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We write an integral equation that incorporates finite corrections to the large spin asymptotics of N ¼
4 supersymmetric Yang-Mills theory twist operators from the nonlinear integral equation. We show that

these corrections are an all-loop result, not affected by wrapping effects, and agree, after determining the

strong coupling expansion, with string theory predictions.

DOI: 10.1103/PhysRevD.79.105009 PACS numbers: 11.15.Me, 11.25.Tq

I. INTRODUCTION

Twist operators have proved to be very important opera-
tors for studying the planar limit of the anti–de Sitter/
conformal field theory correspondence. Their special scal-
ing behavior at large spin [1] was established and an
integral equation, the BES equation, describing the loga-
rithmic growth of the anomalous dimension was derived
[2]. In the weak coupling regime its expansion agrees with
the explicit four-loop N ¼ 4 result [3].

The strong coupling limit was studied in [4,5] and shown
to match the available two-loop string data [6] while
predictions for higher loops were also made in [4].

In particular, the anomalous dimension of twist L op-
erators exhibits the large spin M scaling behavior

�Lðg;MÞ ¼ fðgÞðlogMþ �E � ðL� 2Þ log2Þ þ BLðgÞ
þ � � � : (1)

The scaling function fðgÞ is commonly denoted the cusp
anomalous dimension fðgÞ ¼ 2�cuspðgÞ as it describes the
logarithmic growth of the anomalous dimension of light-
like Wilson loops with a cusp [7]. In analogy with the QCD
splitting functions [8] we denote the finite order correction
BLðgÞ as the virtual part.

In a refined limit for the scaling function an all-loop
string calculation from the bosonic Oð6Þ sigma model has
been performed [9]. It agrees to two loops with the direct
string computation [10]. The same limit in the weak cou-
pling regime leads to a generalized scaling function [11]
which agrees with the predictions from the Oð6Þ sigma
model [9] upon continuation to infinite coupling, as was
demonstrated in [12] and further studied in [13]. For an
alternative approach to the generalized scaling function,
see [14].

Anomalous dimensions of twist operators can also be
computed for finite values of the spin in terms of harmonic
sums [15]. For the leading twist-two operators the asymp-

totic Bethe ansatz and Baxter equation, however, break
down at four-loop order [16] and wrapping effects have
to be taken into account.
For the lowest M ¼ 2 state, the Konishi operator, the

complete anomalous dimension including wrapping ef-
fects, has been successfully computed from different per-
spectives [17]. Subsequently, using the Lüscher formalism
the wrapping effects for twist-two operators, which cure
the asymptotic Bethe ansatz result, were computed [18].
The result satisfies all Balitskii-Fadin-Kuraev-Lipatov [19]
constraints at negative spins and predicts that at large
values of the spin M the first contributions from wrapping
effects will be of order Oðlog2M=M2Þ [20]. This indicates
that finite order correctionsOðM0Þ to the large spin scaling
can also be computed from the asymptotic integrable
structure to all-loop orders in the Yang-Mills coupling.
In what follows we will compute these finite order

effects to the logarithmic scaling behavior for operators
of general twist L. In the strong coupling regime we can
rewrite the finite order corrections in terms of the functions
that determine �cusp and recover the string results [21],

which shows that the virtual corrections BLðgÞ are indeed
not affected by wrapping effects. We also determine sub-
leading corrections in 1=g. For twist-two operators we can
also compute further subleading corrections in M up to
wrapping order. They equally match string theory
predictions.
The cusp anomalous dimension describes the leading

singularities in the logarithm of planar multiloop gluon
scattering amplitudes. The virtual part enters the sublead-
ing divergencies as a part of the collinear anomalous
dimension [22]. The latter are known to fourth order [23].

II. FINITE ORDER INTEGRAL EQUATION

From the nonlinear integral equation (NLIE) (see [24]
and references therein) of the slð2Þ sector [11] one can
extract the following equation for the density for the dis-
tribution of Bethe roots including corrections of OðM0Þ:
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�̂ðtÞ ¼ t

et � 1

�
Kð2gt; 0ÞðlogMþ �E � ðL� 2Þ log2Þ

� L

8g2t
ðJ0ð2gtÞ � 1Þ

þ 1

2

Z 1

0
dt0

�
2

et
0 � 1

� L� 2

et
0=2 þ 1

�
ðKð2gt; 2gt0Þ

� Kð2gt; 0ÞÞ � 4g2
Z 1

0
dt0Kð2gt; 2gt0Þ�̂ðt0Þ

�
; (2)

with the anomalous dimension given by �Lðg;MÞ ¼
16g2�̂ð0Þ. The integral kernel Kðt; t0Þ ¼ K0ðt; t0Þ þ
K1ðt; t0Þ þ Kdðt; t0Þ can be written in terms of Bessel func-
tions [2]. The parity even/odd components are given by

