the Sp(1) automorphism required for N = 8 supersymmetry cannot act on a
single N = 6 particle representation. Here one has to bear in mind that the points
k = 1, 2 are strongly coupled. Particles can form bound states which may turn out to
have degenerate energies such that an Sp(1) automorphism appears.

To conclude, we summarize the action of the N = 5, 6, 8 supersymmetry generators
Q and Q̃ on the untwisted and twisted hypermultiplets in Fig. 2.

3 Scattering Amplitudes from Supersymmetry

In this section we shall derive the form of scattering amplitudes by means of super-
symmetry and compare these predictions to field theory calculations.

3.1 Pure Scattering

We will now set up the amplitudes for a scattering process of four hypermultiplets. The
processes described here account for scattering of purely untwisted hypermultiplets in
models with N ≥ 4 supersymmetry. We assume that all four particle momenta pk,
k = 1, 2, 3, 4, are incoming and on shell. The polarization spinors (uk, vk) are on-shell
according to (2.10).

The amplitudes will be represented by an operator 〈T | acting on four-particle states
and returning the corresponding amplitude8

〈T |1234〉 = A1234. (3.1)

8Alternatively we may provide give an invariant four-particle state or an invariant two-to-two
scattering operator, cf. Sec. 3.5.
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The most general ansatz for the scattering matrix elements with manifest su(2)⊕su(2)
symmetry reads

〈T |φaφbφcφd〉 =
(
+1

2
(A+B)εadεbc + 1

2
(A−B)εacεbd

)
δ3(p1 + p2 + p3 + p4),

〈T |ψȧψḃψċψḋ〉 =
(
+1

2
(D + E)εȧḋεḃċ + 1

2
(D − E)εȧċεḃḋ

)
δ3(p1 + p2 + p3 + p4),

〈T |φaψḃφcψḋ〉 = −Gεacεḃḋ δ
3(p1 + p2 + p3 + p4),

〈T |ψȧφbψċφd〉 = −Lεȧċεbd δ3(p1 + p2 + p3 + p4),

〈T |φaφbψċψḋ〉 = −1
2
Cεabεċḋ δ

3(p1 + p2 + p3 + p4),

〈T |φaψḃψċφd〉 = −Hεadεḃċ δ
3(p1 + p2 + p3 + p4),

〈T |ψȧψḃφcφd〉 = −1
2
Fεȧḃεcd δ

3(p1 + p2 + p3 + p4),

〈T |ψȧφbφcψḋ〉 = −Kεȧḋεbc δ
3(p1 + p2 + p3 + p4). (3.2)

At this stage there are 10 independent matrix elements A, . . . , L of the scattering
amplitude.

We would now like to impose invariance under supersymmetry on the amplitude
leading to further constraints on the matrix elements. This is conveniently done by
imposing invariance conditions of the sort 〈T |Q11|φ1φ2φ2ψ2〉 = 0. From these we
obtain altogether 32 constraints which are collected in the following 16 spinor-valued
equations

0 = Av3 +Hu2 + Lu1, 0 = Bv3 + Cu4 +Hu2 − Lu1,

0 = Av4 +Gu2 +Ku1, 0 = Bv4 − Cu3 −Gu2 +Ku1,

0 = Av2 −Hu3 −Gu4, 0 = Bv2 − Fu1 −Hu3 +Gu4,

0 = Av1 − Lu3 −Ku4, 0 = Bv1 + Fu2 + Lu3 −Ku4,

0 = Du3 +Gv1 −Kv2, 0 = Eu3 − Fv4 −Gv1 −Kv2,

0 = Du4 −Hv1 + Lv2, 0 = Eu4 − Fu3 −Hv1 − Lv2,

0 = Du1 −Gv3 +Hv4, 0 = Eu1 − Cv2 +Gv3 +Hv4,

0 = Du2 +Kv3 − Lv4, 0 = Eu2 + Cv1 +Kv3 + Lv4. (3.3)

In order to extract the matrix elements A, . . . , L it is convenient to contract the equa-
tions with spinors appearing in the equation using the antisymmetric tensor εαβ. To
avoid clutter we introduce an antisymmetric scalar product for spinors

〈u, v〉 = εαβuαvβ. (3.4)

In analogy to the scattering amplitudes in four-dimensional Yang–Mills theory using
the spinor-helicity formalism we shall call this product a twistor bracket. Moreover,
we shall use the short notation

〈kl〉 := 〈uk, ul〉, 〈k̄l〉 := 〈vk, ul〉, 〈k̄l̄〉 := 〈vk, vl〉. (3.5)

Somewhat remarkably, all constraints can be solved simultaneously on the ten matrix

12



elements leaving just one overall factor T for the amplitude. The solution reads

A = T , D = −T 〈3̄4̄〉
〈12〉

, G = +T
〈4̄1〉
〈12〉

,

1
2
(A+B) = −T 〈3̄1〉〈24〉

〈12〉〈3̄4〉
, 1

2
(D + E) = +T

〈3̄1〉〈1̄3̄〉
〈12〉〈3̄4〉

, H = +T
〈3̄1〉
〈12〉

,

1
2
(A−B) = +T

〈14〉〈3̄2〉
〈12〉〈3̄4〉

, 1
2
(D − E) = −T 〈2̄3̄〉〈3̄2〉

〈12〉〈3̄4〉
, K = −T 〈4̄2〉

〈12〉
,

1
2
C = −T 〈3̄1〉〈3̄2〉

〈12〉〈3̄4〉
, 1

2
F = +T

〈3̄1〉〈1̄4〉
〈12〉〈3̄4〉

, L = −T 〈3̄2〉
〈12〉

. (3.6)

Clearly there are many equivalent ways of writing the matrix elements which also
explains why many of the 32 constraints are degenerate. A useful set of identities for
the four scattering particles with p1 + p2 + p3 + p4 = 0 is given by

〈lm〉
〈kn〉

=
〈k̄l〉
〈m̄n〉

=
〈k̄n̄〉
〈l̄m̄〉

, 〈k̄k〉 = −2im, {k, l,m, n} = {1, 2, 3, 4}. (3.7)

Additionally there is a cyclic identity which holds for any four two-component spinors

0 = 〈a, b〉〈c, d〉+ 〈b, c〉〈a, d〉+ 〈c, a〉〈b, d〉. (3.8)

There are three simple relations among the matrix elements which can be checked
using the above identities

0 = AD +GL−HK,
0 = AD −BE + CF,

0 = (A−B)(D − E)− CF + 4GL. (3.9)

The remaining seven matrix elements are independent: they can be adjusted freely
by choosing one overall factor, one fermion phase for each leg (uk, vk 7→ e±iαkuk, vk)
and the two Mandelstam invariants s = (p1 + p2)2 and t = (p1 + p4)2. Note that by a
Lorentz transformation one can change only three of the fermion phases. Thus if one
uses a particular choice of spinor polarization as a function of momenta, e.g. (A.9),
then only six elements are independent.

3.2 Mixed Scattering

Next we will consider scattering of mixed matter fields. Twisted hypermultiplets
transform under supersymmetry equivalently to untwisted multiplets, however with
the statistics of the on-shell particles flipped. To obtain the twisted scattering ampli-
tudes we can thus simply replace a (φa, ψȧ) by a (ψ̃a, φ̃ȧ) and insert the appropriate
signs due to the change of statistics.

For correct overall statistics and parity of the internal symmetry, we can only twist
multiplets in pairs. First we twist particles 3 and 4 of the four-particle scattering
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amplitude (3.2). A suitable ansatz for the mixed scattering amplitude is

〈T |φaφbψ̃cψ̃d〉 =
(
+1

2
(A+B)εadεbc + 1

2
(A−B)εacεbd

)
δ3(p1 + p2 + p3 + p4),

〈T |ψȧψḃφ̃ċφ̃ḋ〉 =
(
−1

2
(D + E)εȧḋεḃċ − 1

2
(D − E)εȧċεḃḋ

)
δ3(p1 + p2 + p3 + p4),

〈T |φaψḃψ̃cφ̃ḋ〉 = +Gεacεḃḋ δ
3(p1 + p2 + p3 + p4),

〈T |ψȧφbφ̃ċψ̃d〉 = −Lεȧċεbd δ3(p1 + p2 + p3 + p4),

〈T |φaφbφ̃ċφ̃ḋ〉 = +1
2
Cεabεċḋ δ

3(p1 + p2 + p3 + p4),

〈T |φaψḃφ̃ċψ̃d〉 = −Hεadεḃċ δ
3(p1 + p2 + p3 + p4),

〈T |ψȧψḃψ̃cψ̃d〉 = −1
2
Fεȧḃεcd δ

3(p1 + p2 + p3 + p4),

〈T |ψȧφbψ̃cφ̃ḋ〉 = +Kεȧḋεbc δ
3(p1 + p2 + p3 + p4). (3.10)

The constraints due to supersymmetry turn out to be exactly the same as in (3.3):
Due to the change of statistics of particles 3 and 4, we have to flip the signs of all
instances of u4, v4. Furthermore, the signs of the matrix elements C,D,E,G,K in
(3.10) have been flipped with respect to those in (3.2). Altogether the sign flips cancel
out and the solution (3.6) applies to the mixed scattering matrix as well. Note that
for the amplitudes A, . . . , L we can use a different prefactor T which will be denoted
by T123̃4̃. In general a particle index k̃ will indicate a twisted hypermultiplet.

Finally, let us state the result for the scattering matrix of four twisted multiplets

〈T |ψ̃aψ̃bψ̃cψ̃d〉 =
(
+1

2
(A+B)εadεbc + 1

2
(A−B)εacεbd

)
δ3(p1 + p2 + p3 + p4),

〈T |φ̃ȧφ̃ḃφ̃ċφ̃ḋ〉 =
(
+1

2
(D + E)εȧḋεḃċ + 1

2
(D − E)εȧċεḃḋ

)
δ3(p1 + p2 + p3 + p4),

〈T |ψ̃aφ̃ḃψ̃cφ̃ḋ〉 = −Gεacεḃḋ δ
3(p1 + p2 + p3 + p4),

〈T |φ̃ȧψ̃bφ̃ċψ̃d〉 = −Lεȧċεbd δ3(p1 + p2 + p3 + p4),

〈T |ψ̃aψ̃bφ̃ċφ̃ḋ〉 = +1
2
Cεabεċḋ δ

3(p1 + p2 + p3 + p4),

〈T |ψ̃aφ̃ḃφ̃ċψ̃d〉 = +Hεadεḃċ δ
3(p1 + p2 + p3 + p4),

〈T |φ̃ȧφ̃ḃψ̃cψ̃d〉 = +1
2
Fεȧḃεcd δ

3(p1 + p2 + p3 + p4),

〈T |φ̃ȧψ̃bψ̃cφ̃ḋ〉 = +Kεȧḋεbc δ
3(p1 + p2 + p3 + p4). (3.11)

Here the signs of H,K,C, F have been flipped with respect to (3.2). Flipping as well
the signs of u2, v2, u4, v4 results in the same set of constraints (3.3) whose solution is
given by (3.6). The prefactor for this scattering process will be denoted by T1̃2̃3̃4̃.

3.3 Scattering with N > 4 Supersymmetry

Let us now consider the additional constraints that follow if we extend the supersym-
metry to N = 5. We have new invariance conditions of the type 〈T |Q̃α|φ1φ1φ2ψ̃2〉
which in principle give sixteen constraints on the eight independent matrix structures

T1234, T123̃4̃, T12̃34̃, T12̃3̃4,
T1̃2̃34, T1̃23̃4, T1̃234̃, T1̃2̃3̃4̃. (3.12)
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However most of the constraints are redundant and there are only six which are inde-
pendent. We choose these to be

+ 〈1̄2̄〉T12̃34̃ + 〈1̄3̄〉T123̃4̃ − 〈1̄4〉T1234 = 0,

−〈1̄2̄〉T1̃234̃ + 〈2̄3̄〉T123̃4̃ − 〈2̄4〉T1234 = 0,

+〈1̄2̄〉T12̃3̃4 − 〈1̄3〉T1234 − 〈1̄4̄〉T123̃4̃ = 0,

−〈1̄2〉T1̃2̃34 + 〈3̄2〉T12̃3̃4 + 〈4̄2〉T12̃34̃ = 0,

+〈2̄1〉T1̃2̃34 + 〈3̄1〉T1̃23̃4 + 〈4̄1〉T1̃234̃ = 0,

+〈12〉T1̃23̃4 − 〈13〉T1̃2̃34 + 〈4̄1〉T1̃2̃3̃4̃ = 0. (3.13)

We can thus express all scattering elements in terms of T1234 and T123̃4̃

T1̃2̃3̃4̃ =
〈12〉
〈4̄1〉

(
〈13〉
〈34〉

+
〈2̄4̄〉
〈1̄2̄〉

)
T123̃4̃ −

〈12〉
〈3̄4̄〉

T1234 ,

T1̃2̃34 =
〈12〉
〈34〉

T123̃4̃ ,

T12̃34̃ =
−〈1̄3̄〉T123̃4̃ + 〈1̄4〉T1234

〈1̄2̄〉
,

T12̃3̃4 =
〈1̄4̄〉T123̃4̃ + 〈1̄3〉T1234

〈1̄2̄〉
,

T1̃23̃4 =
−〈2̄4̄〉T123̃4̃ − 〈2̄3〉T1234

〈1̄2̄〉
,

T1̃234̃ =
〈2̄3̄〉T123̃4̃ − 〈2̄4〉T1234

〈1̄2̄〉
. (3.14)

There are further, similar, relations if we consider the N = 6 algebra, however the
multiplet structure is slightly more complicated. In the case of N = 8 the algebra is
comprised of two copies of psu(2|2) and the scattering matrix takes a simple tensor
product form. Let us consider in a little more detail the N = 8 case. We must
decompose the symplectic gauge indices into so(4)gauge × su(2)× su(2) indices

φAa = φAaâ, φ̃Aȧ = φ̃Aȧã
ψAȧ = ψAȧâ, φ̃Aa = φ̃Aaã . (3.15)

The N = 4 prefactors similarly decompose e.g.

TAâ,Bb̂,Cĉ,Dd̂1234 = 〈T |φA1âφB1b̂φ
C
2ĉψ

D
2d̂
〉 (3.16)

These are all related by the additional su(2)’s and so we can pick a single representative
in each sector in terms of which we can express all other elements. Let us define

TN=8
123̃4̃

= TA1̂,B2̂,C1̃,D2̃

123̃4̃

TN=8
1234 = TA1̂,B2̂,C1̂,D2̂

1234 (3.17)

As before we consider the constraints following from invariance conditions such as

〈T |Q̃αẽf̂ |φ
A
1 φ

B
1 φ

C
2 ψ̃

D
2 〉 = 〈T |Q̃αẽf̂ |φ

A
1âφ

B
1b̂
φC2ĉψ̃

D
2d̃
〉 . (3.18)

and in addition to (3.14) we can find a relation between T123̃4̃ and T1234

TN=8
123̃4̃

=
〈1̄4〉
〈1̄3̄〉

TN=8
1234 . (3.19)
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3.4 Crossing Symmetry

First consider the exchange of particles 1 ↔ 2. In the scattering matrix (3.2,3.6) it
corresponds to the following exchange of elements

A↔ +A, B ↔ −B, C ↔ −C, G↔ −K, H ↔ −L,
D ↔ −D, E ↔ +E, F ↔ +F, K ↔ −G, L↔ −H. (3.20)

It is straight-forward to verify that the whole scattering matrix is symmetric under the
interchange of particles if the prefactor obeys S2134 = S1234. Similarly, the exchange
3↔ 4 leads to the following map of matrix elements

A↔ +A, B ↔ −B, C ↔ +C, G↔ +H, H ↔ +G,

D ↔ −D, E ↔ +E, F ↔ −F, K ↔ +L, L↔ +K. (3.21)

Again this leaves the scattering matrix invariant provided that S1243 = S1234.
As a third type of crossing we consider the cyclic permutation 1→ 2→ 3→ 4→ 1.

