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ABSTRACT: The complete universal anomalous dimension of twist-2 operators in N = 4
SYM has been recently conjectured at four loops in terms of maximum transcendental-

ity combinations of harmonic sums. It reproduces the known cusp anomaly, NLO BFKL

poles, and the diagrammatic result for the Konishi operator. In this paper, we prove that it

passes a further deep test related to a generalized Gribov-Lipatov reciprocity. This holds

for both the asymptotic Bethe Ansatz contribution [1] and the novel wrapping correc-

tion [2]. This result suggests reciprocity to be a very stable and intrinsic property of twist-2

operators.
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1. Introduction and discussion

The calculation of the four loop universal anomalous dimension of N = 4 SYM twist-

2 operators, whose formula is now available thanks to the findings of [1] and the recent

completion [2], is a remarkable example of the combined power of integrability and QCD-

inspired Ansätze in determining a gauge theory perturbative formula. The general form

of the anomalous dimension is in fact naturally split into an asymptotic part and a wrap-

ping correction. While the all loop asymptotic Bethe Ansatz of N = 4 SYM [3] is well-

suited to correctly determine the asymptotic part, it drastically fails when wrapping cor-

rections come into play [1], something happening at four loops for the twist-2 operators
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under consideration. It is a recent achievement that, in turn, such wrapping contributions

can be exactly determined by exploiting the integrability of the string sigma model inAdS5 � S5, dual to N = 4 SYM via AdS/CFT correspondence. Namely, the identification

of anomalous dimensions with energies of string states in AdS5 � S5 and the finite size

nature of the wrapping contribution allow to compute the effects of the latter as leading

virtual corrections to the infinite volume limit via generalized Lüscher formulas [4].

In the case of twist-2 operators, two other ingredients, both with a QCD origin, have

been crucial in providing the final exact result. On one hand, the maximum transcen-

dentality principle [5] has made feasible the evaluation of both the asymptotic and the

wrapping contribution to the spin N dependent anomalous dimension 
(N) 1. Further-

more, from the next-to-leading order BFKL equations [6] a prescription can be extracted

for the pole structure of the analytically continued anomalous dimension. Such prescrip-

tion was determinant to state the failure of Bethe equations in describing the spectrum

of short operators [1], as well as the correctness of the full result including the wrapping

correction [2].

In this paper we show that the four loop result of [1, 2] satisfies yet another QCD-

related property, the so-called (generalized Gribov-Lipatov) reciprocity [7, 8, 9]. This result

is not totally surprising for the asymptotic part of the anomalous dimension, at least in

view of what has been already noticed in [10]2 and because of similar observations made

in the last two years for a rich set of twist operators in QCD andN = 4 SYM [11]. Instead,

the fact that reciprocity holds also for the wrapping contribution is novel and remarkable.

As we shall discuss below, this gives a serious argument to consider reciprocity a crucial

tool for checking the correctness of any future expression of anomalous dimension for

twist operators.

Reciprocity emerges in studying the large spin N behavior of the available anoma-

lous dimensions of twist-2 operators in QCD and N = 4 SYM. It is known that sub-

leading terms in the large spin expansion obey (three loops) hidden relations, the Moch-

Vermaseren-Vogt (MVV) constraints [12]. In QCD such relations can be related with the

crossing reciprocity of Deep Inelastic Scattering (DIS) and e+e� annihilation. Technically,

reciprocity in the twist-2 case holds for the Dokshitzer-Marchesini-Salam (DMS) evolution

kernel eP governing simultaneously the distribution and fragmentation functions [7] 3. In

the usual x-space description of DIS, the reciprocity prediction turns out to be the follow-

ing simple analog of Gribov-Lipatov reciprocityeP (x) = �x eP � 1x� : (1.1)

The kernel eP is fully determined (at least perturbatively) by the spin dependent anoma-

1In the case of the wrapping correction, the maximum transcendentality principle was used only in the

evaluation of the so-called purely rational contribution. For the maximum transcendentality conjecture at

previous loop orders, see footnote 7.
2See Section 7 there.
3The DSM evolution kernel has recently received a nice confirmation in [13].
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lous dimension 
(N). Indeed, taking the Mellin transform of eP we getP (N) = Z 10 dxxN�1 ~P (x) = M

h ~P (x)i ; (1.2)

and the DMS evolution equations (for a finite theory like N = 4 SYM) predict the func-

tional relation 
(N) = P �N + 12
(N)� : (1.3)

The origin of the MVV relations can be traced back to the reciprocity relation Eq. (1.1)

which we equivalently write as the following constraint on P (N) at large NN !1 : P (N) = X̀�0 a`(log J2)J2 ` ; (1.4)

where J2 = N (N + 1) and a` are suitable coupling-dependent polynomials. Of course,

Eq. (1.4) implies an infinite set of constraints on the coefficients of the large N expansion

of P (N) organized in standard 1=N power series. Indeed, a generic expansion aroundN =1 can involve odd powers of 1=J forbidded in Eq. (1.4). The peculiar combination J2
is nothing but the Casimir of the collinear subgroup SL(2;R) � SO(2; 4) of the conformal

group [14] and the above constraint is simply parity invariance under J ! �J .