K0ðt; t0Þ ¼ 2

tt0
X1
n¼1

ð2n� 1ÞJ2n�1ðtÞJ2n�1ðt0Þ;

K1ðt; t0Þ ¼ 2

tt0
X1
n¼1

ð2nÞJ2nðtÞJ2nðt0Þ;
(3)

respectively. The dressing kernel Kdðt; t0Þ is given by the
convolution

Kdðt; tÞ ¼ 8g2
Z 1

0
dt00K1ðt; 2gt00Þ t00

et
00 � 1

K0ð2gt00; t0Þ:
(4)

We will drop the part �ðlogMþ �E � ðL� 2Þ log2Þ,
readily identifiable as the contribution to the cusp anoma-
lous dimension analyzed in [4]. Decomposing the density
into parity even/odd parts

et � 1

t
�ðtÞ ¼ �þð2gtÞ

2gt
þ ��ð2gtÞ

2gt
; (5)

one can express the functions ��ðtÞ in the form of a
Neumann series over Bessel functions

�þðtÞ ¼ 2
X1
n¼1

ð2nÞJ2nðtÞ�2n;

��ðtÞ ¼ 2
X1
n¼1

ð2n� 1ÞJ2n�1ðtÞ�2n�1;

(6)

which satisfy an infinite system of equations. We want to
obtain an equation for BLðgÞ in terms of the solution to the
BES equation only, similar to the case of the generalized
scaling function analyzed in [12]. Therefore, we introduce
a label j such that the system of equations becomes

Z 1

0

dt

t

�
�þðt; jÞ

1� e�t=2g
� ��ðt; jÞ

et=2g � 1

�
J2nðtÞ ¼ jL

8ng
þ jh2n;

Z 1

0

dt

t

�
��ðt; jÞ

1� e�t=2g
þ �þðt; jÞ

et=2g � 1

�
J2n�1ðtÞ

¼ 1� j

2
�n;1 þ jh2n�1; (7)

with hn ¼ hnðgÞ given by

hnðgÞ ¼
Z 1

0

dt

4

�
2

et � 1
� L� 2

et=2 þ 1

��
Jnð2gtÞ

gt
� �n;1

�
:

(8)

For j ¼ 0 one recovers the solution of the BES equation
analyzed in [4], while j ¼ 1 leads to the system of equa-
tions that determines BLðgÞ. To derive this set of equations
we made use of the summation formula of even Bessel
functions 2

P1
n¼1 J2nðtÞ ¼ ð1� J0ðtÞÞ and the orthogonal-

ity relation of even/odd Bessel functions.
As was shown in detail in [12], we choose some refer-

ence j0 and multiply both sides of the system (7) with
ð2nÞ�2nðg; j0Þ and ð2n� 1Þ�2n�1ðg; j0Þ, respectively.
Summing over all n � 1 and making use of the expansion
formulas of the even/odd parts (6) we obtain two equations
for the even/odd parts ��ðt; j0Þ. Subtracting the even from
the odd part one obtains an integral kernel which is invari-
ant under j $ j0 as such should be its solution. This
property, supplemented with the explicit form of hn (8),
can be used to obtain �1ðg; jÞ in terms of the solution to the

BES equation, �ð0Þ
� ðtÞ � ��ðt; 0Þ and �ð0Þ

1 ðtÞ � �1ðt; 0Þ ¼
fðgÞ=ð16g2Þ, by putting j0 ¼ 0 and taking j ¼ 1. Hence we
obtain

�1ðg; 1Þ ¼ 1

4

Z 1

0
dt

�
2

et � 1
� L� 2

et=2 þ 1

�

�
�
�ð0Þ� ð2gtÞ � �ð0Þ

þ ð2gtÞ
gt

� 2�1ðg; 0Þ
�

� L

2g

X1
n¼1

�2nðg; 0Þ: (9)

With the orthogonality of Bessel functions we obtain from
(6)