It turns out to reshuffle the matrix elements in a more elaborate fashion

A2341 → −1
2
(A1234 −B1234), B2341 → +1

2
(3A1234 +B1234),

D2341 → +1
2
(D1234 − E1234), E2341 → −1

2
(3D1234 + E1234),

G2341 → +L1234, L2341 → −G1234,

C2341 → +2K1234, K2341 → +1
2
F1234,

F2341 → −2H1234, H2341 → −1
2
C1234. (3.22)

Cyclic crossing symmetry on all the matrix elements is achieved by demanding

1→ 2→ 3→ 4→ 1: T2341 = −T1234
〈23〉〈4̄1〉
〈12〉〈4̄3〉

. (3.23)

Finally, consider the twisted scattering amplitudes (3.10,3.11). These have the
same crossing relations up to some signs due to statistics. A summary of the crossing
relations is provided in the following table:

1↔ 2 3↔ 4 1→ 2→ 3→ 4→ 1

T2134 = +T1234 T1243 = +T1234 T2341 = −T1234
〈23〉〈4̄1〉
〈12〉〈4̄3〉

T213̃4̃ = +T123̃4̃ T124̃3̃ = −T123̃4̃ T23̃4̃1 = −T123̃4̃

〈23〉〈4̄1〉
〈12〉〈4̄3〉

T2̃1̃3̃4̃ = −T1̃2̃3̃4̃ T1̃2̃4̃3̃ = −T1̃2̃3̃4̃ T2̃3̃4̃1̃ = +T1̃2̃3̃4̃

〈23〉〈4̄1〉
〈12〉〈4̄3〉

(3.24)

Note that the cyclic crossing relation for the mixed hypermultiplets maps between
scattering matrices with different hypermultiplet assignments.

3.5 Two-to-Two Particle Scattering

The scattering amplitude 〈T1234| in (3.2) is written such that all four particles are on an
equal footing. For various purposes, however, it is convenient to write the scattering
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amplitude as an operator T 43
12 acting on two-particle states and returning (a linear

combination of) two-particle states.
To convert between the two pictures, let us first introduce a two-particle state |1〉

which is invariant under the super-Poincaré algebra. In particular, its total momentum
must be zero, p2 = −p1. This implies the following relation for the polarization spinors

u2 = ie+iαv1, v2 = ie−iαu1, (3.25)

with some free parameter α representing the relative polarization between the spinors.
It is then straight-forward to confirm that the following composite state is annihilated
by all generators9

|1〉 =

∫
d3p 2πδ(p2 +m2)

(
εab|φaφb〉+ ieiαεȧḃ|ψȧψḃ〉

)
. (3.26)

This state is invariant under the full super-Poincaré algebra. Note that without the
integration over the mass shell it would only be invariant under supercharges and in-
ternal rotations which form an ideal of the algebra. The momenta p1,2 of the individual
particles break Lorentz invariance. We have inserted a normalization factor of 2π cor-
responding to the imaginary part of a propagator 2 Im(p2 +m2− iε)−1 = 2πδ(p2 +m2).

Now we can define the two-to-two scattering operator T 43
12 as

T 43
12|X1X2〉 = 1

2
〈T123̄4̄|X1X214̄413̄3〉, (3.27)

which is invariant by construction. The factor of 1/2 is a symmetry factor to account
for two identical outgoing particle multiplets; it is compensated by the phase space
integrals in the S-matrix of Sec. 3.5 which count each state twice modulo permutation.
More explicitly, using the action (3.2), the operator takes the form

T |φaφb〉 = 2π2

∫
d3p δ(p2

3 +m2) δ(p2
4 +m2)

(
A|φ(aφb)〉+B|φ[aφb]〉+ 1

2
Cεabε

ċḋ|ψċψḋ〉
)
,

T |ψȧψḃ〉 = 2π2

∫
d3p δ(p2

3 +m2) δ(p2
4 +m2)

(
D|ψ(ȧψḃ)〉+ E|ψ[ȧψḃ]〉+ 1

2
Fεȧḃε

cd|φcφd〉
)
,

T |φaψḃ〉 = 2π2

∫
d3p δ(p2

3 +m2) δ(p2
4 +m2)

(
G|ψḃφa〉+H|φaψḃ〉

)
,

T |ψȧφb〉 = 2π2

∫
d3p δ(p2

3 +m2) δ(p2
4 +m2)

(
K|ψȧφb〉+ L|φbψȧ〉

)
. (3.28)

Here we have labeled the two outgoing particles as 4 and 3. We have also fixed the
above phase to α = 1

2
π. In other words, the polarization spinors between particles 3, 4

and their conjugates 3̄, 4̄ are related by

uk̄ = +vk, vk̄ = −uk (3.29)

and the matrix elements A, . . . , L equal those in (3.6) with indices A123̄4̄, . . . L123̄4̄.

9This expression implies the use of polarization spinors u(p), v(p) with definite phase for a given
momentum p, see the discussion in Sec. 2.3. If we consider u1,2, v1,2 as the fundamental degrees of
freedom, we should choose the integral

∫
d2u1 d

2v1 d
2u2 d

2v2 δ(〈v1, u1〉+ 2im) δ3(p1 + p2) . . . .
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3.6 Worldsheet Scattering Matrix for AdS/CFT Integrability

The extended psu(2|2) algebra plays an important role in the investigation of inte-
grability in the planar AdS/CFT correspondence between strings on AdS5 × S5 and
N = 4 super Yang–Mills theory [29, 30, 36]. It also appears analogously in the re-
cently discussed duality between strings on AdS4 × CP3 and N = 6 Chern–Simons
theory [20, 21, 37–39]. The algebra serves as the symmetry in a light cone gauge of
string theory or equivalently in a ferromagnetic excitation picture of gauge theory spin
chains.

For the two body scattering of the N = 4 super Yang–Mills spin chain each of the
excitations can be one of 16 flavors and so the scattering is described by a 162 × 162

matrix. In [29] it was shown that the symmetries determine the matrix structure
uniquely and so it is determined up to an overall phase. The same result holds for the
scattering of worldsheet excitations on the string worldsheet [30,31].

Hofman and Maldacena, [30] (see also [33]), pointed out that the constraints im-
posed by the psu(2|2) algebra on the spin chain were exactly those that a four particle
scattering amplitude in 2 + 1-dimensions in a theory with the same super-algebra
would have. They further pointed out that the “dynamic” nature of the spin chain
scattering, whereby the length of the chain changes in certain scattering processes, is
related to the non-Lorentz invariance of the 2 + 1 scattering matrix. Under an overall
rotation it picks up a phase due to the fermions spin.

While the matrix structure of the scattering amplitude is identical between the spin
chain/worldsheet theory and the 2 + 1 Lorentz invariant theories the kinematics are
quite distinct which can be seen in the difference between the overall two- and three-
dimensional momentum delta functions. In two dimensions the scattering momenta
can not change in magnitude and at most can be exchanged between particles. In
three dimensions the final state phase space is larger and includes the relative angle
between the two particles.

The matrix elements A, . . . , L are related in terms of the spinors u, v from the
supersymmetry representation (2.9). In [29, 32] the supersymmetry representation is
specified in terms of the parameters a, b, c, d instead. We thus have to relate these sets
of parameters first: This is easily achieved by

u =
√

2im

(
+a
−c

)
, v =

√
2im

(
−b
+d

)
. (3.30)

The constraint 〈v, u〉 = −2im is equivalent to ad − bc = 1. This simple choice leads
to the following incoming momentum components10

p0 − p1 = −2ig mα(1− x+/x−),

p0 + p1 = −2ig mα−1(1− x−/x+),

p2 = −2g m(x+ − x−) + im. (3.31)

10Unfortunately, it turns out that p0 and p2 are purely imaginary for physical magnons of the
worldsheet theory. For magnons of the mirror worldsheet theory [40], however, all momentum com-
ponents are real. In fact one could choose for incoming particles u =

√
im(+a + ic,−c − ia),

v =
√
im(−b − id,+d + ib) which leads to exactly the same S-matrix elements. In that case p0

and p2 are interchanged and multiplied by i thus making them real. For the alternative choice, the
intermediate expressions are somewhat cluttered and hence we shall stick to the above unphysical
choice.
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Note that the parameters a, b, c, d associated to the magnons depend on the ordering
of magnons, see [32] for details. The correct assignment is

u1 =
√

2igmγ1

(
1

−iα−1/x+
1

)
,

v1 =
√
−2igmγ−1

1 (x+
1 − x−1 )

(
iα/x−1

1

)
,

u2 =
√

2igmγ2ξ1

(
1

−iα−1x−1 /x
+
1 x

+
2

)
,

v2 =
√
−2igmγ−1

2 ξ−1
1 (x+

2 − x−2 )

(
iαx+

1 /x
−
1 x
−
2

1

)
,

u3 = −v3̄ =
√

2igmγ1ξ2

(
1

−iα−1x−2 /x
+
1 x

+
2

)
,

v3 = +u3̄ =
√
−2igmγ−1

1 ξ−1
2 (x+

1 − x−1 )

(
iαx+

2 /x
−
1 x
−
2

1

)
,

u4 = −v4̄ =
√

2igmγ2

(
1

−iα−1/x+
2

)
,

v4 = +u4̄ =
√
−2igmγ−1

2 (x+
2 − x−2 )

(
iα/x−2

1

)
. (3.32)

Note that the energies are related as (E3, E4) = (E1, E2). Thus the prefactor T should
contain a factor of δ(E3 − E1). Let us thus compute the contribution from the delta
functions11

2π2

∫
d3p δ(p2

3 +m2)δ(p2
4 +m2)δ(E3 − E1) =

π2

2|p1xp2y − p1yp2x|
. (3.33)

We will thus need a compensating factor ∆12 for the prefactor

∆12 =
2

π2
(p1xp2y − p1yp2x) =

4ig2m2

π2

(
1− x+

1

x−1

)(
1− x+

2

x−2

)(
1− x−1 x

−
2

x+
1 x

+
2

)
. (3.34)

Substituting the representation spinors (3.32) into the matrix elements (3.6) one re-
covers the S-matrix presented in [32] provided that the prefactors of the S-matrices
are related as follows

T123̄4̄ = δ(E1 − E3)∆12S
0
12

x+
2 − x−1
x−2 − x+

1

. (3.35)

The matrix elements A, . . . , L have been normalized such that they can be compared
directly to the results of [29, 32]. A priori the magnon S-matrix depends on nine pa-
rameters, S0, x1, x2, g, α, γ1, γ2, ξ1, ξ2. As the matrix elements in (3.6) have only seven
degrees of freedom, there must be two directions in the nine-dimensional parameter
space along which the S-matrix is invariant. From (3.32) one can easily infer that the
parameters γ1, γ2, ξ1, ξ2 correspond to phases of the fermion spinors, see [30]. In the
integrable system these parameters and the phase factor S0 are usually fixed leaving

11We will consistently drop the contribution from diagonal scattering where (p1, p2) = (p3, p4).
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only three degrees of freedom x1, x2, g. In that sense, the integrable S-matrix is merely
a special case of the most general spacetime S-matrix.

Let us now consider the crossing symmetry of the magnon S-matrix [41]. and
compare it to the crossing studied in Sec. 3.4. Crossing of the magnon S-matrix
corresponds to interchanging particles 2 and 4. From iterating (3.24) we can derive
the 2↔ 4 crossing relation

T1432 =
〈14〉
〈12〉

〈3̄2〉
〈3̄4〉

T1234 or T14̄3̄2 =
〈14̄〉
〈12〉

〈32〉
〈34̄〉

T123̄4̄. (3.36)

This combination of spinors takes the following form in x± notation

〈14̄〉
〈12〉

〈32〉
〈34̄〉

=
x−2 − x−1
x+

2 − x−1
1/x−2 − x+

1

1/x+
2 − x+

1

. (3.37)

We furthermore have to relate the crossed prefactor T14̄3̄2 to the crossed prefactor S0
12̄

and also fix the parameters ξk
12

T14̄3̄2 = δ(E1 − E3)∆12

(
S0

12̄

1/x+
2 − x−1

1/x−2 − x+
1

)−1

, ξ2
k =

x+
k

x−k
. (3.38)

We then recover the crossing relation [41,32]

1 =
S0

12S
0
12̄

ξ2
1

x+
2̄
− x−1

x−
2̄
− x−1

1/x+
2̄
− x+

1

1/x−
2̄
− x+

1

. (3.39)

Given this formal equivalence, it is natural to ask what role the known integrable
structures of the the spin chain might play in the 2 + 1 dimensional supersymmetric
Chern–Simons theory. However due to the different kinematical structure, and in
particular because of the delta-function prefactor, the Chern–Simons scattering matrix
does not generically satisfy the Yang–Baxter equation.

3.7 Six-Particle Scattering

Let us briefly comment on scattering of more than four particles. In fact, scatter-
ing must always involve an even number of external physical particles due to charge
conservation: All particles transform as a doublet of one of the two internal su(2)
symmetries. In other words they form a doublet of the diagonal su(2). A singlet of
this su(2) can only be composed from an even number of doublets.

The next non-trivial case is thus six external particles. Altogether there are
46 = 4096 components most of which are zero due to charge conservation. Taking
into account the su(2) × su(2) internal symmetry, there are 70 remaining invariant
structures. Finally, supersymmetry relates most of them and there are only two in-
variant structures leading to two prefactors [32], see also [42]. These can, for instance,
be obtained from the purely bosonic and purely fermionic scattering processes

〈T |φ1φ1φ1φ2φ2φ2〉, 〈T |ψ1ψ1ψ1ψ2ψ2ψ2〉. (3.40)

12We do not understand the appearance of the inverse in the formula, but it is necessary to make
the below crossing relation work.
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Figure 3: Sample Feynman graph and color structure.

In this work we will not need higher-particle scattering because it contributes to
unitarity relations starting from three loops. As there are no physical gluon states
all scattering amplitudes must involve an even number of external particles. For
two-to-two scattering this implies that in the unitarity relations we must have four
internal, cut legs which implies at least three loop momenta. Nevertheless, it would be
interesting to see whether one can set up recursion relations similar to those obtained
for N = 4 SYM [9, 10] or find related generating functions for amplitudes [43]. The
form of the Chern–Simons matter scattering amplitudes is actually quite similar to
those of N = 4 SYM but again one must be careful to take into account the significant
differences due to the three-dimensional kinematics.

4 Color Structures

Feynman diagrams in a gauge theory consist of two parts, spacetime functions and
color structures. Here we shall discuss the color structures relevant to four-point
scattering in N ≥ 4 Chern–Simons theories at tree level and at one loop. The scat-
tering amplitudes will then be written as linear combinations of these color structures
multiplied by space-time functions. In fact, it usually suffices to compute so-called
color-ordered amplitudes. However, because the gauge group decomposes into multi-
ple factors potentially of different rank it is worth the effort of analyzing the structures
in detail. It will turn out that the numerical factors from the color structure crucially
depend on the colors of the external legs.

4.1 Color Graphs

We start by introducing a graphical notation which will be very useful to classify color
structures. Consider, for example, the scattering of two particles by exchange of a
gluon, cf. the Feynman graph in Fig. 3. The Feynman rules associate a color factor
to each vertex (e.g. TMAB) and to each line (e.g. KMN). In gauge theories the color
structure of Fig. 3 is typically

TMABK
MNTNCD. (4.1)

We shall use the same graph Fig. 3 to denote this color structure. Nevertheless, the
correspondence between Feynman graphs and color structures is not one-to-one: There
can be vertices with a composite color structure, e.g. a single vertex can be of the form
(4.1). Therefore several Feynman diagrams will have one and the same color structure.
Furthermore, different color structures are often related by some identities.
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Figure 4: Color lines: LAB, L̃ÃB̃, KMN .
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Figure 5: Color vertices: MMAB, M̃MÃB̃, FMPQ.

We now set up the specific rules for a generic N = 4 Chern–Simons model, cf.
App. B for a brief summary. There are three types of fields: untwisted matter, twisted
matter and gluons. We shall use solid, double and wiggly lines to distinguish between
them, see Fig. 4. The associated color factors are LAB, L̃ÃB̃ and KMN , respectively.
There are also three types of vertices: They connect a gluon to two untwisted fields,
two twisted fields or to two further gluons. The vertices are depicted in Fig. 5 and they
correspond to the structures MMAB = KMNM

N
AB, M̃MÃB̃ = KMNM̃

N
ÃB̃

and FMPQ =

KMNF
N
PQ, respectively. All the terms in the Lagrangian in App. B.2 have a graphical

representation using the above lines and 3-vertices.
In a gauge theory the vertices are structure constants of the gauge group. They

therefore obey a host of identities, e.g. Jacobi identities. In our case there are five
Jacobi identities, see App. B.1. They all have the same form and are summarized
graphically in Fig. 6. Note that the Jacobi identity only exists if all involved vertices
exist: There is no Jacobi identity for a gluon line joining a twisted with an untwisted
vertex! Here our main interest is the enumeration of distinct structures and not their
precise prefactors. For instance, we shall not always pay close attention to signs.