It is well known, since [9], that all this can be suitably generalized to twist-L operators

in N = 4 SYM belonging to the sl(2) sector where Eq. (1.4) is expected to hold with the

only replacement

twist� L : J2 = �N + L2��N + L2 � 1� : (1.5)

In the following, we shall say that a twist-L anomalous dimension 
(N) is reciprocity re-

specting (RR) iff Eqs. (1.4,1.5) hold for the associated P (N) 4.

Reciprocity is a non perturbative feature valid at all orders in the coupling constant.

At weak coupling, a perturbative test requires the knowledge of the multi-loop anoma-

lous dimensions as closed functions of N . These are currently available for various twist-2

and 3 operators [11]. Three-loop tests of reciprocity for QCD and for the universal twist

2 supermultiplet in N = 4 SYM were discussed in [9, 7]. A four-loop test for the twist

3 anomalous dimension in the sl(2) sector was performed in [15]. It is important to re-

call that reciprocity is expected to hold only for minimal anomalous dimensions of twist

operators 5.

At strong coupling, the investigation of reciprocity has been naturally achieved by

employing the AdS/CFT correspondence, which indicates the folded string as the config-

uration dual to twist-2 operators [17]. This analysis, initiated in [9] for the folded string

at the classical level, has been recently extended in [18] at one loop in string perturbation

theory, as well as to classical spiky strings configurations (see also [19]).

4Later, we’ll make use of the above definition of reciprocity for a general linear combination of harmonic

sums written in Mellin space, see Appendix A.
5The anomalous dimensions of operators with twist higher than two occupy a band [16], the lower bound

of which is the minimal dimension for given spin and twist.
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Remarkably, the large spin expansion of the classical string energy does respect MVV-

like relations at one-loop 6, providing a strong indication that these relations hold not only

in weak coupling (gauge theory) but also in strong coupling (string theory) perturbative

expansions, something certainly expected from the convergence of planar perturbation

theory.

The plan of the paper is the following. In Sec. (2), we briefly introduce the kernel P
and its relation with the anomalous dimension of twist-2 operators. In Sec. (3), we fully

prove at a rigorous level that the kernel P is reciprocity respecting. Finally, in Sec. (4)

we comment on the fine structure of the large N expansion of the four loop result. A

few Appendices are devoted to technical details. In particular, App. (A) briefly recalls the

basic definitions and properties of harmonic sums, App. (B) contains the detailed proof of

the main theorems used in Sec. (3), and App. (C) reports very detailed large N expansions

of the anomalous dimension and DMS kernel. We remark that a three loop reciprocity

proof first appeared in [8] to which we are indebted for various ideas and methods.

2. The four loop twist-2 anomalous dimension and its P kernel

The twist-2 anomalous dimension is given up to four loops by 7
(N) = g2 
1(N) + g4 
2(N) + g6 
3(N) + g8 
4(N) +O(g10); (2.1)

where g2 = g2YMN16�2 and (see Appendix A for the definition of harmonic sums Sa1;:::;ad)
1(N) = 8S1; (2.2)
2(N) = �16 (S�3 + 2S1 (S�2 + S2) + S3 � 2S�2;1) ; (2.3)
3(N) = �64 ��3S�5 + 2S�3S2 � 2S�2S3 � S5 � �2S21 + S2� (3S�3 + S3 � 2S�2;1) ++6 (S�4;1 + S�3;2 + S�2;3)� S1 �S2�2 + 4S2S�2 + 2S22 + 8S�4 + 3S4 � 12S�3;1�10S�2;2 + 16S�2;1;1)� 12 (S�3;1;1 + S�2;1;2 + S�2;2;1) + 24S�2;1;1;1) ; (2.4)
4(N) = 
ABA4 (N) + 
wrapping4 (N); (2.5)Sa1;:::;ad � Sa1;:::;ad(N): (2.6)

Above, 
ABA4 (N) is the result has been computed in [1] via the asymptotic Bethe Ansatz

and can be found in Table 1 of that reference. The wrapping contribution 
wrapping4 (N) has

6In the case of classical spiky strings [20] only partial consequences of the functional relation (1.3) but

not the full reciprocity invariance (1.1) apply as discussed in [18]. However, this nicely agrees with the fact

that spiky strings should correspond to an operator of twist higher than two with non-minimal anomalous

dimension for a given spin, for which reciprocity is not expected to hold. Indeed, anomalous dimensions of

twist three operators with energies close to the upper boundary of the band do not respect reciprocity as well,

as seen recently in [24].
7Closed expressions at two loops are known from explicit field-theory calculations [29] and at three-loops

from a conjecture [30] inspired from the maximum transcendentality principle [5] applied to the QCD split-

ting functions at three-loops [12]. Up to three loops, the same formulas can also be computed by the asymp-

totic Bethe ansatz [31] for fixed values of M. It is only recently that the three loop conjecture has been proved

via the Baxter approach method [32].
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been recently calculated in [2] and reads
wrapping4 (N) = 256 (S�5 � S5 + 2S�2;�3 � 2S3;�2 + 2S4;1 � 4S�2;�2;1)S21 +�640 �5 S21 � 512S�2 �3 S21 : (2.7)