�2n ¼
Z 1

0

dt

t
J2nðtÞ�þðtÞ; (10)

which can be used to derive for BLðgÞ ¼ 16g2�1ðg; 1Þ the
final equation

BLðgÞ ¼ 4g2
Z 1

0
dt

�
2

et � 1
� L� 2

et=2 þ 1

�

�
�
�ð0Þ� ð2gtÞ � �ð0Þ

þ ð2gtÞ
gt

� 2�ð0Þ
1 ðgÞ

�

� 4gL
Z 1

0

dt

t
�ð0Þ
þ ð2gtÞ: (11)

At weak coupling one finds with the solution to the BES
equation

��ð2gtÞ ¼
�
1� g2

�2

3

�
J1ð2gtÞ þOðg4Þ;

�þð2gtÞ ¼ 4g3�ð3ÞJ2ð2gtÞ þOðg5Þ;
(12)

that BLðgÞ, in agreement with [11], has the expansion
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BLðgÞ ¼ �8g4ð7� 2LÞ�ð3Þ þOðg6Þ: (13)

III. STRONG COUPLING EXPANSION

In order to find the strong coupling expansion, according

to [4], we rewrite �1ðg; 1Þ � �ð1Þ
1 ðgÞ as

�ð1Þ
1 ðgÞ ¼ 1

2

Z 1

0
dt

�
�ð0Þ� ðtÞ

gtðet=2g � 1Þ þ
�ð0Þ
þ ðtÞ

gtðe�t=2g � 1Þ

� �ð0Þ
1 ðgÞ

gðet=2g � 1Þ
�
� ðL� 2Þ

4

�
Z 1

0
dt

�
�ð0Þ� ðtÞ

gtðet=4g þ 1Þ þ
�ð0Þ
þ ðtÞ

gtðe�t=4g þ 1Þ

� �ð0Þ
1 ðgÞ

gðet=4g þ 1Þ
�
: (14)

Following [4] we introduce the change of variables

2��ðtÞ ¼ ð1� sechðt=2gÞÞ��ðtÞ � tanhðt=2gÞ��ðtÞ;
(15)

and obtain �ð1Þ
1 ðgÞ as a function of the first generalized

scaling function �1 and the solution to the BES equation
only

�ð1Þ
1 ðgÞ ¼ 1

16g2
ðL� 2Þ�1ðgÞ þ �ð0Þ

1 ðgÞðL� 2Þ log2

�
Z 1

0
dt

�
1

4gt
ð�ð0Þ

þ ðtÞ þ �ð0Þ� ðtÞÞ

þ �ð0Þ
1

2gðet=2g � 1Þ
�
; (16)

where �1 is defined as in [12]. With the expansion of ��

�þðtÞ ¼
X1
k¼0

ð�1Þðkþ1ÞJ2kðtÞ�2k;

��ðtÞ ¼
X1
k¼0

ð�1Þðkþ1ÞJ2k�1ðtÞ�2k�1;

(17)

according to [4] we have �0 ¼ 4g�ð0Þ
1 and for (k � �1)

�k ¼ � 1

2
�ð0Þ
k þ X1

p¼1

1

gp
ðc�p �ð2p�1Þ

k þ cþp �
ð2pÞ
k Þ; (18)

with the coefficients c�p given by c�p ¼ P
r�0g

�rc�p;r and

�ðpÞ
2m ¼ �ðmþ p� 1

2Þ
�ðmþ 1Þ�ð12Þ

; �ðpÞ
2m�1 ¼

ð�1Þp�ðm� 1
2Þ

�ðmþ 1� pÞ�ð12Þ
:

(19)

The part proportional to �ð0Þ
1 of (16) and the integral over

Bessel functions can be performed to obtain

�ð1Þ
1 ðgÞ ¼ 1

16g2
ðL� 2Þ�1ðgÞ þ �ð0Þ

1 ðgÞðL� 2Þ log2

þ �ð0Þ
1 ð��E � loggÞ � 1

4g

X1
k¼1

ð�1Þkþ1

2k
�2k

� 1

4g

X1
k¼0

ð�1Þkþ1

2k� 1
�2k�1: (20)

At strong coupling the first generalized scaling function
has been analyzed in [12,25] and is given by

�1ðgÞ ¼ �1þOðe��gÞ: (21)

It does not receive perturbative 1=g corrections, but non-
trivial exponential corrections in the coupling which are
related to the mass gap parameter of theOð6Þmodel [9,12].
An all-order quantization condition that determines the
coefficients c�p has been computed in [4]. Knowing these

coefficients to a certain order readily gives BLðgÞ to the
same order. To the leading order in 1=g they are given by

cþ1 ¼ � 3 log2

�
þ 1

2
þOð1=gÞ;

c�1 ¼ 3 log2

4�
� 1

4
þOð1=gÞ;