4.2 Tree Level

Let us first consider a scattering process of four untwisted matter fields. At tree level
we need two 3-vertices to connect the four external lines. There are three ways in
which this can be done, see Fig. 7. We shall denote the structures by

Υ
(0)
AB,CD = MMABK

MNMNCD. (4.2)

They have the obvious eight-fold symmetries Υ
(0)
AB,CD = Υ

(0)
BA,CD = Υ

(0)
CD,AB. Further-

more, the Jacobi identity in Fig. 6 relates these three structures

Υ
(0)
AB,CD + Υ

(0)
AC,DB + Υ

(0)
AD,BC = 0. (4.3)

+ + = 0

Figure 6: Jacobi identities for color structures.
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1 2

34

1 2

34

Figure 7: Untwisted tree graphs: Υ (0)
12,34, Υ (0)

13,24, Υ (0)
14,23.

Figure 8: Mixed tree graphs: Υ (0)

12,3̃4̃
, Υ (0)

12,3̃4̃
, Υ (0)

13,2̃4̃
, Υ (0)

1̃2̃,34
, Υ (0)

1̃2̃,34
, Υ (0)

1̃3̃,24
.

Now any scattering amplitude at tree level can be written as

T = TsΥ
(0)
12,34 + TtΥ

(0)
14,23 + TuΥ

(0)
13,24. (4.4)

The Jacobi identity (4.3), however, states that the basis Υ
(0)
12,34, Υ

(0)
13,24, Υ

(0)
14,23 is over-

complete. Thus for any δ the amplitude is equivalent to

T = (Ts + δ)Υ
(0)
12,34 + (Tt + δ)Υ

(0)
14,23 + (Tu + δ)Υ

(0)
13,24. (4.5)

We can use this freedom to remove one of the coefficients, for example δ = −Ts
simplifies the amplitude to

T = T ′tΥ
(0)
14,23 + T ′uΥ

(0)
13,24. (4.6)

Next we consider scattering amplitudes between two untwisted and two twisted
fields. They can be written using the symbol

Υ
(0)

AB,C̃D̃
= MMABK

MNM̃NC̃D̃. (4.7)

There are six permutations for the function: Υ
(0)

12,3̃4̃
, Υ

(0)

13,2̃4̃
, Υ

(0)

14,2̃3̃
, Υ

(0)

23,1̃4̃
, Υ

(0)

24,1̃3̃
, Υ

(0)

34,1̃2̃
,

see Fig. 8. In this case there are no Jacobi identities because there is no vertex to
connect untwisted and twisted field directly.

Finally, the amplitudes for four twisted fields are analogous to the untwisted fields
discussed above. Altogether there are 2 + 6 + 2 color structures for four-particle
scattering at tree level.

4.3 One Loop

For four particle scattering at the one-loop level there must be four 3-vertices which
can be connected in various ways. It is obvious that the graph has one internal loop
which permits a rough classification: The loop can have two sides (bubble), three
sides (triangle) or four sides (box). A bubble can be understood to dress a line while
a triangle dresses a vertex. Bubbles and vertices are in fact closely related, see Fig. 9
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Figure 9: Bubble-triangle relations.

= +

Figure 10: Triangle-box relation.

Consider a bubble connected to a vertex by a line. Applying the Jacobi identity
(Fig. 6) to the connecting line will move the loop onto the vertex. Consider instead a
triangle with two sides of equal kind (in our model triangles always have this property).
Applying the Jacobi identity (Fig. 6) to the third side will move the loop onto the line
at the opposite side. We can thus convert freely between bubbles and triangles. The
only exception where this is not possible is for configurations of mixed particles which
lack a Jacobi identity.

A similar relation holds between triangles and boxes. Consider two adjacent ver-
tices, one of them being dressed by a loop, see Fig. 10. Then apply the Jacobi identity
(Fig. 6) to the connecting line. This yields two boxes. The boxes are distinct and thus
this conversion is a one-way procedure: Triangles can be converted to boxes (unless
they contain mixed particles), but not vice versa.

Our strategy for enumerating independent one-loop structures for four-particle
scattering is clear. We should convert bubbles to triangles and triangles to boxes as
far as possible.

We start with only untwisted particles. Clearly the color structures can be con-
verted to boxes by the above procedure. A box has the underlying structure

Υ
(1) �
AB,CD = MMAEMNCFK

MNKPQLEGLFHMPGBMQHD. (4.8)

It has a fourfold symmetry Υ
(1) �
AB,CD = Υ

(1) �
BA,DC = Υ

(1) �
CD,AB. In total there are six boxes,

all of the same structure, but with a permutation of the external legs, see Fig. 11. The
Jacobi identity relates all six of these, but only at the expense of triangles which have
been eliminated earlier. It turns out that the basis of six boxes is minimal.

For four external untwisted fields there is also the option to have twisted particles
run in the internal loop. In this case the loop must be a bubble dressing the central
gluon line. Jacobi identities are ineffective here and thus there are three structures
denoted by Υ

(1) ◦̃
12,34, Υ

(1) ◦̃
14,23, Υ

(1) ◦̃
13,24 (see Fig. 12). Bubble graphs are defined by
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Figure 11: Purely untwisted scattering at one loop. Clockwise from top left:
Υ

(1) �
14,23 , Υ (1) �

13,24 , Υ (1) �
13,42 , Υ (1) �

12,43 , Υ (1) �
12,34 , Υ (1) �

14,32 . The horizontal and vertical dotted
lines indicate possible unitarity cuts in the s- and t-channels, respectively, to
be discussed in Sec. 6.4.

Figure 12: Untwisted scattering with internal twisted loop: Υ
(1) ◦̃
12,34, Υ (1) ◦̃

14,23,

Υ
(1) ◦̃
13,24. The horizontal and vertical dotted lines indicate possible unitarity cuts

in the s- and t-channels, respectively, to be discussed in Sec. 6.5.
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Figure 13: Mixed scattering at one loop with untwisted particles 1, 4 and
twisted particles 2, 3: Υ (1) �

14,2̃3̃
, Υ (1) �

14,3̃2̃
, Υ (1) ◦

14,2̃3̃
, Υ (1) ◦̃

14,2̃3̃
.

Υ
(1) ◦
AB,CD = MMABK

MPMPEFL
EGLFHMQGHK

QNMNCD,

Υ
(1) ◦̃
AB,CD = MMABK

MPM̃PẼF̃ L̃
ẼG̃L̃F̃ H̃M̃QG̃H̃K

QNMNCD, (4.9)

they have the same eightfold symmetry as tree graphs Υ
(0)
AB,CD, but they do not obey

an identity like (4.3). Note that the untwisted bubble can be expanded to a sum of
boxes

Υ
(1) ◦
AB,CD = 2Υ

(1) �
AD,BC + 2Υ

(1) �
AC,BD. (4.10)

Finally, we must enumerate the structures for mixed four-particle scattering at one
loop. It turns out that some graphs can be promoted to a box while others cannot.
The latter ones can however be brought to the form of a bubble dressing the central
gluon line. There are four diagrams Υ

(1) �
14,2̃3̃

, Υ
(1) �
14,3̃2̃

, Υ
(1) ◦
14,2̃3̃

, Υ
(1) ◦̃
14,2̃3̃

for each assignment

of the untwisted and twisted particles to the external legs, see Fig. 13; 24 in total.
The structures are analogous to those in (4.8,4.9) but with some structure constants
replaced by twisted ones.

Before we close this part, it is useful to mention that the one-loop structures can
be understood as squares of tree structures. For example the box can be written as
an iterated tree

Υ
(1) �
AB,CD = Υ

(0)
AE,CFL

EGLFHΥ
(0)
GB,HD, (4.11)

or Υ
(0)
16,25Υ

(0)
64,53 = Υ

(1) �
14,23 for short. For the three basic tree color structures Υ

(0)
12,34, Υ

(0)
14,23

and Υ
(0)
13,24 we can set up a convenient multiplication table:

· Υ
(0)
56,34 Υ

(0)
53,64 Υ

(0)
63,54

Υ
(0)
12,56 Υ

(1) ◦
12,34 −1

2
Υ

(1) ◦
12,34 −1

2
Υ

(1) ◦
12,34

Υ
(0)
16,25 −1

2
Υ

(1) ◦
12,34 Υ

(1) �
14,23 Υ

(1) �
13,24

Υ
(0)
15,26 −1

2
Υ

(1) ◦
12,34 Υ

(1) �
13,24 Υ

(1) �
14,23 (4.12)

4.4 Planar Limit and Color Ordering

It is often convenient to consider gauge groups with a very large rank where the class
of planar Feynman diagrams contributes dominantly. At the one-loop level it is in fact
often sufficient to just compute the planar Feynman diagrams and all the non-planar
corrections follow by completion of the color structures. Color ordering for scattering
amplitudes is also based intrinsically on the availability of many colors. Here we discuss
the large-N behavior of the color structures discussed above.

A prototypical N = 4 supersymmetric Chern–Simons model with mixed hypermul-
tiplets is a quiver theory with U(Nk) gauge groups, see Fig. 1 on page 5. The gauge
fields belong to the adjoint of the U(Nk) while the matter fields are bi-fundamentals
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Figure 14: Three color ordering structures Tr(1̄2)(2̄1)(1̄2)(2̄1) for 1234,
Tr(1̄2)(2̄1)(1̄0)(0̄1) for 123̃4̃, Tr(1̄2)(2̄3)(3̄2)(2̄1) for 12̃3̃4
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Figure 15: Double line notation for untwisted, twisted and gluon color lines,
cf. Fig. 4. Gluon lines have associated sign factors.

connecting two adjacent gauge group factors. Let us for definiteness assume that un-
twisted matter connects U(N2k−1) to U(N2k) and twisted matter connects U(N2k) to
U(N2k+1), cf. Fig. 1. In the planar limit all the Nk are taken to be proportional to
some large number N .

Now we shall consider color ordering of the legs in a scattering graph: Each leg
is assigned a pair of fundamental color indices (k̄, k ± 1). Two adjacent legs have a
common but mutually conjugate color index . . . , k)(k̄, . . .. A sample color ordering
structure for four untwisted fields is thus Tr(1̄2)(2̄1)(1̄2)(2̄1). A similar color ordering
structure for two untwisted and two twisted fields would be Tr(1̄2)(2̄1)(1̄0)(0̄1), see
Fig. 14.

A color ordering structure can be applied to a color graph in order to yield a
polynomial in the ranks Nk. It is straight-forward to evaluate the polynomial when
the graph is represented in a double line notation: The lines of a color structure (see
Fig. 4) are thickened to a ribbon and the two sides of the ribbon are attributed a

. . . . . .

+

−

. . .

Figure 16: Double line notation for vertices, cf. Fig. 5. Pure gluon vertices
have associated sign factors.
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N1

N2

N1

N2

N2
+

+

1 2

34

N1

N2

N1

N2

N1− −

1 2

34

Figure 17: Two box graphs Υ (1) �
14,23 and Υ

(1) �
12,43 with different assignment of

internal gluons contracted with the color structure Tr(1̄2)(2̄1)(1̄2)(2̄1) in the
planar limit.

certain color Nk, see Fig. 15. The color indices must be adjacent for matter lines
and equal for gauge lines as explained above. A vertex connects sides of equal color
in two possible ways, see Fig. 16. Each closed loop of color k then contributes one
power of Nk to the monomial associated to the ribbon graph. A (possibly incomplete)
set of rules to determine the sign of a ribbon graph is as follows: Signs originate
from gluon lines with odd color (Fig. 15) as well as from one out of two pure gluon
vertices (Fig. 16). Note that we will not be careful about some overall signs of color
graphs when they are not related in some way. Sample ribbon graphs are provided in
Fig. 17. It is obvious that the large-N asymptotics follows from the planar structure
of the graph. However, the precise distribution of the Nk ∼ N factors is not as easily
recognized. In the example in Fig. 17 the two different orientations of the box lead to
two different leading-N contributions, N2

1N
3
2 vs. N3

1N
2
2 . Let us therefore evaluate the

color structures discussed above which appear in the field theory calculation at one
loop.

Pure Scattering. For scattering of four untwisted particles we shall always take
the standard color ordering of N−2

1 N−2
2 Tr(1̄2)(2̄1)(1̄2)(2̄1), cf. Fig. 14, to evaluate

color structures. The prefactor cancels the color factors which originate from the color
ordering structure itself and they make the large-N expansion more transparent. For
the tree graphs in Fig. 7 we obtain the following exact results

Υ
(0)
12,34 → −1 +

1

N3N4

, Υ
(0)
14,23 → +1− 1

N3N4

, Υ
(0)
13,24 → 0. (4.13)

The large-N asymptotics agrees with the planar structure of the underlying graphs,
the first two are planar while the third one is non-planar. Also the Jacobi identity
(4.3) is fulfilled.

Next we evaluate the box graphs in Fig. 11, see Fig. 18 for an explicit example,

Υ
(1) �
14,23 → N2 −

2

N1

+
1

N2

, Υ
(1) �
14,32 → −

2

N1

+
2

N2

, Υ
(1) �
13,24 → 0 ,

Υ
(1) �
12,43 → N1 −

2

N2

+
1

N1

, Υ
(1) �
12,34 → +

2

N1

− 2

N2

, Υ
(1) �
13,42 → 0 . (4.14)

The bubble graphs in Fig. 12 yield similar expressions

Υ
(1) ◦
12,34 → 2N2 −

4

N1

+
2

N2

, Υ
(1) ◦
14,23 → 2N1 −

4

N2

+
2

N1

, Υ
(1) ◦
13,24 → 0 .

Υ
(1) ◦̃
12,34 → 2N0 +

2N3

N1N2

, Υ
(1) ◦̃
14,23 → 2N3 +

2N0

N1N2

, Υ
(1) ◦̃
13,24 → 0 . (4.15)
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+
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−
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Figure 18: Full evaluation of the box graph Υ
(1) �
14,23 contracted with the color

structure N−2
1 N−2

2 Tr(1̄2)(2̄1)(1̄2)(2̄1): N2 −N−1
1 −N−1

1 +N−1
2 .

The untwisted bubbles are related to the boxes via (4.10) and the above expressions
obey the rule. Note that we have evaluated the twisted bubbles under the assumption
of many gauge group factors in the N = 4 quiver diagram (Fig. 1). For N = 5, 6, 8
supersymmetric models twisted and untwisted representations are the same and thus
the bubbles in (4.15) must be the same as well

Υ (1) ◦ = Υ (1) ◦̃. (4.16)

The expressions (4.15) for N3 → N1 and N0 → N2 do not reflect the equality because
the above assumptions for evaluating the twisted bubble Υ (1) ◦̃ do not apply in a closed
quiver of length two (see Fig. 1 on page 5). Instead we must set Υ (1) ◦̃ → Υ (1) ◦ for
N = 5, 6, 8.

Mixed Scattering. Our standard color ordering for mixed scattering of the type
123̃4̃ will be N−1

0 N−2
1 N−1

2 Tr(1̄2)(2̄1)(1̄2)(2̄1), cf. Fig. 14. The single tree diagram for
this assignment of twisted legs evaluates to

Υ
(0)

12,3̃4̃
→ −1. (4.17)

The one-loop graphs can be found in Fig. 13, they yield

Υ
(1) �
12,3̃4̃

→ N1, Υ
(1) �
12,4̃3̃

→ 1

N1

, Υ
(1) ◦
12,3̃4̃
→ 2N2 −

2

N1

, Υ
(1) ◦̃
12,3̃4̃
→ 2N0 −

2

N1

.

(4.18)
Finally let us consider another assignment of twisted legs 123̃4̃ which will become

useful later. The standard color ordering will be N−1
1 N−2

2 N−1
3 Tr(1̄2)(2̄3)(3̄2)(2̄1), cf.

Fig. 14. The color ordered tree graph reads

Υ
(0)

14,2̃3̃
→ +1. (4.19)

while the color ordered loop amplitudes in Fig. 13 yield

Υ
(1) �
14,2̃3̃

→ N2, Υ
(1) �
14,3̃2̃

→ 1

N2

, Υ
(1) ◦
14,2̃3̃
→ 2N1 −

2

N2

, Υ
(1) ◦̃
14,2̃3̃
→ 2N3 −

2

N2

.

