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We write an integral equation that incorporates finite corrections to the large spin asymptotics of
N = 4 SYM twist operators from the non-linear integral equation. We show that these corrections
are an all-loop result, not affected by wrapping effects, and agree, after determining the strong
coupling expansion, with string theory predictions.

I. INTRODUCTION

Twist operators have proved to be very important op-
erators for studying the planar limit of the AdS/CFT cor-
respondence.Their special scaling behavior at large spin
[1] was established and an integral equation describing
the logarithmic growth of the anomalous dimension was
derived [2]. In the weak coupling regime its expansion
agrees with the explicit four-loop N = 4 result [3].

The strong coupling limit was studied in [4, 5] and
shown to match the available two-loop string data [6]
while predictions for higher loops were also made in [4].

In particular, the anomalous dimension of twist L op-
erators exhibits the large spin M scaling behavior

γL(g, M) = f(g)(log M +γ
E
−(L−2) log2)+BL(g)+. . . .

(1)
The scaling function f(g) is commonly denoted the cusp
anomalous dimension f(g) = 2Γcusp(g) as it describes
the logarithmic growth of the anomalous dimension of
light-like Wilson loops with a cusp [7]. In analogy with
the QCD splitting functions [8] we denote the finite order
correction BL(g) as the virtual part.

In a refined limit for the scaling function an all-loop
string calculation from the bosonic O(6) sigma model has
been performed [9]. It agrees to two loops with the direct
string computation [10]. The same limit in the weak cou-
pling regime leads to a generalized scaling function [11]
which agrees with the predictions from the O(6) sigma
model [9] upon continuation to infinite coupling, as was
demonstrated in [12] and further studied in [13]. For an
alternative approach to the generalized scaling function,
see [14].

Anomalous dimensions of twist operators can also be
computed for finite values of the spin in terms of har-
monic sums [15]. For the leading twist-two operators the
asymptotic Bethe ansatz and Baxter equation, however,
break down at four-loop order [16] and wrapping effects
have to be taken into account.

For the lowest M = 2 state, the Konishi operator, the
complete anomalous dimension including wrapping ef-
fects have been successfully computed from different per-
spectives [17]. Subsequently, using the Lüscher formalism
the wrapping effects for twist-two operators, which cure
the asymptotic Bethe ansatz result, were computed [18].
The result satisfies all BFKL [19] constraints at nega-
tive spins and predicts that at large values of the spin M

the first contributions from wrapping effects will be of
order O(log2 M/M2) [20]. This indicates that finite or-
der corrections O(M0) to the large spin scaling can also
be computed from the asymptotic integrable structure to
all-loop orders in the Yang-Mills coupling.

In what follows we will compute these finite order ef-
fects to the logarithmic scaling behavior for operators of
general twist L. In the strong coupling regime we can
rewrite the finite order corrections in terms of the func-
tions that determine Γcusp and recover the string results
[21], which shows that the virtual corrections, BL(g), are
indeed not affected by wrapping effects. We also deter-
mine subleading corrections in 1/g. For twist-two opera-
tors we can also compute further subleading corrections
in M up to wrapping order. They equally match string
theory predictions.

The cusp anomalous dimension describes the leading
singularities in the logarithm of planar multi-loop gluon
scattering amplitudes. The virtual part enters the sub-
leading divergencies as a part of the collinear anomalous
dimension [22]. The latter are known to fourth order [23].

II. FINITE ORDER INTEGRAL EQUATION

From the NLIE, see [24] and references therein, of the
sl(2) sector [11] one can extract the following equation for
the density for the distribution of Bethe roots including
corrections of O(M0)

σ̂(t) =
t

et − 1

[

K(2gt, 0)(logM + γ
E
− (L − 2) log 2)

− L

8g2t
(J0(2gt) − 1) +

1

2

∫ ∞

0

dt′
( 2

et′ − 1
− L − 2

et′/2 + 1

)

× (K(2gt, 2gt′) − K(2gt, 0))

− 4g2

∫ ∞

0

dt′K(2gt, 2gt′)σ̂(t′)
]

, (2)

with the anomalous dimension given by γL(g, M) =
16g2 σ̂(0). The integral kernel K(t, t′) = K0(t, t

′) +
K1(t, t

′)+Kd(t, t
′) can be written in terms of Bessel func-

tion [2]. The parity even/odd components are given by

K0(t, t
′) =

2

tt′

∞
∑

n=1

(2n − 1)J2n−1(t)J2n−1(t
′) ,
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K1(t, t
′) =

2

tt′

∞
∑

n=1

(2n)J2n(t)J2n(t′) , (3)

respectively. The dressing kernel Kd(t, t
′) is given by the

convolution

Kd(t, t) = 8g2

∫ ∞

0

dt′′K1(t, 2gt′′)
t′′

et′′ − 1
K0(2gt′′, t′) .