The P kernel defined by (1.3) can be derived from the anomalous dimension by sim-

ply inverting (1.3). Expanding perturbatively P asP (N) = g2 P1(N) + g4 P2(N) + g6 P3(N) + g8 P4(N) +O(g10); (2.8)

we find the relationsP1 = 
1; (2.9)P2 = 
2 � 12
1
01; (2.10)P3 = 18
001
21 + 14 �
01�2 
1 � 12
02
1 + 
3 � 12
2
01; (2.11)P4 = � 148
(3)1 
31 � 316
01
001
21 + 18
002
21 � 18 �
01�3 
1 + 12
01
02
1 � 12
03
1 ++14
2
001
1 + 14
2 �
01�2 + 
4 � 12
3
01 � 12
2
02: (2.12)

It is using the formula (A.14) for the derivatives of harmonic sums that the above expres-

sions become explicit linear combination of products of harmonic sums. For the purpose

of proving reciprocity for the P -kernel, it is however useful to rewrite it in a canonical

basis, i.e. as linear combinations of single sums. This can be done by using the shuffle

algebra relation (A.6).

For example, in the case of the anomalous dimension, we can rewrite it as
1 = 8S1; (2.13)
2 = 16S�3 + 16S3 � 32S1;�2 � 32S1;2 � 32S2;1; (2.14)
3 = 128S�5 + 128S5 � 256S�4;1 � 128S�3;�2 � 64S�3;2 � 128S�2;�3 � 512S1;�4 +�256S1;4 � 576S2;�3 � 320S2;3 � 128S3;�2 � 320S3;2 � 256S4;1 ++128S�2;�2;1 + 128S�2;1;�2 + 512S1;�3;1 + 128S1;�2;�2 + 128S1;�2;2 ++768S1;1;�3 + 256S1;1;3 + 256S1;2;�2 + 256S1;2;2 + 256S1;3;1 + 384S2;�2;1 ++256S2;1;�2 + 256S2;1;2 + 256S2;2;1 + 256S3;1;1 � 512S1;1;�2;1: (2.15)

The expression of 
4 is very long and we do not report it. We just give the canonical result

for the wrapping parts leaving S1 as a factor since it is separately RR.
wrapping4 = 128S21 (2S�5 � 2S5 + 4S�2;�3 � 4S3;�2 ++4S4;1 � 8S�2;�2;1 � 5�5 � 4S�2�3): (2.16)

3. Proof of reciprocity

The proof that P4 is reciprocity respecting (RR) is based on a clever rewriting in terms

of special linear combinations of harmonic sums with nice properties under the (large-)J
parity J ! �J . In the following section we shall introduce them as a preliminary step.
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3.1 Definite-parity linear combinations of harmonic sums

Let us consider the space � of R-linear combinations of harmonic sums Sa with generic

multi-indices

a = (a1; : : : ; ad); ai 2 Znf0g; (3.1)

where d is not fixed. This is the structure of P at any perturbative order.

For any a 2 Znf0g, we define the linear map !a : � ! � by assigning its action on

elementary harmonic sums as follows!a(Sb;c) = Sa;b;c � 12 Sa^b;c; (3.2)

where, for n;m 2 Znf0g, the wedge-product isn ^m = sign(n) sign(m) (jnj + jmj): (3.3)

Besides basic harmonic sums, it is also convenient to work with complementary sumsSa which are defined in Appendix A. On the space � of their R-linear combinations we

define in a similar way a linear map !a.

In the spirit of [8, 15], we now introduce the following combinations of (complemen-

tary) harmonic sums 
a = Sa;
a;b = !a(
b); 
a = Sa = Sa;
a;b = !a(
b): (3.4)

The main tool that we shall need are the following two theorems which are proved in full

details and rigor in App. (B).

Theorem 1: The subtracted complementary combination b
a, a = (a1; : : : ; ad) has definite parityPa under the (large-)J transformation J ! �J andPa = (�1)ja1j+���+jadj (�1)d dYi=1 "ai : (3.5)

Theorem 2: The combination 
a, a = (a1; : : : ; ad) with odd positive ai and even negative ai has

positive parity P = 1.

Remark 1: For clarity, let us emphasize once again that a quantity has P = �1 iff its

large J expansion is in inverse powers 1=J2n (P = 1) or 1=J2n+1 (P = �1) with possible

logarithmic enhancements, i.e. powers of log J2. Thus, in particular, a quantity is RR iff it

has P = +1.

Remark 2: Theorem 2 follows from Theorem 1 (see Appendices). In this paper we shall

use Theorem 2 only, but we quote Theorem 1 as a separate result since it can be relevant

in more involved situations.