(4.20)
For purely twisted scattering we use the ordering N−2

2 N−2
3 Tr(3̄2)(2̄3)(3̄2)(2̄3), but

the results will be analogous to those of purely untwisted scattering discussed above.
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5 Four-Particle Scattering in Field Theory

In this section we compare the results for the four particle scattering matrix, obtained
in the previous section using the supersymmetry algebra, with the predictions of per-
turbative field theory computations at the tree and one-loop level.

In what is to follow, we shall start with the N = 4 theory without twisted hy-
permultiplets, we shall then build on that by including twisted hypermultiplets but
without imposing any particular conditions on the representations under which the
two matter multiplets transform. Thus the solutions we obtain will hold for theories
with N = 4, 5, 6 and 8 supersymmetries. We will relegate some of the details regard-
ing the field theory conventions to the appendices where one can find, for example,
the explicit expression for the action (B.5) and the oscillator expansion of the fields
(B.15).

We can define, as is usual, two particle in and out states for the scalars and fermions
in terms of their free oscillator expressions:

|B, p2;A, p1〉in =
√

2E1

√
2E2C

†
B(p2)C†A(p1)|0, t = −∞〉 (5.1)

where A,B denote, here collectively, all the particle labels and C†A,B are the corre-
sponding positive energy creation operators. One can then define the S-matrix ele-
ments between in and out states as usual which in turn, in the notation of (Section 3.5),
defines the operator T 43

12 via the usual relation S = 1 + iT . Thus,

out〈p4, p3|p2, p1〉in = δ1(3δ4)2 + iδ (p1 + p2 − p3 − p4) T123̄4̄ . (5.2)

However to connect with the four-particle scattering matrix used in (3.2), where all
the momenta are on an equal footing and we have negative energy particles, we must
rather consider four point correlation functions. As is standard, we identify the one-
particle irreducible four point functions with all momenta incoming, Γ (p1, p2, p3, p4)
with −i T1234.

In doing this we must be slightly careful regarding the definition of our asymptotic
states. At tree-level we will simply include an addition factor

√
4π/k per external field

but at higher loops we must include the non-trivial field renormalization that occurs.

5.1 Pure Amplitudes at Tree Level

Let us initially consider the element of T given by

A = i
〈
φA1 (p1)φB1 (p2)φC2 (p3)φD2 (p4)

〉
1PI

(5.3)

where A denotes the total contribution for untwisted scalar to scalar scattering, trans-
forming in the symmetric representation of su(2) and without any implicit require-
ments of color ordering on the indices A,B,C,D.

Explicit evaluation of the complete, non-color ordered matrix element A follows
from the Feynman diagrams (Figure 19) and, in terms of a simplified coupling

g =
4π

k
, (5.4)
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D,p4 C,p3

B,p2A,p1

AT = + +

Figure 19: Diagrams for the AT element at tree level.

gives the expression

A = g KMN

(
MM

ADM
N
BCAt +MM

ACM
N
BDAu

)
, (5.5)

with the color stripped amplitudes At, Au

At = 2i

(
im− εµνρp

µ
1p

ν
3p
ρ
4

(p1 + p4)2

)
, Au = 2i

(
im− εµνρp

µ
1p

ν
4p
ρ
3

(p1 + p3)2

)
. (5.6)

There are equivalent expressions for At expressed in terms the three dimensional
Lorentz invariants s, t, u or the spinors, which themselves are related by,

s = (p1 + p2)2 = −〈12̄〉〈1̄2〉 = 〈11̄〉2 − 〈12〉〈1̄2̄〉,
t = (p1 + p4)2 = −〈14̄〉〈1̄4〉 = 〈11̄〉2 − 〈14〉〈1̄4̄〉,
u = (p1 + p3)2 = −〈13̄〉〈1̄3〉 = 〈11̄〉2 − 〈13〉〈1̄3̄〉,√

−stu = ±〈12̄〉〈23̄〉〈31̄〉. (5.7)

In terms of these variables we can write 13

At = i
〈12〉〈2̄4̄〉
〈4̄1〉

= i

(
2im−

√
−stu
t

)
, (5.8)

The At term in the above expression captures the contribution from one ordering of
the contact term indices and the t-channel gluon exchange, while the second term Au
is the remaining part of the contact term and the u-channel gluon exchange. Due to
the choice of su(2) indices there is no s-channel gluon exchange diagram. In obtaining
this answer we have used the fact that the Chern–Simons propagator is given by〈

AµM(p)AνN(q)
〉

= g KMN
εµνρpρ

2p2
δ3(p+ q). (5.9)

As discussed in Section 4.2 using the symmetries of KMN and MM
AB in conjunction with

the fundamental identity imply that it is possible to write any tree level amplitude
involving only untwisted hypermultiplets as

A(0) = AtΥ
(0)
14,23 + AuΥ

(0)
13,24. (5.10)

13In the left-most expression there is a sign ambiguity due to the square root. In checking such
properties as crossing it is therefore always preferable to use the spinor formulation.
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Note that (5.5) is already of this form. For amplitudes where this is not automatically
the case, we can eliminate the s-channel color structure using the fundamental identity

KMN

(
MM

ACM
N
BD +MM

CBM
N
AD +MM

BAM
N
CD

)
= 0. (5.11)

The color ordered contribution to the amplitude is taken to be simply the first (t-
channel) term of the above expression, after we strip away the color factor: At. The
second (u-channel) term is related to the first term by crossing.

The undetermined prefactor T appearing in the matrix elements (3.6) simply equals
the A element. Thus the color ordered normalization factor Tt is nothing but the t-
channel amplitude for scalars transforming in the symmetric representation of su(2)

Tt = At = i
〈12〉〈2̄4̄〉
〈4̄1〉

. (5.12)

Once this factor has been set, as above, we can check for the other matrix elements
all of which will have the same prefactor:

g KMNM
M
ADM

N
BC = g Υ

(0)
14,23 (5.13)

and for which the tree level perturbative computations yield:

A = +i
〈12〉〈2̄4̄〉
〈4̄1〉

, D = −i〈2̄4̄〉〈3̄4̄〉
〈4̄1〉

, G = +i〈2̄4̄〉 ,

1
2
(A+B) = −i〈3̄1〉〈24〉〈2̄4̄〉

〈4̄1〉〈3̄4〉
, 1

2
(D + E) = −i〈3̄1〉〈1̄3̄〉〈2̄4̄〉

〈4̄1〉〈3̄4〉
, H = +i

〈3̄1〉〈2̄4̄〉
〈4̄1〉

,

1
2
(A−B) = −i〈14〉〈1̄3̄〉

〈3̄4〉
, 1

2
(D − E) = +i

〈1̄3̄〉〈2̄3̄〉
〈3̄4〉

, K = −i〈4̄2〉〈2̄4̄〉
〈4̄1〉

,

1
2
C = −i〈3̄1〉〈1̄3̄〉

〈3̄4〉
, 1

2
F = +i

〈2̄4〉〈1̄3̄〉
〈3̄4〉

, L = +i〈1̄3̄〉 .

(5.14)
These results are in manifest agreement with the predictions from the supersymme-
try algebra in (3.6). We can now write the complete tree-level untwisted-untwisted
scattering prefactor

T
(0)
1234 = Υ

(0)
14,23

(
ig
〈12〉〈2̄4̄〉
〈4̄1〉

)
+ Υ

(0)
13,24

(
ig
〈12〉〈2̄3̄〉
〈3̄1〉

)
. (5.15)

Since the twistor brackets satisfy a host of non-linear identities such as (3.7,3.8)
there is no canonical way of representing the results of the perturbative computations
however the above seems to be particularly simple. We note the following identities
have been used to compute the scattering amplitudes involving four fermions i.e. the
matrix elements D and E:

(u4̄γµv1) (u3̄γνv2)
εµνρ(p1 + p4)ρ

t
= 2
〈2̄4̄〉〈3̄4̄〉
〈14̄〉

,

(u3̄γµu4̄) (v1γνv2)
εµνρ(p1 + p2)ρ

s
= 2

(
〈12〉〈2̄4̄〉
〈14̄〉

)(
〈3̄2〉〈2̄3̄〉
〈12〉〈3̄4〉

)
. (5.16)
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On the l.h.s., we have the contributions of gluon exchanges between two fermions as
they would usually appear in a (tree level) perturbative computation. The r.h.s. are
the relevant twistorial expressions.

Given the explicit expressions for the matrix elements it is straightforward to check
that they satisfy the crossing relations described in Section 3.4. For example the
invariance under exchange 3 ↔ 4 is immediate from (5.15) and using the identities
(3.7) one can see that it is invariant under exchange of 1↔ 2. To further see that the
prefactor transforms as

T
(0)
2341 = −〈23〉〈4̄1〉

〈12〉〈4̄3〉
T

(0)
1234 (5.17)

under 1→ 2→ 3→ 4→ 1 we need to use (3.8) and the Jacobi identities relating the
tree level color structures.

5.2 Mixed Amplitudes at Tree Level

The ‘twisted-untwisted’ multiplet scattering is much the same and the overall prefactor
T , corresponding to the A element, is

A = T = 〈T |φ(aφb)ψ̃(cψ̃d)〉. (5.18)

In this case is the color ordered amplitude is defined to be the coefficient of the single
mixed color structure at tree level

g KMNM
M
BAM̃

N
DC = g Υ

(0)

12,3̃4̃
. (5.19)

We have the following perturbative tree-level results:

A = −i〈34〉 , D = +i〈1̄2̄〉 , G = −i〈32̄〉 ,

1
2
(A+B) = +i

〈2̄4〉〈24〉
〈3̄4〉

, 1
2
(D + E) = −i〈2̄4〉〈1̄3̄〉

〈3̄4〉
, H = −i〈2̄4〉 ,

1
2
(A−B) = +i

〈1̄4〉〈14〉
〈3̄4〉

, 1
2
(D − E) = −i〈2̄3̄〉〈1̄4〉

〈3̄4〉
, K = −i〈31̄〉 ,

1
2
C = +i

〈2̄4〉〈3̄2〉
〈3̄4〉

, 1
2
F = −i〈2̄4〉〈1̄4〉

〈3̄4〉
, L = −i〈1̄4〉 . (5.20)

Once again, we note that the perturbative tree level results completely agree with the
computations based on the supersymmetry algebra (3.6). In this case the complete
result for tree level untwisted-twisted scattering is given by

T
(0)

123̃4̃
= −ig〈34〉 Υ (0)

12,3̃4̃
. (5.21)

For the sake of completeness, we list some of the key identities that are useful for
converting the results obtained from standard perturbation theory to the twistorial
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expressions used in the expression for the scattering matrix

(v3̄εv4̄)

[
〈3̄1〉〈24〉
〈12〉〈3̄4〉

+
〈14〉〈3̄2〉
〈12〉〈3̄4〉

]
= −2εµνσ(v4̄σµv3̄)

(p1)ν(p2)σ
s

,

(v3̄εv4̄)

[
〈3̄2〉〈2̄3̄〉
〈12〉〈3̄4〉

− 〈3̄1〉〈1̄3̄〉
〈12〉〈3̄4〉

]
= +2εµνσ (v1σµv2)

(p3)ν(p4)σ
s

,

2 (v3̄εv4̄)

[
〈3̄1〉〈1̄4〉
〈12〉〈3̄4〉

]
= −ε

µνσ

s
(p1 + p2)σ (v4̄σµv3̄) (v1σνv2) ,

(v3̄εv4̄)

[
〈3̄1〉〈3̄2〉
〈12〉〈3̄4〉

]
= −ε

µνσ(p3 − p4)µ(p1)ν(p2)σ
s

. (5.22)

As it is also useful for later considerations we record the field theory result for
scattering when particles 2 and 3 are twisted. In this case the overall prefactor,
corresponding to the A element, is

A = T = 〈T |φ(aψ̃b)ψ̃(cφd)〉 = i
〈1̄2〉〈12〉
〈3̄2〉

= −i 〈4̄3〉〈43〉
〈2̄3〉

. (5.23)

Thus we have

T
(0)

12̃3̃4
= −ig 〈1̄2〉〈12〉

〈23̄〉
Υ

(0)

14,2̃3̃
. (5.24)

In the case of scattering between the twisted matter content of the theory, we have
to consider the fact that the quartic bosonic vertex as well as the fermion mass terms
come with opposite signs as compared to the untwisted sector. The explicit formulae
for the scattering of the untwisted multiplet can be readily adapted to the case at
hand. The matrix elements for any four untwisted fields can be taken over to their
twisted counterparts by changing the sign of the mass and replacing u(p) by v(p) and
vice versa. Thus the matrix element D is given by

D = i
〈1̄2̄〉〈24〉
〈41̄〉

= i

(
−2im−

√
−stu
t

)
, (5.25)

where the relevant color prefactor is gΥ
(0)

1̃4̃,2̃3̃
. It is a straightforward exercise to see that

(3.6) continues to describe the four particle scattering matrix relevant to the twisted
sector of the theory. In particular the overall prefactor, T = A, for this sector is given
by

T = A = −i〈24〉〈34〉
〈41̄〉

(5.26)

and so

T
(0)

1̃2̃3̃4̃
= Υ

(0)

1̃4̃,2̃3̃

(
−ig 〈24〉〈34〉

〈41̄〉

)
+ Υ

(0)

1̃3̃,2̃4̃

(
−ig 〈23〉〈43〉

〈31̄〉

)
. (5.27)

Finally one can check that the untwisted-twisted and twisted-twisted scattering
matrix elements satisfy the crossing relations in Section 3.4

If one chooses the matter to be in representations such that there is extended
N = 5 supersymmetry there are additional relations between the pure twisted-twisted,
pure untwisted-untwisted and the mixed untwisted-twisted scattering as described
in Section 3.3. It is straightforward to check that the perturbative calculations are
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consistent with those additional relations. In particular, if the untwisted and twisted
multiplets transform in the same gauge representation, supersymmetry implies that

T123̃4̃ =
〈3̄1〉〈2̄1̄〉T1̃2̃3̃4̃ + 〈12〉〈2̄4〉T1234

〈12〉〈2̄3̄〉+ 〈14〉〈4̄3̄〉
(5.28)

which is indeed satisfied by the tree-level expressions above.
To check the N = 8 relations one must make use of the simplifications in the color

structure that occur for the gauge group SO(4)

Υ
(0)
12,34 = MM

ABKMNM
N
CD ∝ εABCDε

âb̂εĉd̂

Υ
(0)
13,24 = MM

ACKMNM
N
CD ∝ −εABCDεâĉεb̂d̂

Υ
(0)
14,23 = MM

ACKMNM
N
CD ∝ εABCDε

âd̂εb̂ĉ . (5.29)

Using these relations one can check that the constraints (3.19) are satisfied.

5.3 One-Loop Amplitudes in Pure N = 4 SCS

In this section we shall calculate the one-loop correction to the scattering matrix using
standard off-shell methods. As is well known, it is possible using unitarity relations, to
reconstruct the imaginary part of the one-loop amplitudes from the phase space inte-
gral over products of tree-level amplitudes (which can of course be extended to higher
orders). This provides a very efficient method for calculating scattering amplitudes
and the results that follow from unitarity for the theories at hand, elaborated upon
in detail in the next section, are in perfect agreement with the predictions following
from the supersymmetry algebra. However the drawback of these methods is the so
called “polynomial ambiguity” whereby the cut construction can miss contributions
which are rational functions of the kinematic invariants lacking a cut. In four dimen-
sional super Yang–Mills all one-loop massless amplitudes are cut constructible (for
discussion see e.g. [44]) as all rational terms are related to terms with cuts at O(ε0)
(where ε is the dimensional regularisation parameter). This is true for the maximally
supersymmetric N = 4 case but also for N = 1 theories. However it is certainly
not true in general and non-supersymmetric Yang–Mills theories are not one-loop cut
constructable. Thus while it is reasonable to expect the one-loop amplitudes in the su-
persymmetric Chern–Simons matter theories to be cut-constructible it is by no means
guaranteed. The off-shell methods provide a check that the cuts are indeed capturing
all the amplitude and that there no rational piece that is unrelated to a logarithm. In
principle one could also fix any rational function by working to sufficiently high order
in ε however this can be involved and the direct calculation is quite feasible for the
two to two scattering.