(22)

and for twist-two operators L ¼ 2, we find

B2ðgÞ ¼ ð��E � loggÞfðgÞ � 4gð1� log2Þ

�
�
1� 6 log2

�
þ 3ðlog2Þ2

�

�
þOð1=gÞ: (23)

The virtual correction thus cancels the �E dependence of
(1) and with the explicit first two orders strong coupling
scaling function fðgÞ ¼ 4g� 3 log2=� and our choice of

g ¼ ffiffiffiffi
�

p
=4� we predict the string energy up to one loop

E� S ¼ Lþ �L

� ffiffiffiffi
�

p
4�

; S

���������L¼2

¼
� ffiffiffiffi

�
p
�

� 3 log2

�

�
log

4�Sffiffiffiffi
�

p þ
ffiffiffiffi
�

p
�

ðlog2� 1Þ

þ 1þ 6 log2

�
� 3ðlog2Þ2

�
; (24)

and determine the constant c of [21] to be

c ¼ 6 log2þ � (25)

in agreement with [26]. With the result for B2 given in (23),
BL follows straightforwardly from (20) for general, finite
values of L.
With the all-loop quantization condition of [4] we can

determine subleading strong coupling corrections to the
virtual correction B2ðgÞ by solving for the c�p and accord-

ingly performing the sums in (20). For the first terms we
find
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B2ðgþ c1Þ ¼
�
log

2

g
� �E

�
fðgþ c1Þ � 4g� 1þ 1

g

K

2�2

� 1

g2
9�ð3Þ
28�3

þ 1

g3

�
9�ð4Þ
27�4

� K2

27�4

�

� 1

g4

�
6831�ð5Þ
218�5

� 423K�ð3Þ
213�5

�
þOð1=g5Þ;

(26)

where c1 ¼ 3 log2
4� . We made the same shift of the coupling

constant as was suggested in [4].

Subleading spin corrections

The NLIE is written in terms of the roots of the transfer
matrix, the so-called holes; see [1,11] for details. For L ¼
2, using the explicit expression for the holes [27],

uh ¼ � 2g2 þ q2ffiffiffiffiffiffiffiffiffiffiffiffi�2q2
p ;

q2 ¼ � 1

4
ðð2Mþ 2þ �2ðgÞÞð2Mþ �2ðgÞÞ þ 2Þ;

(27)

it is possible to further expand the NLIE of [11].
Expanding to OððlogMÞ2=M2Þ changes the factor that
multiplies Kð2gt; 0Þ in (2) to

logMþ �E þ fðgÞ
2

logMþ �E

M
þ 1þ B2ðgÞ

2M
; (28)

and apart from this the integral equation remains un-
changed. In analogy with the above computation we find,
for twist-two operators,

�2ðg;MÞ ¼ fðgÞ
�
logMþ �E þ fðgÞ

2

logMþ �E

M

þ 1þ B2ðgÞ
2M

�
þ B2ðgÞ þ � � � ; (29)

in perfect agreement with the result from string theory [21]
and in agreement with reciprocity relations [28]. It is
possible to formally continue the expansion but the next

correction OððlogMÞ2=M2Þ receives contributions from
wrapping effects [18], and the NLIE therefore does not
produce the correct result.

IV. CONCLUSION

We have computed the finite order correction to the
logarithmic scaling of large spin operators of arbitrary
twist at weak and strong coupling. As we obtained the
integral equation from the infinite-volume NLIE we have
unequivocally shown that the asymptotic Bethe ansatz [29]
is capable to determine the first subleading term in the
large spin expansion of twist operators, unaffected by
wrapping effects.
At strong coupling and twist L ¼ 2 we can reproduce

the string theory results of [21] and determine the constant
that arises in the one-loop sigma-model calculation. For
this special value of twist we also determined the sublead-
ing correction in spinM up to wrapping order in agreement
with string theory.
We have also established the first steps in order to fill the

gap between certain Wilson line expectation values and
logarithms of multiloop gluon scattering amplitudes as the
virtual part B is responsible for the difference between the
subleading singularities in these two quantities. It remains
a challenge to ascertain an operator interpretation of the
missing link to the complete collinear anomalous dimen-
sion, denoted as Geik; see [22].
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