Remark 3: A special case of Theorem 1 appeared in [8]. A general proof of Theorem 1 in

the restricted case a = (a1; : : : ; a`) with positive ai > 0 and rightmost indices a` 6= 1 can be

found in [15]. Appendix (B) contains the proof of the general case.
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Just to give an illustrative example of Theorem 2, let us consider the combination
1;�2(N) = S1;�2(N) � 12S�3(N); (3.6)

which is expected to be RR. The large N expansion (for even N) is
1;�2(N) =  � 112�2 logN + �34 � 
E�212 !� �224N + 1144�2 1N2 +  �14 � �21440! 1N4 ++12 1N5 +  14 + �23024! 1N6 � 2 1N7 + � � � :
Rewriting the expansion in terms of J2 = N(N + 1) we find
1;�2 =  � 124�2 log(J2) + �34 � 
E�212 !� �272J2 +  �14 + �2360! 1J4 + (3.7)+ 1� �2945! 1J6 +  �112 + �21260! 1J8 + � � � ;
which is indeed invariant under J ! �J . One easily checks that this happens due to a

cancellation of wrong 1=J2n+1 terms coming from S1;�2(N) and S�3(N). Just to give an

example of combination not allowed and where such cancellations do not hold, we show
1;2 =  112�2 log(J2)� 3�32 + 
�26 !+ 1J + �236J2 � 1172 1J3 + (3.8)� 1180�2 1J4 + 82328800 1J5 + � � � :
3.2 The reduction algorithm

The strategy to prove reciprocity for the kernel P is simple: For each loop order `,
1. Consider in P` the sums with maximum depth, each of them, say Sa, appears uniquely

as the maximum depth term in 
a.

2. Subtract all the 
’s required to cancel these terms and keep track of this subtraction.

3. Repeat the procedure with depth decreased by one.

At the end, if the remainder is zero and if the full subtraction is composed of 
’s with the

right parities, as prescribed by the above theorem, we have proved that P is reciprocity

respecting.

Of course, this is sufficient but not necessary. If the final remainder is not zero or if we

have had to subtract a wrong parity 
 combination, we cannot exclude that P is RR. How-

ever, in our case, we have found that up to four loops and including wrapping, the above

algorithm works perfectly and provides a rewriting of P which is manifestly reciprocity

respecting.
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3.3 Example: P` for ` = 1; 2; 3
At one loop, we have immediately the desired result fromP1 = 8S1 = 8 
1: (3.9)

At two-loops, written in the canonical basis, the kernel (3.10) readsP2 = 16S�3 � 16�2S13 � 16S3 � 32S1;�2: (3.10)

The �2 term comes from the derivatives appearing in the expression of P2 in terms of 
1
and 
2. Applying the reduction algorithm, one findsP2 = �32 
1;�2 � 16 
3 � 163 �2 
1: (3.11)

All 
 combinations have odd-positive or even-negative indices and are thus reciprocity

respecting.

At three loops, the kernel P3 isP3 = �128S�5 � 323 �2S�3 + 16�4S13 + 32�2S33 + 128S5 � 64S�4;1 +�128S�3;�2 � 128S�2;�3 + 64S1;�4 + 643 �2S1;�2 � 64S1;4 +�128S2;�3 + 128S3;�2 � 64S4;1 + 128S�2;�2;1 + 128S�2;1;�2 + 256S1;�3;1 ++128S1;�2;�2 + 256S1;1;�3 + 256S2;�2;1 � 512S1;1;�2;1 ++64S2�3 � 128S1;1�3 (3.12)

Again, �2n and �3 terms come from derivative of 
k, k = 1; 2. The reduction algorithm

givesP3 = �512 
1;1;�2;1 + 128 
�2;�2;1 + 128 
�2;1;�2 + 128 
1;�2;�2 + 64 
�4;1 ++192 
1;�4 + 128 
3;�2 + 32 
5 + 643 �2 
1;�2 + 32�2 
33 +�128 
1;1 �3 + 16�4 
13 (3.13)

which is reciprocity respecting since it contains only allowed 
 terms.

3.4 The four loop ABA contribution

The reduction algorithm that we have illustrated in the 1, 2, and 3 loop cases can be ap-

plied to the four loop expression. The expression for PABA4 in the canonical basis is very
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long, and we do not show it. Applying the reduction algorithm one findsPABA4 = �8192
1;1;1;�2;1;1 + 6144
�2;�2;1;1;1 + 6144
�2;1;�2;1;1 + 4096
�2;1;1;�2;1 ++6144
1;�2;�2;1;16144
1;�2;1;�2;1 + 2048
1;�2;1;1;�2 + 6144
1;1;�2;�2;1 ++4096
1;1;�2;1;�2 + 6144
1;1;1;�2;�2 � 1024
�2;�2;�2;1 � 1536
�2;�2;1;�2 +�2048
�2;1;�2;�2 + 1024
1;�4;1;1 � 1536
1;�2;�2;�2 + 3072
1;1;�4;1 ++1024
1;1;�2;3 + 2048
1;1;1;�4 + 2048
1;3;�2;1 + 1024
3;�2;1;1 + 2048
3;1;�2;1 +�2048
�4;�2;1 � 1280
�4;1;�2 � 2048
�2;�4;1 � 768
�2;�2;3 � 1536
�2;1;�4 +�256
�2;3;�2 � 2304
1;�4;�2 � 1792
1;�2;�4 � 2048
1;1;5 � 1536
1;5;1 +�1280
3;�2;�2 � 1536
5;1;1 � 768
�6;1 � 128
�4;3 + 384
�2;5 � 1408
1;�6 +�896
3;�4 � 256
5;�2 + 640
7 + 20483 �2 
1;1;�2;1 + 1024�2 
1;1;1;�2 +�5123 �2 
�2;�2;1 � 5123 �2 
�2;1;�2 � 5123 �2 
1;�2;�2 � 2563 �2 
�4;1 +�256�2 
1;�4 � 5123 �2 
3;�2 + 1536�3 
�2;1;1 + 1280
1;�2;1�3 + 1024
1;1;�2�3+640�3 
1;3 + 640
3;1�3 � 320
�4�3 + 108815 �4 
1;1;1 � 643 �4 
1;�2 � 75245 �4 
3 ++
1;1�� 2563 �2�3 + 2560�5�� 25645 �6 
1 � �3(2
�2;1 +
3): (3.14)