We will consider the matrix element G in (3.2)

G δ3(p1 + p2 + p3 + p4) = −〈T |φ1ψ1̇ψ2̇φ2〉 (5.30)

as it involves the fewest number of Feynman diagrams at the one-loop level. We
initially consider the contribution with only gluons or untwisted matter running in
loops and then separately add the contribution from twisted matter. Let us now make
a few remarks about the color structure; following an examination of interactions
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following from the action (B.5) we can use the Jacobi identities on the vertices to see
that, in the notation of Sec. 4.3, only box-like structures occur. The color structures
that appear in the s-channel diagrams are:

Υ
(1) �
14,23 and Υ

(1) �
13,24 , (5.31)

in the t- and u-channels we have, respectively,

Υ
(1) �
13,42 , Υ

(1) �
12,43 and Υ

(1) �
12,34 , Υ

(1) �
14,32 . (5.32)

Thus we see that all box-like color structures enumerated in Sec. 4.3 can appear.
However the coefficients of the different structures are all related by crossing and
so we need only calculate a single coefficient. We will thus focus on the s-channel
contribution to the color-ordered amplitude which occurs with the prefactor Υ

(1) �
14,23 .

+ += +

D,p4 C,p3

A,p1 B,p2

T1 T2B2

p6 p5

B1

G1−loop

Figure 20: Diagrams for the G element at one-loop.

The one-loop correction to G involves four Feynman diagrams (Figure 20). Two
of these diagrams correspond to ‘bubbles’ with a scalar and a fermionic propagator
forming a closed loop and two are ‘triangles’, where a gluon exchange between the
intermediate scalar and fermion fields completes the loop. The complete answer is
given by

G(1) = i Υ
(1) �
14,23

∫
d3` (B1 +B2 + T1 + T2) (5.33)

The integrands for the bubble diagrams with all momenta incoming are:

B1 = −i v2ε(ip6 +mε)εv4

2(p2
6 +m2)(p2

5 +m2)
,

B2 = −i v2ε(ip5 +mε)εv4

2(p2
6 +m2)(p2

5 +m2)
. (5.34)

The integrands for the triangles are:

T1 =
i

D
(v2ε(ip6 +mε)σ̄ρv4 ερνµ(p6 + p4)ν(p5 − p3)µ) ,

T2 =
i

D′
(v2σ̄

ρ(ip5 +mε)εv4 ερνµ(p2 − p5)ν(p1 + p6)µ) . (5.35)

It is to be understood that all the spinors and σ matrices carry lower indices and we
use the shorthand notation where (pi)αβ = (pi)µ(σµ)αβ. We denote σ matrices with
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raised indices as σ̄ i.e. (σ̄µ)αβ = εαγεβδ(σµ)γδ. We also have introduced

D = 2(p2
6 +m2)(p2

5 +m2)(p6 + p4)2 and

D′ = 2(p2
6 +m2)(p2

5 +m2)(p5 − p2)2 (5.36)

to denote the triangle denominators. There is of course only one independent loop
momentum as p5 and p6 are related by the kinematical constraints p6 + p5 = p1 + p2 =
−(p3 + p4). We now note the following identities:

v2ε(ip6 +mε)σ̄ρv4 = −iv2(εηρκ + σ̄χε
χκρ)v4 (p6 + p2)κ,

v2σ̄
ρ(ip5 +mε)εv4 = −iv2(ηρκε+ ερκχσ̄χ)v4 (p5 − p4)κ. (5.37)

The use of these identities in T1 and T2 respectively, generates four terms for each of
the triangle diagrams. Using p̄ij = pi − pj and pij = pi + pj for brevity, we have

T1a = − 2

D
(v2εv4) ε(p5, p3, p4 − p2),

T1b = +
1

D
(v2σ̄

ρηρλv4) p2
64p̄

λ
53,

T1c = +
1

D
(v2σ̄

ρηρλv4) (p2
5 +m2)pλ64,

T1d = +
1

D
(v2σ̄

ρηρλv4) (p̄42 · p̄53p
λ
64 − p̄42 · p64p̄

λ
53). (5.38)

Similarly, we obtain

T2a = − 2

D′
(v2εv4) ε(p4 − p2, p6, p1),

T2b = +
1

D′
(v2σ̄

ρηρλv4) p̄2
52p

λ
16,

T2c = +
1

D′
(v2σ̄

ρηρλv4) (p2
6 +m2)p̄λ52,

T2d = +
1

D′
(v2σ̄

ρηρλv4) (p̄42.p̄25p
λ
16 − p̄42.p16p̄

λ
25). (5.39)

After introducing Feynman parameters to simplify the denominators, shifting the
loop momenta and dropping terms linear in the loop momenta it can be straightfor-
wardly seen that the terms T1a,2a and T1d,2d cancel using the relation

(v2εv4) ε(p4, p3, p2) = −v2σ̄
λv4

[
p2 · p̄24 (p1)λ − p1 · p̄24 (p2)λ

]
. (5.40)

Further, the terms T1b, T2b, B1 and B2 combine to give

T1b + T2b +B1 +B2 = +i
v2ε(ip1 −mε)εv4

(p2
6 +m2)(p2

5 +m2)
(5.41)

which corresponds to an s-channel massive scalar bubble integral, Im(s), with a coef-
ficient proportional to 〈2̄1̄〉〈14̄〉. The massive bubble integral can be evaluated

Im(s) =

∫
d3`

1

(`2 +m2) ((`− p12)2 +m2)

=
iπ2

√
−s

ln

(
2m+

√
−s

2m−
√
−s

)
. (5.42)
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Finally there is the contribution from the terms T1c and T2c which can be written as

T1c + T2c =
−im (v2εv4)

(˜̀2 +∆)2
(x− 1), (5.43)

where we have introduced the Feynman parameter x and ∆ = (1− x)2m2. In fact the
integral over the loop momenta and Feynman parameter can be trivially done and the
result is ∫

dx

∫
d`3 1

(˜̀2 +∆)2
(x− 1) =

π2

m
. (5.44)

This thus contributes to the amplitude a term proportional to the tree level contribu-
tion

π2〈2̄4̄〉Υ (1) �
14,23 , (5.45)

however it is cancelled by identical factors coming from the renormalization of the
fermionic fields and which contribute to the S-matrix via the LSZ reduction formula.

We first consider the diagrams contributing to the fermionic self-energy (Figure 21),
a tadpole with scalars in the loop and a gluon correction. (There is also in principle
a contribution from the twisted fields, if they are present, however their contribution
vanishes due to color index contractions.) The tadpole diagram gives an integrand

A, a,p

= +

!

−p + !B, b, p

1PI

!

Figure 21: Diagrams for fermionic propagator at one-loop.

T (p) = −iKMNM
M
AÂ
MN

B̂B
LB̂Âεȧḃ

ε

`2 +m2
(5.46)

and the gluon correction is

I(p) = −KMNM
M
AÂ
MN

B̂B
LB̂Âεȧḃ

σ̄µ (i(`− p) + εm) σ̄νεµρν`
ρ

2 [(`− p)2 +m2] `2
. (5.47)

For simplicity we strip off the color and flavor indices, then using the relations

σλσ̄ν = −ηλν + σκεε
κλν ,

σ̄λσν = −ηλν + σ̄κεε
κλν (5.48)

we can simplify the gluon contribution

I(p) = −−i` · (`− p) ε−m `

[(`− p)2 +m2] `2

= − −iε
(`− p)2 −m2

+
` · p ε−m `

[(`− p)2 +m2] `2
(5.49)
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where the first term can be seen to cancel against the tadpole diagram. We can
simplify the remaining term by introducing Feynman parameter x and shifting the
loop-momenta. Thus, with ∆ = x(1− x)p2 + xm2, we have

M2(p) = im

∫
dx

∫
d3` x

ε(ip+ p2/m ε)ε

[`2 +∆(p)]2
. (5.50)

Iterating these 1PI diagrams we find the correction to the propagator

(ip+mε)

p2 +m2 +M2(p)
= Zf(p)

ip+ εm

p2 +m2
+ terms regular as p0 → E(p) (5.51)

where we see that the mass remains unchanged (the pole is not shifted as the correction
is proportional to the inverse propagator) and that the one-loop shift in the field
renormalization is δZf(p) = ig2π2. The one-loop correction to the bosonic propagator
can be easily seen to be zero. The relevant diagrams are given in (Figure 22).

!

−p + !A, a,p

+=
B,b,p

1PI

!

+

!

Figure 22: Diagrams for bosonic propagator at one-loop.

In this case the boson and fermion contributions exactly cancel and the gluon
contribution is zero due to the ε tensor in the propagator, thus Zb(p) = 1. There are
almost identical contributions to the matter in the twisted hypermultiplets.

There is also a non-vanishing one-loop correction to the gluon propagator which
is a known effect in supersymmetric Chern–Simons theories (see e.g. [45]) and indeed
in this case we find the same result. The gluon self-interaction cancels against the
ghost loop while the fermion and bosonic contributions add to give a correction that
is similar to the four-dimensional YM propagator. However we should point out that
as there are no physical gluon states, there is no point in interpreting this correction
as a field renormalization entering into the scattering matrix.

It is worth here pausing to make a comment regarding the color structures that
can arise from the corrections to the S-matrix due to the field renormalizations. These
have the structure of bubbles on fermionic legs labelled (B, p2) and (D, p4) attached

to tree-level diagrams Υ
(0)
14,23 and Υ

(0)
13,24, for example[

KMNM
M
DEM

NEF
][
KPQM

P
AFM

Q
BC

]
. (5.52)

However making use of the identities described in Section 4.3 and in particular Figure 9
we can express these in the basis of one-loop box diagrams to find the relevant term
i.e. the coefficient of the structure Υ

(1) �
14,23 .

The one-loop contribution to the G element from the field renormalization is

∆G(1) =
(√

Zb(p1)Zf(p2)Zb(p3)Zf(p4)− 1
)
G(0) = −π2〈2̄4̄〉 (5.53)

which can be seen to cancel the contribution (5.45).
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Thus we find that
G(1) = i 〈2̄1̄〉〈14̄〉 Im(s). (5.54)

This is the complete s-channel contribution at one-loop, whose overall factor is Υ
(1) �
14,23 ,

for an N = 4 theory without twisted hypermultiplets. There of course remain the
other color ordering and the t-channel and u-channel diagrams; the t-channel dia-
grams are identical to those above after exchanging the external momenta while the
u-channel contributions are slightly more complicated. However, as stated above they
are all related to the calculated piece, once one accounts for the appropriate color
factors. Using this element we can determine the one-loop piece of the overall factor
undetermined by the symmetries

T (1) =
G(1)

G(0)
T (0) = i〈1̄2̄〉〈12〉Im(s) (5.55)

and thus

T
(1)
1234 =

(
Υ

(1) �
14,23 + Υ

(1) �
13,24

)
[i〈1̄2̄〉〈12〉Im(s)]

+
(
Υ

(1) �
13,43 + Υ

(1) �
12,43

)[
i
〈2̄3̄〉〈1̄2〉〈34〉
〈1̄4〉

Im(t)

]
+

(
Υ

(1) �
12,34 + Υ

(1) �
14,32

)[
i
〈2̄4̄〉〈12〉〈3̄4〉
〈3̄1〉

Im(u)

]
. (5.56)

5.4 Mixed Amplitudes at One Loop

We now include the contributions from the twisted hypermultiplets which give rise to
two massive bubble diagrams (Figure 23). The color structure arises in the s-channel

from diagrams with twisted fields in the loop is Υ
(1) ◦̃
12,34. The contribution to the matrix

B̃1 B̃2

+

Figure 23: Twisted contribution to the G element at one-loop.

element from these diagrams is thus

G(1) = iΥ
(1) ◦̃
12,34

∫
d3`
(
B̃1 + B̃2

)
(5.57)

where the integrands for these twisted bubble diagrams are:

B̃1 = −i v2ε(ip6 −mε)εv4

2(p2
6 +m2)(p2

5 +m2)
,

B̃2 = −i v2ε(ip5 −mε)εv4

2(p2
6 +m2)(p2

5 +m2)
. (5.58)
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Combining these we find the same result as in (5.41) but with the opposite sign,

B̃1 + B̃2 = −i v2ε(ip1 −mε)εv4

2(p2
6 +m2)(p2

5 +m2)
. (5.59)

Including the t- and u-channel contributions the one-loop contribution to the untwis-
ted-untwisted scattering matrix is

∆T
(1)
1234 = Υ

(1) ◦̃
12,34

[
− i

2
〈1̄2̄〉〈12〉Im(s)

]
+ Υ

(1) ◦̃
12,43

[
− i

2

〈2̄3̄〉〈1̄2〉〈34〉
〈1̄4〉

Im(t)

]
+ Υ

(1) ◦̃
13,24

[
− i

2

〈2̄4̄〉〈12〉〈3̄4〉
〈3̄1〉

Im(u)

]
. (5.60)

We recall the contribution from the untwisted fields (5.56) and note that we can rewrite
the the combination of untwisted color boxes as untwisted bubbles so that the total
answer is

T
(1)
1234 =

(
Υ

(1) ◦
12,34 − Υ

(1) ◦̃
12,34

) [
i
2
〈1̄2̄〉〈12〉Im(s)

]
+

(
Υ

(1) ◦
12,43 − Υ

(1) ◦̃
12,43

)[ i
2

〈2̄3̄〉〈1̄2〉〈34〉
〈1̄4〉

Im(t)

]
+

(
Υ

(1) ◦
13,24 − Υ

(1) ◦̃
13,24

)[ i
2

〈2̄4̄〉〈12〉〈3̄4〉
〈3̄1〉

Im(u)

]
. (5.61)

In the special case, of N > 4 supersymmetry where both the twisted and untwisted
multiplets are in the same representation of the gauge group, the color structures will
be equal and so lead to a cancellation. In this case we simply find that

T
(1)
1234 = 0. (5.62)

For the other sectors there are almost identical diagrams between untwisted-twisted
hypermultiplets, namely for the element H123̃4̃, which implies

T
(1)

123̃4̃
= 0 (5.63)

and for twisted-twisted scattering, L1̃2̃3̃4̃, which implies

T
(1)

1̃2̃3̃4̃
= 0. (5.64)

However we will leave the more complete treatment to the substantially more efficient
unitarity methods of the next section. Note that a vanishing one-loop contribution is
obviously in agreement with the N > 4 constraints on scattering amplitudes discussed
in Sec. 3.3.

6 Scattering Unitarity

The scattering matrix S = 1 + iT in a reasonable quantum field theory is expected to
be unitary, S†S = 1. For the scattering amplitudes T it implies the unitarity condition

− i(T − T †) = T †T . (6.1)

In this section we would like to compare the one-loop field theory results of the previous
section with scattering unitarity. In particular, we want to see whether the field theory
results stand a chance of being cut constructible.
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6.1 Adjoint and Multiplication

In order to confirm unitarity for the amplitudes derived above, we should first under-
stand how to take the adjoint and how to multiply two-to-two scattering amplitudes
T [T ], where T is the overall factor as defined in (3.6).

The adjoint scattering amplitude has the same structure as the original amplitude
but with different matrix elements

A†
123̄4̄

= (A432̄1̄)∗, D†
123̄4̄

= (D432̄1̄)∗,

B†
123̄4̄

= (B432̄1̄)∗, E†
123̄4̄

= (E432̄1̄)∗,

C†
123̄4̄

= (F432̄1̄)∗, F †
123̄4̄

= (C432̄1̄)∗,

G†
123̄4̄

= (L432̄1̄)∗, L†
123̄4̄

= (G432̄1̄)∗,

H†
123̄4̄

= (H432̄1̄)∗, K†
123̄4̄

= (K432̄1̄)∗. (6.2)

Here the spinors 1̄, 2̄, 3̄, 4̄ are conjugate to 1, 2, 3, 4, respectively, according to (3.29)

uk̄ = +vk, vk̄ = −uk. (6.3)

For unitary representations (2.13), or more generally by replacing u∗α → vα, v∗α → uα,
the adjoint matrix elements take the same form as the original matrix elements (3.6).
We can thus write the adjoint scattering amplitude as a regular scattering amplitude

T [T ]† = T [T †], (6.4)

but instead of T with the prefactor T † defined by

T †
123̄4̄

= (T432̄1̄)∗. (6.5)

This is because for unitary representations the adjoint scattering matrix obeys the
same symmetries as the original one.