(4)
We will drop the part ∼ (log M + γ

E
− (L − 2) log 2),

readily identifiable as the contribution to the cusp
anomalous dimension analyzed in [4]. Decomposing the
density into parity even/odd parts

et − 1

t
σ(t) =

γ+(2gt)

2gt
+

γ−(2gt)

2gt
, (5)

one can express the functions γ±(t) in the form of Neu-
mann series over Bessel functions

γ+(t) = 2

∞
∑

n=1

(2n)J2n(t)γ2n ,

γ−(t) = 2

∞
∑

n=1

(2n − 1)J2n−1(t)γ2n−1 , (6)

which satisfy an infinite system of equations. We want
to obtain an equation for BL(g) in terms of the solu-
tion to the BES equation only, similar to the case of the
generalized scaling function analyzed in [12]. Therefore,
we introduce a label j such that the system of equations
becomes
∫ ∞

0

dt

t

[ γ+(t, j)

1 − e−t/2g
− γ−(t, j)

et/2g − 1

]

J2n(t) =
jL

8ng
+ jh2n ,

∫ ∞

0

dt

t

[ γ−(t, j)

1 − e−t/2g
+

γ+(t, j)

et/2g − 1

]

J2n−1(t) =
1 − j

2
δn,1

+jh2n−1 , (7)

with hn = hn(g) given by

hn(g) =

∫ ∞

0

dt

4

( 2

et − 1
− L − 2

et/2 + 1

)(Jn(2gt)

gt
− δn,1

)

.

(8)
For j = 0 one recovers the solution of the BES equa-
tion analyzed in [4], while j = 1 leads to the system of
equations that determines BL(g). To derive this set of
equations we made use of the summation formula of even
Bessel functions 2

∑

∞
n=1J2n(t) = (1 − J0(t)) and the or-

thogonality relation of even/odd Bessel functions.
As was shown in detail in [12], we choose some ref-

erence j′ and multiply both sides of the system (7) with
(2n)γ2n(g, j′) and (2n−1)γ2n−1(g, j′), respectively. Sum-
ming over all n ≥ 1 and making use of the expansion
formulas of the even/odd parts (6) we obtain two equa-
tions for the even/odd parts γ±(t, j′). Subtracting the
even from the odd part one obtains an integral kernel
which is invariant under j ↔ j′ as such should be its
solution. This property, supplemented with the explicit

form of hn (8), can be used to obtain γ1(g, j) in terms of

the solution to the BES equation, γ
(0)
± (t) ≡ γ±(t, 0) and

γ
(0)
1 (t) ≡ γ1(t, 0) = f(g)/(16g2), by putting j′ = 0 and

taking j = 1. Hence we obtain

γ1(g, 1) =
1

4

∫ ∞

0

dt
[ 2

et − 1
− L − 2

et/2 + 1

]

× (9)

[γ
(0)
− (2gt) − γ

(0)
+ (2gt)

gt
− 2γ1(g, 0)

]

− L

2g

∞
∑

n=1

γ2n(g, 0).

With the orthogonality of Bessel functions we obtain
from (6)

γ2n =

∫ ∞

0

dt

t
J2n(t)γ+(t) , (10)

which can be used to derive for BL(g) = 16g2γ1(g, 1) the
final equation

BL(g) = 4g2

∫ ∞

0

dt
[ 2

et − 1
− L − 2

et/2 + 1

]

×
[γ

(0)
− (2gt) − γ

(0)
+ (2gt)

gt
− 2γ

(0)
1 (g)

]

−4gL

∫ ∞

0

dt

t
γ

(0)
+ (2gt). (11)

At weak coupling one finds with the solution to the BES
equation

γ−(2gt) = (1 − g2 π2

3
)J1(2gt) + O(g4) ,

γ+(2gt) = 4g3ζ3J2(2gt) + O(g5) , (12)

that BL(g), in agreement with [11], has the expansion

BL(g) = −8g4(7 − 2L)ζ3 + O(g6) . (13)