This proves reciprocity of the ABA term since, once again, only allowed 
’s appear !

3.5 The four loop wrapping contribution

The wrapping contribution starts at four loops. It enters directly P4 with no mixing with

lower loop order terms. Thus, we can apply immediately the reduction algorithm without

need of taking any derivative. The result is very simple. It readsPwrapping4 = �4
�2;�2;1 � 2
3;�2; (3.15)

and is clearly reciprocity respecting.

4. Expansions at large N and inheritance

In this final Section, we discuss the fine structure of the DMS kernel P (N) at large N . The

general structure of soft gluon emission governing the very large N behaviour of 
(N)
predicts the leading contribution 
(N) � f
usp(�) log N where the coupling dependent

coefficient f
usp(�), a.k.a. cusp anomaly, is expected to be universal in both twist and flavour.

This is precisely what is observed in the various exact multiloop expressions discussed in

Appendix F of [18].

This leading logarithmic behaviour is also the leading term in the function P (N).
Concerning the subleading terms, as remarked in [8] to which we defer for a full discus-

sion, the function P (N) obeys at three loops a very powerful additional simplicity con-

straint. Indeed, it does not contains logarithmically enhanced terms � logn(N)=Nm withn � m apart from the leading cusp logarithm.
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This immediately implies that the leading logarithmic functional relation
(N) = f
usp(�) log �N + 12f
usp(�) logN+:::�+ ::: (4.1)

predicts correctly the maximal logarithmic terms logmN=Nm
(N) � f
usp logN + f2
usp2 logNN � f3
usp8 ln2NN2 + ::: (4.2)

whose coefficients are simply proportional to fm+1
usp [15, 24, 18].

Notice that the fact that the cusp anomaly is known at all orders in the coupling via

the results of [27, 28] naturally implies (under the “simplicity” assumption for P ) a proper

prediction for all coefficients of the type logmN=Nm at all orders in the coupling constant,

and in particular for those appearing in the large spin expansion of the energies of certain

semiclassical string configurations (dual to the operators of interest). Such prediction has

been checked in [18] up to one loop in the sigma model semiclassical expansion, as well

as in [19] at the classical level 8.

As noticed in [18], Appendix F, the asymptotic part of the four loop anomalous di-

mension for twist-2 operators already revealed an exception to this ”rule”, being the termlog2N=N2 not given only in terms of the cusp anomaly. Interestingly enough, the large

spin expansion of the wrapping contribution of [2], which correctly does not change the

leading asymptotic behavior (cusp anomaly), first contributes at order log2N=N2. Thus,

while on the basis of (4.2) one would expect in the large spin expansion of the four loop

anomalous dimension a term of the type(
22)4 log2NN2 with (
22)Naive4 = ��f3
usp8 �4 = 64�2 (4.3)

expanding (2.5) and (2.7) below one finds (see Appendix C, formulas (C.4) and (C.5))(
22)ABA4 = 64�2 � 128 �3 and (
22)wrapping4 = �643 �2 � 128 �3 (4.4)

which summed up do not reproduce (4.3). This indicates that, in the case of the twist-2

operators and starting at four loops, the P -function ceases to be ”simple” in the meaning

of [8]. This is confirmed by explicitely looking at the the structure of its asymptotic ex-

pansion (see Appendix C, formula C.9), and prevents the tower of subleading logarithmic

singularities logmN=Nm to be simply inherited from the cusp anomaly.

5. Discussion

The present analysis together with the related work in [7, 9, 8, 15, 21, 22, 23, 18] leads to

the following conclusions.

Reciprocity has been tested in N = 4 SYM at weak coupling for the minimal dimen-

sion of operators of twist-2 and three for all possible flavors and at strong coupling up to

8In [19], a nice explanation for the relation of the logmN=Nm coefficients to the cusp anomaly has been

given in terms of the pp-wave limit for the case of spiky strings in AdS3 � S1.
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one loop in the string sigma-model calculation [18] 9. In [10], hints were given suggesting

that the asymptotic part of the four loop result for the twist-2 operators, derived from the

Bethe Ansatz in [1], was presumably reciprocity respecting. In this paper we have proved

this claim in full rigor, showing that reciprocity also applies to the wrapping contribution.