Iterative two-to-two particle scattering also satisfies the transformation laws of
overall two-to-two scattering, hence

T [T ′] T [T ′′] = T [T ]. (6.6)

The following relations between the matrix elements ensure that the product takes the
expected form

T ′′125̄6̄T
′
653̄4̄

T123̄4̄

=
A′′125̄6̄A

′
653̄4̄

A123̄4̄

=
D′′125̄6̄D

′
653̄4̄

D123̄4̄

=
B′′125̄6̄B

′
653̄4̄ + C ′′125̄6̄F

′
653̄4̄

B123̄4̄

=
E ′′125̄6̄E

′
653̄4̄ + F ′′125̄6̄C

′
653̄4̄

E123̄4̄

=
B′′125̄6̄C

′
653̄4̄ + C ′′125̄6̄E

′
653̄4̄

C123̄4̄

=
E ′′125̄6̄F

′
653̄4̄ + F ′′125̄6̄B

′
653̄4̄

F123̄4̄

=
G′′125̄6̄K

′
653̄4̄ +H ′′125̄6̄G

′
653̄4̄

G123̄4̄

=
K ′′125̄6̄K

′
653̄4̄ +H ′′125̄6̄G

′
653̄4̄

K123̄4̄

=
G′′125̄6̄L

′
653̄4̄ +H ′′125̄6̄H

′
653̄4̄

H123̄4̄

=
K ′′125̄6̄L

′
653̄4̄ + L′′125̄6̄H

′
653̄4̄

L123̄4̄

. (6.7)
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34

56

T

T †

Figure 24: Particle setup for the unitarity relations.

The prefactor of the product is thus simply given by

T123̄4̄ = 2π2

∫
d3p δ(p2

5 +m2) δ(p2
6 +m2)T ′′125̄6̄ T

′
653̄4̄. (6.8)

Similar relations hold for scattering matrices involving twisted hypermultiplets
introduced in Sec. 3.2. We will not present these in detail here, but merely apply
them where needed.

6.2 Unitarity Relations

Now we are in a position to consider unitarity for two-to-two scattering amplitudes
from field theory. We neglect intermediate states with more than two particles. This
approximation is exact at the two-loop level because physical particles can only be
created or annihilated in pairs. According to the above considerations, unitarity leads
to the following relation for the prefactor, see also Fig. 24,

− iT123̄4̄ + i(T432̄1̄)∗ = 2π2

∫
d3p δ(p2

5 +m2) δ(p2
6 +m2)T125̄6̄ (T435̄6̄)∗ +O(g4). (6.9)

It is convenient to go to the center of mass frame and thus make a choice for the
momenta of the particles

p1 = (E,+p, 0), p2 = (E,−p, 0),

p3 = (E,−p cosα,−p sinα), p4 = (E,+p cosα,+p sinα),

p5 = (E,−p cos β,−p sin β), p6 = (E,+p cos β,+p sin β). (6.10)

In this frame the integral over the delta functions can be evaluated

2π2

∫
d3p δ(p2

5 +m2) δ(p2
6 +m2)F123456 =

∫
π2dβ

4E
F123456. (6.11)

Substituting the loop expansion of the prefactor

T = gT (0) + g2T (1) + g3T (2) + . . . , g =
4π

k
, (6.12)

we obtain the unitarity relations up to two loops

− iT (0)

123̄4̄
+ i
(
T

(0)

432̄1̄

)∗
= 0,

−iT (1)

123̄4̄
+ i
(
T

(1)

432̄1̄

)∗
=

∫
π2dβ

4E
T

(0)

125̄6̄

(
T

(0)

435̄6̄

)∗
=

∫
π2dβ

4E
T

(0)

125̄6̄
T

(0)

6̄5̄34
,

−iT (2)

123̄4̄
+ i
(
T

(2)

432̄1̄

)∗
=

∫
π2dβ

4E

(
T

(0)

125̄6̄

(
T

(1)

435̄6̄

)∗
+ T

(1)

125̄6̄

(
T

(0)

435̄6̄

)∗)
. (6.13)
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The above relations hold for a N = 4 supersymmetric model with only one type of
hypermultiplet. If there are both types of hypermultiplets present, the relation (6.9)
has to be extended and supplemented by

− iT123̄4̄ + i
(
T432̄1̄

)∗
=

∫
π2dβ

4E

(
T125̄6̄

(
T435̄6̄

)∗
+ T

12˜̄5˜̄6

(
T

43˜̄5˜̄6

)∗)
+O(g4),

−iT
12˜̄3˜̄4

+ i
(
T4̃3̃2̄1̄

)∗
=

∫
π2dβ

4E

(
T125̄6̄

(
T4̃3̃5̄6̄

)∗
+ T

12˜̄5˜̄6

(
T

4̃3̃˜̄5˜̄6

)∗)
+O(g4),

−iT
12̃˜̄34̄

+ i
(
T

43̃˜̄21̄

)∗
=

∫
π2dβ

4E

(
T

12̃˜̄56̄

(
T

43̃˜̄56̄

)∗
+ T

12̃5̄˜̄6

(
T

43̃5̄˜̄6

)∗)
+O(g4). (6.14)

Relations among the other prefactors can be obtained by applying discrete symmetries.
The loop expansion for all of these is analogous to (6.13). As discussed in Sec. 3.3
there are further constraints for amplitudes in models with N > 4 supersymmetry.
The above relations obey these constraints.

6.3 Tree Level

One can assign untwisted and twisted hypermultiplets to the legs of two-to-two scatter-
ing amplitudes in 8 different ways. As discussed in Sec. 3.2 they all have an equivalent
matrix structure, but the prefactors are different in general.

The tree-level prefactors with alike hypermultiplets in the in/out channels have the
following color structures, cf. Sec. 4.2,

T
(0)

123̄4̄
= Υ

(0)
14,23t

(0)

123̄4̄
+ Υ

(0)
13,24t

(0)

124̄3̄
, T

(0)

12˜̄3˜̄4
= Υ

(0)

12,3̃4̃
t
(0)

12˜̄3˜̄4
,

T
(0)

1̃2̃3̄4̄
= Υ

(0)

1̃2̃,34
t
(0)

1̃2̃3̄4̄
, T

(0)

1̃2̃˜̄3˜̄4
= Υ

(0)

1̃4̃,2̃3̃
t
(0)

1̃2̃˜̄3˜̄4
+ Υ

(0)

1̃3̃,2̃4̃
t
(0)

1̃2̃˜̄4˜̄3
. (6.15)

The coefficient functions t have been evaluated in field theory in Sec. 5.1,5.2

t
(0)

123̄4̄
= −i〈12〉〈2̄4〉

〈14〉
, t

(0)

12˜̄3˜̄4
= −i〈3̄4̄〉,

t
(0)

1̃2̃3̄4̄
= −i〈12〉, t

(0)

1̃2̃˜̄3˜̄4
= −i〈24̄〉〈3̄4̄〉

〈4̄1̄〉
. (6.16)

For mixed hypermultiplets in the in/out channels the color structure of the pref-
actor reads

T
(0)

12̃˜̄34̄
= Υ

(0)

14,2̃3̃
t
(0)

12̃˜̄34̄
, T

(0)

12̃3̄˜̄4
= Υ

(0)

13,2̃4̃
t
(0)

12̃˜̄43̄
,

T
(0)

1̃2˜̄34̄
= Υ

(0)

24,1̃3̃
t
(0)

21̃˜̄34̄
, T

(0)

1̃23̄˜̄4
= Υ

(0)

24,1̃3̃
t
(0)

21̃˜̄43̄
, (6.17)

with the single coefficient function

t
(0)

12̃˜̄34̄
= i
〈3̄4̄〉〈3̄4〉
〈2̄3̄〉

. (6.18)

Using the spinor identities (3.7), it is straightforward to confirm the tree-level
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unitarity conditions (
t
(0)

432̄1̄

)∗
= i
〈4̄3̄〉〈31̄〉
〈4̄1̄〉

= t
(0)

123̄4̄
,(

t
(0)

43˜̄2˜̄1

)∗
= i〈21〉 = t

(0)

1̃2̃3̄4̄
,(

t
(0)

4̃3̃˜̄2˜̄1

)∗
= i
〈3̄1〉〈21〉
〈14〉

= t
(0)

1̃2̃˜̄3˜̄4
,

(
t
(0)

43̃˜̄21̄

)∗
= −i〈21〉〈21̄〉

〈32〉
= t

(0)

12̃˜̄34̄
. (6.19)

6.4 Pure Matter at One Loop

Next we consider one-loop unitarity for a model with only one type of hypermultiplet.
First the color structure of the integrand in (6.13) is investigated

T
(0)

125̄6̄
T

(0)

653̄4̄
= 2Υ

(1) �
14,23 t

(0)

125̄6̄
t
(0)

653̄4̄
+ 2Υ

(1) �
13,24 t

(0)

125̄6̄
t
(0)

654̄3̄
(6.20)

We have used the crossing property t
(0)

123̄4̄
= t

(0)

214̄3̄
and identified the color structure as

a box Υ
(0)
16,25Υ

(0)
64,53 = Υ

(1) �
14,23 , cf. (4.12). For convenience we have indicated the unitarity

cuts in Fig. 11 on page 25. We evaluate and simplify the product of coefficient functions

π2

4E
t
(0)

125̄6̄
t
(0)

653̄4̄
= −iπ2

(
ieiβ

eiβ − 1
− ieiβ

eiβ − eiα

)
t
(0)

123̄4̄
− π2p2

E
. (6.21)

Note that the integrand has single poles at the angles β = 0 and β = α. At these
points the momenta of the intermediate particles 6, 5 agree precisely with the ones of
the ingoing particles 1, 2 (β = 0) or outgoing particles 4, 3 (β = α). They originate
from a gluon exchange with zero momentum. Fortunately the poles have exactly
opposite residues and thus we can ignore their contribution altogether. The unitarity
condition leads to an imaginary part which is independent of the overall scattering
angle α

− iT (1)

123̄4̄
+ i
(
T

(1)

432̄1̄

)∗
=

∫
π2dβ

4E
T

(0)

125̄6̄
T

(0)

653̄4̄
= −4π3p2

E

(
Υ

(1) �
14,23 + Υ

(1) �
13,24

)
= −2π3p2

E
Υ

(1) ◦
12,34 = −π

3〈12〉〈1̄2̄〉√
〈12̄〉〈1̄2〉

Υ
(1) ◦
12,34. (6.22)

The conversion between different color structures is due to the identity (4.10) and the
final transformation

√
〈12̄〉〈1̄2〉 = 2E and 〈12〉〈1̄2̄〉 = 4p2 makes the result independent

of a specific frame. This expression is in agreement with the field theory calculation
(5.56) in Sec. 5.3: The expression (5.56) obeys T

(1)

123̄4̄
=
(
T

(1)

432̄1̄

)∗
except for branch cut

discontinuities in the loop integrals. The integral Im(s) in (5.42) has a branch cut with
discontinuity (

√
−s = 2E)

Im(s− iε)− Im(s+ iε) = − 2π3

√
−s

θ(
√
−s− 2m) = −π

3

E
θ(E −m). (6.23)

The bubble integrals Im(t), Im(u) in the t- and u-channels clearly have no cuts in the
physical region. For the one-loop expression (5.56)

T
(1)

123̄4̄
= i

2
〈12〉〈1̄2̄〉 Im(s− iε)Υ (1) ◦

12,34 + . . . = 2ip2 Im(s− iε)Υ (1) ◦
12,34 + . . . (6.24)
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we thus get full agreement with unitarity (6.22). We can in fact do even better and
compare the results before integrating over the loop momenta phase space. Taking the
integrand of the Feynman diagram calculation (Section 5.3) and putting all momenta
on-shell, one finds agreement with (6.21). It can be seen that the pole terms indeed
come from the ‘triangle’ diagrams which involve gluon exchange whereas the finite
piece gets contributions from both the ‘triangle’ and ‘bubble’ diagrams.

It is a curious fact that the full one-loop amplitude T
(1)

123̄4̄
from field theory is a

linear combination of massive scalar bubbles Im without further rational parts. The
coefficients of the bubbles can be reconstructed from unitarity in all channels. Ex-
panding cuts using the inverse of (6.23), i.e. the minimal replacement, therefore yields
the full one-loop amplitude from unitarity. It gives a hint that amplitudes in N = 4
Chern–Simons theories may be cut constructible.

Finally we would like to consider the total cross section of the scattering process
of two hypermultiplets. For that purpose we shall set α = 0 so that the in and out
states are the same. The cross section is proportional to

2 ImT
(1)

122̄1̄
=

∫
π2dβ

4E

∣∣T (0)

125̄6̄

∣∣2 = −2π3p2

E
Υ

(1) ◦
12,34. (6.25)

Curiously it appears that it is negative although the integrand itself is manifestly
positive. Let us thus have a closer look at the integrand

π2

4E

∣∣t(0)

125̄6̄

∣∣2 =
π2

4E
t
(0)

125̄6̄
t
(0)

653̄4̄
=

π2E

sin2(1
2
β)
− π2p2

E
= π2E cot2(1

2
β) +

π2m2

E
. (6.26)

In the last form it is manifestly positive. Due to a double pole the integral is infinite
and needs to be regularized. A principal value prescription (or any other contour in
the complex plane) will show that the 1/ sin2 term does not contribute. The finite
remainder is however negative.

Essentially we have dropped a contribution from forward scattering where a gluon
with zero momentum and zero energy is exchanged. Thus the peculiarity can be asso-
ciated to an infrared divergence. It is in fact very similar to the collinear divergences
encountered in Yang–Mills theories, but it is milder: It can only appear for gluons
with zero momentum whereas for Yang–Mills it appears for all light-like gluons. The
effects are nevertheless similar. The reason why the IR singularity cannot directly be
seen in the result is related to the fact that in odd spacetime dimensions there are no
divergences at one loop.

6.5 Mixed Matter at One Loop

We now consider one-loop scattering unitarity in a theory with both types of hyper-
multiplets using the relations (6.14).

The integrands of the first integral in (6.14) have the color structures

T
(0)

125̄6̄
T

(0)

653̄4̄
= 2Υ

(1) �
14,23 t

(0)

125̄6̄
t
(0)
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+2Υ

(1) �
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(0)
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(0)
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, T

(0)

12˜̄5˜̄6
T

(0)

6̃5̃3̄4̄
= Υ

(1) ◦̃
12,34t

(0)

12˜̄5˜̄6
t
(0)

6̃5̃3̄4̄
, (6.27)

where we have used the composition of trees to loop in (4.12), see also Fig. 11,12. The
remaining coefficients evaluate to

π2

4E
t
(0)

125̄6̄
t
(0)

653̄4̄
= −iπ2

(
ieiβ

eiβ − 1
− ieiβ

eiβ − eiα

)
t
(0)

123̄4̄
− π2p2

E
,

π2

4E
t
(0)

12˜̄5˜̄6
t
(0)

6̃5̃3̄4̄
=
π2p2

E
.

(6.28)
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In the integral over β the residues cancel and only the constant pieces remain

− iT (1)

123̄4̄
+ i
(
T

(1)

432̄1̄

)∗
= −2π3p2

E

(
Υ

(1) ◦
12,34 − Υ

(1) ◦̃
12,34

)
. (6.29)

Again this result agrees with the field theory computation (5.61). Furthermore the
field theory result is again a linear combination of massive scalar bubbles Im hinting
at cut constructibility.