All this suggests that reciprocity can then be considered a hidden symmetry of N = 4
SYM, intrinsic in the Asymptotic Bethe Ansatz of the theory and thus related in some

unknown way with the structure built in there. Because it holds also in the presence

of wrapping, it is reasonable to consider reciprocity as an important testing device for

checking the correctness of any future expression of minimal anomalous dimension for

twist operators, as well as for the energies of their string dual counterpart 10.

While it would be significative to derive reciprocity inN = 4 SYM from first principles

(and it is expected that the AdS/CFT correspondence might help in this), a reasonable

attitude can be, in view of the previous point and as in the case of the integrability of the

theory, to just assume that reciprocity holds.

This would strongly simplify any attempt to calculate further examples of multiloop

anomalous dimensions, at higher loop and twist [26]. The use of both the maximum tran-

scendentality principle and reciprocity drastically reduces the number of terms that have

to be calculated via Bethe Ansatz and generalised Lüscher techniques, and is expected

to give a fast and correct answer where other methods as the Baxter approach still need

further achievements.
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A. Harmonic sums

A.1 Basic definitions

The basic definition of nested harmonic sums Sa1;:::;an is recursiveSa(N) = NXn=1 "nanjaj ; (A.1)Sa;b(N) = NXn=1 "nanjaj Sb(n); (A.2)

where "a = (+1; if a � 0;�1; if a < 0 : (A.3)

Given a particular sum Sa = Sa1;:::;an we define

depth (Sa) = n; (A.4)

transcendentality(Sa) = jaj � ja1j+ � � � + janj: (A.5)

For a product of S sums, we define transcendentality to be the sum of the transcendental-

ities of the factors.

Product of S sums can be reduced to linear combinations of single sums by using

iteratively the shuffle algebra [33] defined as followsSa1;:::;an(N)Sb1;:::;bm(N) = NX̀=1 "à1`ja1j Sa2;:::;an(`)Sb1;:::;bm(`) + (A.6)+ NX̀=1 "b̀1`jb1j Sa1;:::;an(`)Sb2;:::;bm(`) +� NX̀=1 "à1 "b̀1`ja1j+jb1j Sa2;:::;an(`)Sb2;:::;bm(`):
A.2 Complementary and subtracted sums

Let a = (a1; : : : ; a`) be a multi-index. For a1 6= 1, it is convenient to adopt the concise

notation Sa(1) � S�a: (A.7)

Complementary harmonic sums are defined recursively bySa = Sa; (A.8)Sa = Sa � `�1Xk=1Sa1;:::;ak S�ak+1;:::;a` : (A.9)

The definition is ill when a has some rightmost 1 indices. In this case, we treat S�1 as a

formal object in the above definition and set it to zero in the end. It can be shown that
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Sa
� <1 in all cases and hence it is meaningful to define subtracted complementary sums

as bSa = Sa � S�a: (A.10)

Explicitely, bSa(N) = (�1)` 1Xn1=N+1 "n1a1nja1j1 1Xn2=n1+1 "n2a2nja2j2 : : : 1Xn`=n`�1+1 "n`a`nja`j` : (A.11)

A.3 Derivatives of harmonic sums

Given the fact that a generic sum has the asymptotic expansionSa(N) = 1X̀=0 P`(log N)N ` + (�1)N 1X̀=0 Q`(log N)N ` ; (A.12)

we want to define S0a(N) as a combination of harmonic sums such that their asymptotic

expansion is S0a(N) = ddN 1X̀=0 P`(log N)N ` + (�1)N ddN 1X̀=0 Q`(log N)N ` ; (A.13)

This remark is in order to explain how we treat the (�1)N factor. For sums with only

positive indices, this derivative is just the ordinary derivative. Indeed one can shows that

apart from the (�1)N , the sums are smooth functions of N (finite sum trick).

After these preliminary remarks, the master formula for derivatives isS0a1;:::;a` = � X̀k=1 jakj bSa1;:::;ak^1;:::;a` + X̀k=2 jakj k�1Xp=1 bSa1;:::;ap S�ap+1;:::;ak^1;:::;a` (A.14)

which reads more explicitlyS0a1;:::;a` = � X̀k=1 jakj bSa1;:::;ak^1;:::;a` + (A.15)+ja2j bSa1 S�a2^1;a3;a4;::: ++ja3j ( bSa1 S�a2;a3^1;a4;::: + bSa1;a2 S�a3^1;a4;:::) ++ja4j ( bSa1 S�a2;a3a4^1;::: + bSa1;a2 S�a3;a4^1;::: + bSa1;a2;a3 S�a4^1;:::) + � � �
A.4 Mellin transforms

Let a = fa1; : : : ; a`g be a multi-index with the important restriction that there are no

rightmost indices different from 1, a` 6= 1.
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Defining recursively the functions G(x) viaGa1;:::;a`(x) = "Na1�(ja1j) Z 1x dyy � "a2 : : : "a` lnja1j�1 yx Ga2;:::;a`(y) (A.16): : : : : :Ga`�1;a`(v) = "Na`�1�(ja`�1j) Z 1v dww � "a` lnja`�1j�1 wv Ga`(w)Ga`(w) = "Na`�(ja`j) lnja`j�1 1w (A.17)

the Mellin transform of the subtracted sums of (A.11) reads thenbSa(N) = M

� xx� "a1 : : : "a` Ga1;:::;a`(x)� (A.18)

For example, for three indices it isbSa;b;
(N) = ("a"b"
)N�(jaj)�(jbj)�(j
j) M

� xx� "a"b"
 Z 1x dyy � "b"
 lnjaj�1 yx Z 1y dzz � "
 lnjbj�1 zy lnj
j�1 1z �
(A.19)

For our purpose, it is important to notice that the function G in (A.18) satisfies the

propertyGa1;:::;a` � 1x� = (�1)Pì=1(jaij�1)nGa1;:::;a`(x)�P`�1k=1Ga1;:::;ak^ak+1;:::;a`(x) (A.20)+h `�1Xk=1Ga1;:::;ak�1^ak^ak+1;:::;a`(x) + `�2Xk=1Ga1;:::;ak�1^ak;ak+1^ak+2;:::;a`(x)i�h `�1Xk=1Ga1;:::;ak�2^ak�1^ak^ak+1;ak+2;:::;a`(x) + : : : i+ � � �+ (�1)`�1Ga1^a2^���^a`(x)o
Above, the sign of each contribution is determined by (�1)nw , with nw is the number of

the wedge-products in the G-functions appearing in that piece. For example, for three

indices it isGa;b;
 � 1x� = (�1)jaj+jbj+j
j�1 [Ga;b;
(x)� Ga^b;
(x)� Ga;b^
(x) + Ga^b^
(x)℄ (A.21)

To obtain (A.20), one uses recursively the result"a1�(a1) Z 1x dyy lnja1j�1 yx Ga2;:::;a`(y) = Ga1^a2;a3;:::;a`(x) : (A.22)
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B. Technical proofs

B.1 Proof of Theorem 1, no rightmost unit indices

It is possible to proceed iteratively starting from combinations b
a(N) with one index. At

each step we only focus on b
 combinations with maximal number of indices, the iterative

procedure ensures in fact that for the remainder the theorem has been already proved.

The strategy is to write the b
 in terms of their Mellin transforms exploiting (A.18) and use

reciprocity in x-space via Eq. (1.1). For this purpose we use the notation of Appendix A

and introduce the functions �(x), whose relation with the 
(N) functions is exactly as the

one of the functions G(x) with the subtracted sums bS(N). Our derivation mimicks the

analogous construction described in Sec. (2.2.1) of [15] generalizing it to the signed case.

For technical reasons, we first consider b
a in the case where the rightmost index in the

multi-index a is not 1. This is necessary since we want to use the Mellin transform de-

scribed in App. A.4 which are valid under this limitation. This is not a problem at depth

1 since it is well known that S1 is parity-even. At depth larger than one, we shall discuss

at the end how this limitation can be overcome. So, let us assume for the moment that

a = (a1; : : : ; a`) with a` 6= 1.

For one index, b
a(N) � bSa(N) = M

� xx� "a Ga(x)� � M

� xx� "a �a(x)� (B.1)

The l.h.s. has parity P = �1 iff �a(x) = P "a �� 1x� (B.2)

Using (A.20) it is easy to see that"a �a � 1x� = (�1)jaj�1 "a �a(x) (B.3)

Thus, P = (�1)jaj�1 "a; (B.4)

in agreement with Theorem 1. The generalisation to ` indices is straightforward. Using

the notation "i � "ai , it isb
a1;:::;a`(N) = M

� xx� "1 : : : "`�a1;:::;a`(x)� (B.5)

where �a1;:::;a`(x) = Ga1;:::;a`(x)� 12 X̀k=1Ga1;:::;ak^ak+1(x)+��12�2 h `�1Xk=1Ga1;:::;ak�1^ak^ak+1;:::;a`(x) + `�2Xk=1Ga1;:::;ak�1^ak;ak+1^ak+2;:::;a`(x)i+ � � �+ ��12�`�1Ga1^���^a`(x) ; (B.6)
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which is nothing but the general form of Eq. (2.17) in [15]. The l.h.s. has parity P iff�a1;:::;a`(x) = P "1 : : : "` �a1;:::;a` � 1x� : (B.7)

Using the formula (A.20) for each of the G-functions evaluated in 1=x appearing in the

right-hand-side of (B.7), one can see thatP = (�1)Pì=1(jaij�1) "1 : : : "`; (B.8)

again in agreement with Theorem 1 which is then proved for all a = (a1; : : : ; a`) witha` 6= 1.