The two integrands of the second integral in (6.14) have the following color struc-
tures, cf. Fig. 13

T
(0)

125̄6̄
T

(0)

65˜̄3˜̄4
= −Υ (1) ◦

12,3̃4̃
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(0)
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(0)
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, T

(0)

12˜̄5˜̄6
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12,3̃4̃
t
(0)

12˜̄5˜̄6
t
(0)

6̃5̃˜̄3˜̄4
. (6.30)

The coefficient functions evaluate to

π2

4E
t
(0)

125̄6̄
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(0)
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(
ieiβ
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(0)
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π2

4E
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(0)

12˜̄5˜̄6
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(0)
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= +iπ2

(
ieiβ

eiβ − eiα
− i(E +m)

2E

)
t
(0)

12˜̄3˜̄4
. (6.31)

Note that again there are two poles with residues proportional to the tree-level ampli-
tude. Here the poles originate from the two different terms in the integrand. It is not
entirely clear how to perform the integral over the poles. For practical purposes, let
us assume a principal value prescription. The unitarity integral then evaluates to

− iT (1)

12˜̄3˜̄4
+ i
(
T

(1)

4̃3̃2̄1̄

)∗
= −iπ

2(E +m)〈3̄4̄〉
2E

(
Υ

(1) ◦
12,3̃4̃
− Υ (1) ◦̃

12,3̃4̃

)
, (6.32)

In the third integrand of (6.14) we find a single color structure
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(0)
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= T
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T
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(0)
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. (6.33)

The coefficient function yields

π2

4E
t
(0)

12̃˜̄56̄
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(0)

65̃˜̄34̄
= iπ2

(
ieiβ

eiβ − 1
− ieiβ

eiβ − eiα
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(0)

12̃˜̄34̄
. (6.34)

Here both poles are present and there is no constant piece. The integral thus vanishes
exactly

− iT (1)

12˜̄3˜̄4
+ i
(
T

(1)

4̃3̃2̄1̄

)∗
= 0, (6.35)

Finally we would like to mention the curious fact that all three integrals vanish for
model with N = 5, 6, 8 extended supersymmetry where untwisted and twisted fields
are equivalent Υ (1) ◦ = Υ (1) ◦̃

− iT (1)

123̄4̄
+ i
(
T

(1)

432̄1̄

)∗
= −iT (1)

12˜̄3˜̄4
+ i
(
T

(1)

4̃3̃2̄1̄

)∗
= −iT (1)

12̃˜̄34̄
+ i
(
T

(1)

43̃˜̄21̄

)∗
= 0. (6.36)

It implies a remarkable feature that the scattering amplitudes at one loop are free
from unitarity cuts. Moreover the field theory calculations in Sec. 5.3,5.4 suggest
that the one-loop amplitudes vanish altogether T (1) = 0. We shall discuss the further
implications below.
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6.6 Two-Loop Puzzle

The result of vanishing one-loop unitarity cuts (6.36) in N = 5, 6, 8 supersymmetric
models leads to a puzzle. The point is that the one-loop amplitudes must be rational
functions of the momenta which in (highly) supersymmetric theories often implies
that the amplitudes T (1) vanish altogether. Our field theory computations in Sec. 5.4
confirm this result for our model. In this case, however, unitarity (6.13) implies that
the two-loop amplitudes are merely rational functions. Blindly following the argument
leads to no loop corrections at all which is hard to believe.

There are good reasons to believe that the two-loop amplitudes from field theory
are neither zero nor merely rational functions (cf. the discussion in the conclusions).
This also leads to a much more realistic pattern of non-trivial corrections at higher
loop orders. However, how does this match with our observation of vanishing one-loop
contributions? The point is perhaps that our model does suffer from IR divergences in
spite of having only massive physical particles. The zero mode of the Chern–Simons
gauge field appears to cause the IR problems and in the above discussions we have seen
several instances of such singularities. The singularities effectively require to regularize
the model before computing quantum corrections.

The most reliable regulator arguably is dimensional regularization/reduction where
loop integrals are performed in a spacetime of dimension D = 3−2ε. Our results then
imply merely that T (1) = 0 + O(ε). The integrand of the two-loop unitarity relation
must be suppressed likewise T (0)T (1) = 0 + O(ε). However, the integral can very
well produce 1/ε divergent terms such that the two-loop unitarity integral is finite∫
T (0)T (1) = O(ε0) (or even divergent).

It would be very desirable to perform a two-loop computation in dimensional regu-
larization based on both field theory and unitarity, and consequently compare the two
results.

7 Conclusions

In this paper we have considered the spacetime S-matrices of various supersymmetric
Chern–Simons matter theories focussing on the mass deformed N ≥ 4 theories whose
super-Poincaré group contains the supergroup PSU(2|2). We have presented the tree-
level and one-loop four particle amplitudes derived using both symmetry arguments
and explicit perturbative calculations. This extended PSU(2|2) symmetry group is
almost the same as that which occurs in the light-cone gauge fixed worldsheet theory
of strings in AdS5 × S5 or, equivalently, as the group of symmetries preserved by the
ferromagnetic vacuum in the spin chain picture of maximally supersymmetric four
dimensional Yang–Mills. As in that context, the superalgebra greatly constrains the
two-to-two S-matrix as it interrelates every element and determines the entire matrix
structure up to an overall factor. This leads to the intriguing observation that the two-
body spacetime S-matrix of these three-dimensional Chern–Simons matter theories is
the same as the two-dimensional spin-chain/worldsheet S-matrix that plays such a
central role in the AdS/CFT correspondence. Furthermore this S-matrix is known to
be equivalent to Shastry’s R-matrix for the Hubbard model [32]. In many respects
this similarity is purely formal and the kinematics are obviously quite different. For
example, due to the different kinematical structure the Chern–Simons spacetime S-
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matrix, unlike the two-dimensional integrable S-matrices, does not satisfy the Yang–
Baxter equation. Nonetheless it is certainly tempting to ask how far this analogy may
be extended and whether there are structures in common with the integrable systems
if only for certain kinematical regimes.

That all four particle scattering amplitudes should be related is perhaps not sur-
prising for a theory with extended supersymmetry, indeed in four-dimensional N = 4
Yang–Mills super-Ward identities imply similar relations. For the three-dimensional
Chern–Simons theories with additional twisted matter there are of course additional
unrelated amplitudes though in the cases where the supersymmetry is extended to
N = 5, 6 or 8 there are further relations between amplitudes. For the general N ≥ 4
case we have fixed, by explicit calculation, the tree level contribution to the overall
factor undetermined by the global symmetries. We have discussed in detail the color
structures that occur in the perturbative calculations as, especially beyond tree level,
these calculations are substantially simplified by separately treating the color and
kinematical contributions. Having the color structure in hand one can focus on the
color ordered amplitudes, which in turn can be calculated efficiently using unitarity
methods (whose validity we explicitly verified at one-loop).

For generic N = 4 theories we find a one-loop contribution to the overall prefactor
corresponding to a massive bubble diagram and, interestingly, when we include ad-
ditional twisted matter we find an identical contribution but with the opposite sign.
Thus when the twisted and untwisted matter are in the same gauge group represen-
tations, such as in the N = 5, 6, 8 theories, we find that all the one-loop amplitudes
vanish. It is possible that in these cases there is an additional symmetry related to
the exchange of twisted and untwisted matter that explains this seeming coincidence;
if this is so it is not unreasonable to ask whether this continues at higher odd orders
in the perturbative expansion. However before going to three loops there remains the
question of how to find non-trivial two-loop scattering; naive application of the unitar-
ity method implies the vanishing of the two-loop amplitudes as a consequence of the
vanishing of all one-loop amplitudes. In order to solve this puzzle it would be worth-
while to carry out an explicit two-loop calculation either using unitarity methods, but
being careful to keep higher orders in the dimensional regularization parameter ε, or
using off-shell methods.

Taking the mass deformation to zero, a limit that appears to be smooth, the
theories we consider are in one-to-one correspondence with N ≥ 4 superconformal
Chern–Simons theories which connects our results to the AdS4/CFT3 correspondence.
In this context it is obvious to ask whether one can find, for the planar N = 6 theory,
a similar relationship between scattering amplitudes and Wilson loops as was found
in the N = 4 SYM/AdS5 × S5 case. On general grounds [46, 47] we certainly expect
that the IR asymptotics of the scattering amplitudes should be related to the behavior
of light-like Wilson loops with a cusp which for conformal theories is related to the
anomalous dimensions of specific twist operators [48] (see also [49–51,4]). Of course for
N = 4 Yang–Mills the relationship between amplitudes and Wilson loops goes beyond
the IR divergent piece to include the finite contributions. The four particle amplitudes
display an iterative structure in perturbation theory which can be combined into an all
order exponential form, the finite piece of which is also governed by the cusp anomalous
dimension [47, 52]. It would be interesting to see if the same is true for the Chern–
Simons theory or indeed whether the even more general relation between Wilson loops
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and MHV amplitudes, see for example [2], can be generalized. A moderate indication
is that the NLO scattering amplitudes vanish identically for N > 4 SCS and the same
is true for NLO Wilson loops [53], see also [54]. Relatedly it may be worthwhile to look
for a version of the dual conformal symmetry found in four-dimensional amplitudes [6].
Given this possible relation between scattering amplitudes/Wilson loops/twist opera-
tors and previous results [20, 21, 38] on the anomalous dimensions of twist operators
in the planar limit we might expect that the two-loop scattering amplitudes in N = 6
CS are related to one-loop amplitudes in four-dimensional N = 4 YM. Another hint
that this may indeed be the case is the similarity of the one-loop correction to the
CS gluon propagator to the YM propagator. Furthermore, at strong coupling the fact
that the relevant, non-compact, part of the geometry dual to the N = 6 theory, [20],
is similar leads one to believe that such a relationship between the four-dimensional
YM and three dimensional CS is plausible. Certainly in the analysis of the spectrum
of spinning strings/twist operators marked similarity to the AdS5 × S5 case is appar-
ent and the proof of the relationship between open strings dual to Wilson loops and
spinning strings dual to twist operators via analytic continuation [50] goes through
exactly as in the AdS5 geometry. However while classical string solution dual to four
particle scattering amplitudes is almost identical [1,5] it should be mentioned that the
full geometry felt by the string, particularly for the fermions, is different and it is not
certain that the arguments relating Wilson loops to scattering amplitudes at strong
coupling via (fermionic) T-duality will be valid in this theory [1, 23,22].

The particle representations that are used in the present paper are merely the
simplest representations of the symmetry algebra. It is conceivable that the mass-
deformed CS model has bound states which transform in larger representations. It
might be interesting to determine the spectrum of such composite particles and also
compute their scattering matrices (by means of unitarity).

Finally, in attempting to answer questions involving higher loops, amplitudes in-
volving larger numbers of particles or bound states the global symmetries will naturally
be less restrictive and there will be more independent elements. It may therefore be
useful to see whether one can adapt the methods of recursion relations [10], generalized
unitarity [12] and the use of complex momenta [8, 13] to the current context.

The analysis carried out in this paper raises several interesting questions about SCS
theories, their relationship to Yang–Mills theories and the AdS4/CFT3 correspondence.
There are of course, several issues pertaining specifically to a better understanding
scattering processes in N ≥ 4 SCS theories that require further studies. As explained
in the preceding sections, the resolution of the puzzle regarding a two loop contribution
to the scattering matrix that is neither zero nor purely rational, and an understanding
of the relationship between scattering amplitudes and Wilson loops, would yield vital
insights into the gauge theories in question as well as the AdS4/CFT3 correspondence.

Looking beyond the immediate problems and puzzles posed by this paper, we would
like to point out that possible connections between mass deformations of Chern–Simons
models and Yang–Mills theories in three spacetime dimensions, are worth investigating
in greater detail. In the case of massless Chern–Simons models, both the maximally
supersymmetric N = 8 BLG theory, as well as the non-supersymmetric pure Chern–
Simons theory are expected describe the strongly coupled dynamics of N = 8 and
N = 0 Yang–Mills theories respectively. In the later case, the vacuum wave functionals
of the Chern–Simons theory, namely the Wess–Zumino–Witten model, and that of
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the strongly coupled gluonic theory are known to be the same: a fact that can be
established using a gauge invariant Hamiltonian formulation of pure Yang–Mills theory
[55]. In the maximally supersymmetric case, the strongly coupled Yang–Mills theory
is expected to flow to the SCS theory at strong coupling due to the standard dualities
between D2 and M2 brane dynamics [56]. Direct evidence relating the Lagrangians
of the two theories via a Higgs mechanism has also been uncovered in [57]. However,
the relationship between mass-deformed SCS theories and Yang–Mills theories, if any,
remains unclear. In this context, it is worth noting that, in the special case of three
spacetime dimensions, it is possible to carry out mass-deformations of super Yang–
Mills theories on R1,2 by using a non-local, gauge invariant mass-term for the gluons,
and ordinary quadratic mass-terms for the matter fields. Appropriately mass-deformed
super Yang–Mills theories can also be shown to be related to matrix models in plane
wave type backgrounds by the methods of dimensional reduction [58]. It is thus worth
investigating if the interrelationships between massless SCS and super Yang–Mills
theories has a parallel in connections between mass deformed Chern–Simons models
and massive Yang–Mills theories of the type investigated in [58].

On a related note, it might be interesting to investigate the role of mass-deformed
algebras in constraining the spacetime physics of other gauge theories, such as N = 8
supersymmetric Yang–Mills theory on R × S2 and other related Yang–Mills Chern–
Simons theories constructed in [59,33].
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A Conventions

A.1 Spacetime

We give a brief summary of spacetime index conventions used in this paper following
the conventions of HLLLP [16] to a large extent.

Vectors. For vector indices we choose the signature of spacetime and the antisym-
metric tensor according to

ηµν = diag(−,+,+), ηµν = diag(−,+,+), ε012 = +1. ε012 = −1. (A.1)

Spinors. We start by defining a basis of real symmetric and antisymmetric 2 × 2
matrices:

[σµ]αβ =

(
− 0
0 −

)
,

(
+ 0
0 −

)
,

(
0 −
− 0

)
, εαβ =

(
0 +
− 0

)
. (A.2)

The conjugate basis with lower indices is defined by σµαβ = εαγεβδσ
µ,γδ and εαβ =

εαγεβδε
γδ

[σµ]αβ =

(
− 0
0 −

)
,

(
− 0
0 +

)
,

(
0 +
+ 0

)
, εαβ =

(
0 +
− 0

)
. (A.3)
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If we lower only one spinor index [γµ]α
β = −εαγ[σµ]γβ = εβγ[σµ]αγ we obtain

[γµ]α
β =

(
0 +
− 0

)
,

(
0 +
+ 0

)
,

(
+ 0
0 −

)
= iσ2, σ1, σ3, (A.4)

where the latter three σk refer to the standard Pauli matrices. The gamma matrices
obey the algebra

γµγν = ηµν + εµνργρ. (A.5)

Spinors ψ will usually carry a lower spinor index ψα so that one can conveniently
multiply gamma matrices to their left, γµψ. To close off a sequence of gamma matrices
from the left one can use a spinor ψ followed by ε to raise the index ψαε

αβ. Barred
spinors ψ̄ = ψ∗ε have an upper index ψ̄α = ψ∗βε

βα and one can multiply gamma

matrices to their right, ψ̄γµ.
To convert between vectors and bi-spinors we use the map

pαβ = pµσ
µ
αβ =

(
−p0 − p1 p2

p2 −p0 + p1

)
, pµ = −1

2
σαβµ pαβ. (A.6)

Conversion from HLLLP notation. For compatibility reasons we adopt the
spinor conventions used in HLLLP [16] with the only exception of the εαβ symbol with
lower indices. The reason is that lowering both indices of εαβ with two εHLLLP

αβ according
to the prescription in [16] leads to −εHLLLP

αβ . We thus choose the opposite sign for εαβ.
This is consistent with the fact that det ε = +1: The relative normalization of totally
antisymmetric tensors ε with upper and lower indices should be determined by the
determinant of the matrix to raise or lower indices (here: the same ε).

In order to avoid sign confusions we will always raise or lower spinor indices ex-
plicitly by means of ε tensors. All the symbols will have a definite position of spinor
indices; we commonly use lower indices which are contracted by εαβ.