B.2 Proof of Theorem 1, extension to general a

To conclude, let us now define the number ua of rightmost 1 indices asua = maxk f1 � k � ` j a` = a`�1 = � � � = a`�k+1 = 1g: (B.9)

We have the identityS1 b
a = 
1;a1;:::;ad +
a1;1;a2;:::;ad + � � �+
a1;:::;ad;1 + (B.10)�14 
a1^a2^1;a3;:::;ad � 14 
a1;a2^a3^1;a4;:::;ad + � � �+�14 
a1;:::;ad�2;ad�1^ad^1:
This can be written as 
a;1 = S1 b
a + X

b2B
b; (B.11)

where each multi-index b 2 B obeysPb = Pa; ub � ua: (B.12)

Thus, by induction over ua and using the above proof of Theorem 1 for the initial caseua = 0, we get the proof of Theorem 1 in the general ua � 0 case.

B.3 Proof of Theorem 2

We start from the combinatorial identity
a1;:::;a`(N) = X̀k=1 b
a1;:::;ak(N)
ak+1 ;:::;a`(1) + 
a1;:::;a`(1): (B.13)

Suppose now that all even ai are negative and all odd ai are positive. Then (�1)jaij =�sign(ai) and it follows that for any sub-multi-index (a1; : : : ; ak) we have(�1)Pki=1(jakj�1) kYi=1 sign(ai) = (�1)k kYi=1(�1) = 1: (B.14)

Thus, from Theorem 1, all terms in the r.h.s. of Eq. (B.13) have P = +1 and Theorem 2 is

proved.
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C. Asymptotic expansions of 
 and P
We report here the first few orders for the large N expansions of the twist-2 anomalous

dimension and of its kernel P .

Expanding formulas (2.2-2.4) one gets
1 = 8 log �N + 4N � 23 1N2 +O� 1N4� (C.1)
2 = �83�2 log �N � 24�3 + �32 log �N � 4�23 � 1N � �16 log �N � 2�29 � 24� 1N2 ++�163 log �N � 563 � 1N3 +O� 1N4� (C.2)
3 = 8845�4 log �N + 160�5 + 163 �2�3 � �643 �2 log �N + 96�3 � 44�445 � 1N +��64 log2 �N � �163 �2 + 128� log �N � 48�3 + 22�4135 + 32�23 � 1N2 ++�64 log2 �N + �169 �2 � 256� log �N � 16�3 + 40�29 + 96� 1N3 +O� 1N4 � (C.3)

where �N = N e
E .

At four loops, the large N expansion of Table 1 in [1] and (2.7) leads to 11; 12
ABA4 = �16� 73630�6 + 4�23� log �N � 1400�7 � 803 �2�5 � 5615�4�3+�965 �4 log �N + 640�5 � 32�23 + 1603 �2�3 � 292�6315 � 1N+��64�2 � 128�3� log2 �N + �448�3 � 3215�4 � 128�2� log �N� 320�5 + 16�233 � 323 �2�3 � 384�3 + 146�6945 + 136�415 � 1N2+�5123 log3 �N + �128�3 � 643 �2 � 768� log2 �N� �576�3 + 6415�4 � 5123 �2 � 512� log �N+ 320�53 � 649 �2�3 + 800�3 � 32�415 � 224�23 � 1N3 +O� 1N4� (C.4)
wrapping4 = ��643 �2 + 128�3� log2 �NN2 + �643 �2 + 128�3�� log2 �N � log �N� 1N3 +O� 1N4 �
(C.5)

Expanding formulas (3.9), (3.10) and (3.12) one obtains the large N expansion of the

11The simple structure of the expansion for 
wrapping4 is lost at higher orders in 1=N .
12The asymptotic next-to-leading constant term is in agreement with [34].
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kernel P up to three loops, that readsP1 = 8 log �N + 4N � 23� 1N �2 +O� 1N �4 (C.6)P2 = �83�2 log �N � 24�3 � 4�23N + �8 + 2�29 � 1N2 � 8N3 +O� 1N �4 (C.7)P3 = 8845�4 log �N + 160�5 + 163 �2�3 + 44�445N �  163 �2 log �N + 22�4135 ! 1N2 ++�163 �2 log �N � 8�23 � 1N3 +O� 1N �4 (C.8)

Notice that, in contrast with the series (C.1-C.3) for the anomalous dimension, where the

number of logarithms increases with the power of the 1=N suppression, the kernel ap-

pears to be linear in logN and, in particular, there are no maximally enhanced terms of the

form (log(N)=N)k .

This “simplicity” feature is lost at four loops. Expanding (3.14) and (3.15) and sum-

ming them together one findsP4 = �16� 73630�6 + 4�23� log �N � 1400�7 � 803 �2�5 � 5615�4�3 � �292�6315 + 32�23 � 1N + (C.9)���256�3 + 643 �2� log2 �N � �64�3 + 11215 �4� log �N + 8�415 � 16�2�3 � 16�233 � 146�6945 � 1N2 ++��256�3 + 643 �2� log2 �N � �320�3 + 11215 �4 + 643 �2� log �N � 16�2�3 + 32�3 + 64�415 � 1N3 +O� 1N �4
In particular, at order 1=N2 a log2N appears, which is responsible for the formula (4.4)

discussed in Section 4.
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