Thus, the conversion from HLLLP [16] to our notation consists of the following
two replacements

ψαHLLLP = εαβψβ, εHLLLP
αβ = −εαβ. (A.7)

A.2 Polarization Spinors

Consider now the Dirac equation

(γµ∂µ −m)ψ = 0. (A.8)

It is solved by ψ = exp(+ipµx
µ)u(+p) and ψ = exp(−ipµxµ)u(−p) with the polariza-

tion spinors

u(p) =
1√

p0 − p1

(
p2 − im
p1 − p0

)
, v(p) =

1√
p0 − p1

(
p2 + im
p1 − p0

)
. (A.9)

These are normalized such that

vα(p)uβ(p) = −pαβ − imεαβ. (A.10)
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Obviously, the Dirac equation with opposite mass

(γµ∂µ +m)ψ̃ = 0 (A.11)

has the solutions ψ̃ = exp(+ipµx
µ)v(+p) and ψ̃ = exp(−ipµxµ)v(−p) with u replaced

by v interchanged. By construction, it is also clear that for inverted momentum one
obtains

u(−p) = i sign(p0) v(p), v(−p) = i sign(p0)u(p). (A.12)

Finally, let us note that the two polarization spinors are related complex conjugation

u(p)∗ = −i u(−p∗), v(p)∗ = −i v(−p∗). (A.13)

A.3 Completeness Relations and Conversion

We list two completeness relations for symmetrized bispinors

σαβµ σµγδ = −δαγ δ
β
δ − δ

α
δ δ

β
γ , εαβεγδ = δαγ δ

β
δ − δ

α
δ δ

β
γ . (A.14)

These can be used to convert between vectors and symmetric bispinors

aαβ = σµαβaµ, aµ = −1
2
σαβµ aαβ. (A.15)

Furthermore in three dimensions vectors and two-forms are equivalent

aρ = 1
2
εµνρa

µν , aµν = −εµνρaρ. (A.16)

Thus we can also convert directly between symmetric bispinors and two-forms

aαβ = −1
2
σµαγε

γδσνδβaµν , aµν = −1
2
σαγµ εγδσ

δβ
ν aαβ. (A.17)

B The N = 4 Chern–Simons Model

In this appendix we define the N = 4 supersymmetric Chern–Simons model and give
a summary of its symmetries.

B.1 Definitions

We start by listing the basic fields, symbols and indices that appear in the model.

Types of Indices.

• M,N,P, . . .: gauge adjoint indices,

• A,B,C, . . .: gauge untwisted representation indices,

• Ã, B̃, C̃, . . .: gauge twisted representation indices,

• α, β, γ, . . .: spacetime spinor indices (cf. App. A.1),

• µ, ν, ρ, . . .: spacetime vector indices (cf. App. A.1),
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• a, b, c, . . .: flavor indices of first su(2),

• ȧ, ḃ, ċ, . . .: flavor indices of second su(2),

• ã, b̃, c̃, . . .: flavor indices of third su(2),

• â, b̂, ĉ, . . .: flavor indices of fourth su(2).

Gauge Invariant Symbols.

• gauge algebra structure constants FM
NP = −FM

PN ,

• gauge algebra (Cartan–Killing) metric KMN = KNM ,

• untwisted (twisted) representation TAMB (T̃ Ã
MB̃

),

• untwisted (twisted) moments MM
AB = MM

BA (M̃M
ÃB̃

= M̃M
B̃Ã

),

• untwisted (twisted) metric LAB = −LBA (L̃ÃB̃ = −L̃B̃Ã).

The untwisted structure constants FM
NP , T

A
MB,M

M
AB obey the Jacobi identities of a Lie

superalgebra

0 = FM
RNF

N
PQ + FM

RPF
R
QN + FM

RQF
R
NP ,

0 = TACMT
C
NB − TACNTCMB + TAPBF

P
MN ,

0 = FM
NPM

P
AB +MM

ACT
C
NB +MM

BCT
C
NA,

0 = TAMBM
M
CD + TAMCM

M
DB + TAMDM

M
BC . (B.1)

Furthermore the compatibility of structure constants and metric implies the relation

LACT
C
MB = KMNM

N
AB. (B.2)

The twisted constants FM
NP , T̃

Ã
MB̃

, M̃M
ÃB̃
, L̃ÃB̃ obey the same Lie superalgebra relations.

The Lie superalgebra for the twisted sector need not be isomorphic to the one for the
“untwisted” sector; the even parts defined through FM

NP must be isomorphic, but the

odd parts T̃ Ã
MB̃

, M̃M
ÃB̃
, L̃ÃB̃ can differ.

Fields and Combinations. The most general non-abelian model is based upon the
following five types of fields:

• gauge field AMαβ = σµαβA
M
µ ,

• untwisted scalars φAa and fermions ψA
αḃ

,

• twisted scalars φ̃Ãȧ and fermions ψ̃Ãαb.
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The following combinations of fields (field strength, covariant derivatives, moments,
currents) have proven useful

FMαβ = −1
2
εγδ∂αγAMβδ − 1

2
εγδ∂βγAMαδ − 1

2
εγδFM

NPANαγAPβδ,
DαβXA = ∂αβXA + TKMBAMαβXB, DαβX Ã = ∂αβX Ã + T̃ Ã

MB̃
AMαβX B̃,

MM
ab = MM

ABφ
A
a φ

B
b , M̃M

ȧḃ
= M̃M

ÃB̃
φ̃Ãȧ φ̃

B̃
ḃ
,

JM
αbċ = MM

ABφ
A
b ψ

B
αċ, J̃M

αḃc
= M̃M

ÃB̃
φ̃Ã
ḃ
ψ̃B̃αc. (B.3)

With respect to the conventions in [16] we have rescaled the fields for our convenience
as follows:

φAa → +
√

4π qAa , φ̃Ãȧ → −
√

4π q̃Ãȧ ,

ψA
αḃ
→ +

√
4π ψA

αḃ
, ψ̃Ãαb → +

√
4π ψ̃Ãαb. (B.4)

B.2 Action

The action which appears in the path integral as eiS is defined as S =
∫
d3xL with

the Lagrangian:

(4π/k)L = −1
2
KMNε

βγεδκελαAMαβ∂γδANκλ
− 1

6
KMNF

N
PQε

βγεδκελαAMαβAPγδA
Q
κλ

+ 1
4
LABε

abεγκεδλDγδφAaDκλφBb
− 1

2
m2LABε

abφAa φ
B
b

+ i
2
LABε

ȧḃεγκελδψAγȧDκλψBδḃ
+ i

2
mLABε

ȧḃεγδψAγȧψ
B
δḃ

+ 1
4
L̃ÃB̃ε

ȧḃεγκεδλDγδφ̃ÃȧDκλφ̃B̃ḃ
− 1

2
m2L̃ÃB̃ε

ȧḃφ̃Ãȧ φ̃
B̃
ḃ

+ i
2
L̃ÃB̃ε

abεγκελδψ̃ÃγaDκλψ̃B̃δb
− i

2
mL̃ÃB̃ε

abεγδψ̃Ãγaψ̃
B̃
δb

+ i
4
KMNε

abεċḋεκλJM
κaċJ N

λbḋ

+ i
4
KMNε

ȧḃεcdεκλJ̃M
κȧcJ̃ N

λḃd

+ iKMNε
adεḃċεκλJM

κaḃ
J̃ N
λċd

− i
4
LACT

C
MBε

ȧċεḃḋεκλM̃M
ȧḃ
ψAκċψ

B
λḋ

− i
4
L̃ÃC̃ T̃

C̃
MB̃

εacεbdεκλMM
ab ψ̃

Ã
κcψ̃

B̃
λd

+ 1
6
mKMNε

bcεdaMM
abMN

cd

− 1
6
mKMNε

ḃċεḋȧM̃M
ȧḃ
M̃N

ċḋ

+ 1
96
KMNF

N
PQε

bcεdeεfaMM
abMP

cdM
Q
ef

+ 1
96
KMNF

N
PQε

ḃċεḋėεḟ ȧM̃M
ȧḃ
M̃P

ċḋ
M̃Q

ėḟ

+ 1
16
L̃C̃D̃T̃

C̃
MÃ

T̃ D̃
NB̃
εȧḃεceεdfMM

cdMN
ef φ̃

Ã
ȧ φ̃

B̃
ḃ

+ 1
16
LCDT

C
MAT

D
NBε

abεċėεḋḟM̃M
ċḋ
M̃N

ėḟ
φAa φ

B
b . (B.5)
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This is equivalent to the action presented in [16] after using the dictionary in (B.4).

B.3 Symmetries

Here we collect the global symmetries of the model.

Rotations. The su(2) ⊕ su(2) flavor and sl(2) Lorentz rotations act on the corre-
sponding indices of some field X as follows

RabXc = i
2
εbcXa + i

2
εacXb,

ṘȧḃXċ = i
2
εḃċXȧ + i

2
εȧċXḃ,

LαβXγ = 1
2
εβγXα + 1

2
εαγXβ. (B.6)

Translations. The momentum generators act by covariant derivatives

PαβXA = −iDαβXA,

PαβX Ã = −iDαβX Ã,

PαβAMγδ = i
2
εβδFMαγ + i

2
εβγFMαδ + i

2
εαδFMβγ + i

2
εαγFMβδ . (B.7)

Supersymmetry. Supersymmetry generators act on the fields according to the rules

Qαbċφ
A
d = εbdψ

A
αċ,

Qαbċφ̃
Ã
ḋ

= εċḋψ̃
Ã
αb,

Qαbċψ
A
δė = iεċė

(
Dαδ −mεαδ

)
φAb + iεαδ

(
1
6
MM

bf ε
fgεċė − 1

2
δgbM̃

M
ċė

)
TAMBφ

B
g ,

Qαbċψ̃
Ã
δe = iεbe

(
Dαδ +mεαδ

)
φ̃Ãċ + iεαδ

(
1
6
εbeM̃M

ċḟ
εḟ ġ − 1

2
MM

be δ
ġ
ċ

)
T̃ Ã
MB̃

φ̃B̃ġ ,

QαbċAAδε = 1
2
εαδJM

εbċ + 1
2
εαεJM

δbċ + 1
2
εαδJ̃M

εċb + 1
2
εαεJ̃M

δċb. (B.8)

The supersymmetry variation δ of [16] corresponds to the action of δ = iηαbċQαbċ with
a fermionic field η. Lowering some of the indices of this field yields

ηαd
ċ = ηαbċεbd, ηαbḋ = ηαbċεċḋ, ηδ

b
ė = ηαbċεαδεċė, ηδe

ċ = ηαbċεαδεbe. (B.9)

B.4 Interacting Symmetry Algebra

The symmetry algebra takes the form described in Sec. 2.2. However, it is well known
that the symmetry algebra in an interacting gauge theory closes only on shell and
modulo (field-dependent) gauge transformations. The additional terms form an ideal
of the algebra and thus can be factored out consistently by acting only on on-shell,
gauge-invariant states.
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Commutators. The additional terms in the commutators can be written explicitly
as

{Qαbċ,Qδeḟ} = εbeεċḟ (+Pαδ + Eαδ)

+ εαδεċḟ (−2mRbe − 1
2
G[Mbe] + Ebe)

+ εαδεbe(+2mṘċḟ − 1
2
G̃[M̃ċḟ ] + Eċḟ ),

[Pαβ,Qγdė] = 1
2
εβγG[Jαdė + J̃αėd] + 1

2
εαγG[Jβdė + J̃βėd],

[Pαβ,Pγδ] = i
2
εβδG[Fαγ] + i

2
εβγG[Fαδ] + i

2
εαδG[Fβγ] + i

2
εαγG[Fβδ]. (B.10)

The generator E annihilates on-shell fields and the generators G[X ] are field-dependent
gauge transformations.

Gauge Transformations. The generators G[X ] are gauge variations with variation
parameter XM

G[X ]YA = −iTAMBXMYB,
G[X ]Y Ã = −iT̃ Ã

MB̃
XMY B̃,

G[X ]AMαβ = iDαβXM . (B.11)

The gauge transformation generate an ideal of the full symmetry algebra: One can
show that commutators of gauge transformations close onto gauge transformations,
explicitly [

J,G[X ]
]

= G[JX ]. (B.12)

Equation of Motion Generators. The action of the generators E[X ] is defined as

Eαβψ
A
γḋ

= i
2
εβγE[ψA

αḋ
] + i

2
εαγE[ψA

βḋ
],

Eαβψ̃
Ã
γd = i

2
εβγE[ψ̃Aαd] + i

2
εαγE[ψ̃Aβd],

EαβAMγδ = − i
2
εβγE[AMαδ]− i

2
εβδE[AMαγ]− i

2
εαγE[AMβδ]− i

2
εαδE[AMβγ],

Eabψ̃
Ã
γd = − i

2
εbdE[ψ̃Ãγa]− i

2
εadE[ψ̃Ãγb],

Eȧḃψ
A
γḋ

= − i
2
εḃḋE[ψAγȧ]− i

2
εȧḋE[ψA

γḃ
]. (B.13)

They annihilate on-shell fields because E[X ] = 0 is defined as the equation of motion
for the field X

E[φAa ] = 1
2
εγκεδλDγδDκλφAa −m2φAa

+ i
2
εċḋεκλTANBψ

B
κċJ N

λaḋ
+ iεḃċεκλTANBψ

B
κḃ
J̃ N
λċa

− i
2
M̃M

C̄D̄ε
bdεκλTAMBφ

B
b ψ̃

C̄
κaψ̃

D̄
λd + 2

3
mεbdTANBφ

B
bMN

ad

+ 1
16
FN
PQT

A
NBε

bcεdeMP
abMcdφ

B
e + 1

4
M̃M

ĀD̄T̃
D̄
N B̄ε

bfTAMBφ
B
bMM

af φ̃
Ā
ċ φ̃

B̄
ḋ

+ 1
8
LCDT

CA
M TDN Bε

ċėεḋḟM̃M
ċḋ
M̃N

ėḟ
φBa ,

E[φ̃Ãȧ ] = 1
2
εγκεδλDγδDκλφAȧ −m2φAȧ

+ i
2
εcdεκλT̃ ĀN B̄ψ̃

B̄
κcJ̃ N

λȧd + iεbcεκλT̃ ĀN B̄ψ̃
B̄
κbJ N

λcȧ
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− i
2
MM

CDε
ḃḋεκλT̃ ĀM B̄φ̃

B̄
ḃ
ψCκȧψ

D
λḋ
− 2

3
mεḃḋT̃ ĀN B̄φ̃

B̄
ḃ
M̃N

ȧḋ

+ 1
16
FN
PQT̃

Ā
N B̄ε

ḃċεḋėM̃P
ȧḃ
M̃ċḋφ̃

B̄
ė + 1

4
MM

ADT
D
N Bε

ḃḟ T̃ ĀM B̄φ̃
B̄
ḃ
M̃M

ȧḟ
φAc φ

B
d

+ 1
8
L̃C̄D̄T̃

C̄Ā
M T̃ D̄N B̄ε

ceεdfMM
cdMN

ef φ̃
B̄
ȧ ,

E[ψA
αḃ

] = εγδDαγψAδḃ +mψA
αḃ

+ TAMB(JM
αcḃ

+ J̃M
αḃc

)εcdφBd ,

E[ψ̃Ãαb] = εγδDαγψ̃Ãδb −mψ̃Ãαb + T̃ Ã
MB̃

(JM
αbċ + J̃M

αċb)ε
ċḋφ̃B̃

ḋ
,

E[AMαβ] = FMαβ + 1
2
MM

ABε
cdφAc DαβφBd + 1

2
M̃M

ÃB̃
εċḋφ̃Ãċ Dαβφ̃B̃ḋ

+ i
2
MM

ABε
ċḋψAαċψ

B
βḋ

+ i
2
M̃M

ÃB̃
εcdψ̃Ãαcψ̃

B̃
βd. (B.14)

The commutators of the generators E close onto further generators E which annihilate
all on-shell fields. Thus they also form an ideal of the symmetry algebra.

Oscillator Expansion. We use the following oscillator expansions to the fields,
using the basis of solutions found in (A.2):

φAa (x) =

∫
d2p√
2E(p)

(
e−ip·xaAa (p) + eip·xaA†a (p)

)
φ̃Aȧ (x) =

∫
d2p√
2E(p)

(
e−ip·xãAȧ (p) + eip·xãA†ȧ (p)

)
ψAȧ (x) =

∫
d2p√
2E(p)

(
u(p)eip·xb†Aȧ (p) + v(p)e−ip·xbAȧ (p)

)
ψ̃Aa (x) =

∫
d2p√
2E(p)

(
v(p)eip·xb̃†Aa (p) + u(p)e−ip·xb̃Aa (p)

)
. (B.15)

φ(x) and ψ(x) are the bosonic and fermionic fields in the action found in Appendix B
and the action (B.5). Requiring that the linearized N = 4 algebra be realized on
bosonic/fermionic oscillator states, leads to (2.9). We note that the positive and
negative energy frequency parts for the twisted fermions are related to the conjugates
of those for the untwisted ones. This has to do with the fact that the twisted fermions
have a negative mass compared to the untwisted ones.
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