III. STRONG COUPLING EXPANSION

In order to find the strong coupling expansion, accord-

ing to [4], we rewrite γ1(g, 1) ≡ γ
(1)
1 (g) as

γ
(1)
1 (g) =

1

2

∫ ∞

0

dt
( γ

(0)
− (t)

g t (et/2g − 1)
+

γ
(0)
+ (t)

g t (e−t/2g − 1)

− γ
(0)
1 (g)

g(et/2g − 1)

)

− (L − 2)

4

∫ ∞

0

dt
( γ

(0)
− (t)

g t (et/4g + 1)

+
γ

(0)
+ (t)

g t (e−t/4g + 1)
− γ

(0)
1 (g)

g(et/4g + 1)

)

. (14)

Following [4] we introduce the change of variables

2γ±(t) =
(

1−sech(t/2g)
)

Γ±(t)±tanh(t/2g)Γ∓(t) , (15)

and obtain γ
(1)
1 (g) as a function of the first generalized

scaling function ǫ1 and the solution to the BES equation
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only

γ
(1)
1 (g) =

1

16g2
(L − 2)ǫ1(g) + γ

(0)
1 (g)(L − 2) log 2 (16)

−
∫ ∞

0

dt
( 1

4g t

(

Γ
(0)
+ (t) + Γ

(0)
− (t)

)

+
γ

(0)
1

2g(et/2g − 1)

)

,

where ǫ1 is defined as in [12]. With the expansion of Γ±

Γ+(t) =
∞
∑

k=0

(−1)(k+1)J2k(t)Γ2k ,

Γ−(t) =

∞
∑

k=0

(−1)(k+1)J2k−1(t)Γ2k−1 , (17)

according to [4] we have Γ0 = 4gγ
(0)
1 and for (k ≥ −1)

Γk = −1

2
Γ

(0)
k +

∞
∑

p=1

1

gp

(

c−p Γ
(2p−1)
k + c+

p Γ
(2p)
k

)

, (18)

with the coefficients c±p given by c±p =
∑

r≥0 g−rc±p,r and

Γ
(p)
2m =

Γ(m + p − 1
2 )

Γ(m + 1)Γ(1
2 )

, Γ
(p)
2m−1 =

(−1)pΓ(m − 1
2 )

Γ(m + 1 − p)Γ(1
2 )

.

(19)

The part proportional to γ
(0)
1 of (16) and the integral

over Bessel functions can be performed to obtain

γ
(1)
1 (g) =

1

16g2
(L − 2)ǫ1(g) + γ

(0)
1 (g)(L − 2) log 2

+ γ
(0)
1 (−γ

E
− log g) − 1

4g

∞
∑

k=1

(−1)k+1

2k
Γ2k

− 1

4g

∞
∑

k=0

(−1)k+1

2k − 1
Γ2k−1 . (20)

At strong coupling the first generalized scaling function
has been analyzed in [12, 25] and is given by

ǫ1(g) = −1 + O(e−πg) . (21)

It does not receive perturbative 1/g corrections, but non-
trivial exponential correction in the coupling which are
related to the mass gap parameter of the O(6) model [9,
12]. An all-order quantization condition that determines
the coefficients c±p has been computed in [4]. Knowing
these coefficients to a certain order readily gives BL(g)
to the same order. To the leading order in 1/g they are
given by

c+
1 = −3 log 2

π
+

1

2
+O(1/g), c−1 =

3 log 2

4π
− 1

4
+O(1/g),

(22)
and for twist-two operators, L = 2, we find

B2(g) = (−γ
E
− log g)f(g) − 4g(1 − log 2)

−
(

1 − 6 log 2

π
+

3(log 2)2

π

)

+ O(1/g) . (23)

The virtual correction thus cancels the γ
E

dependence of
(1) and with the explicit first two orders strong coupling
scaling function f(g) = 4g − 3 log 2/π and our choice of

g =
√

λ/4π we predict the string energy up to one-loop

E − S = L + γL

(

√
λ

4π
, S

)

∣

∣

∣

L=2
=

(

√
λ

π
− 3 log 2

π

)

log
4π S√

λ

+

√
λ

π
(log 2 − 1) + 1 +

6 log 2

π
− 3(log 2)2

π
, (24)

and determine the constant c of [21] to be

c = 6 log 2 + π . (25)

in agreement with [26]. With the result for B2 given in
(23), BL follows straightforwardly from (20) for general,
finite values of L.

With the all-loop quantization condition of [4] we can
determine subleading strong coupling corrections to the
virtual correction B2(g) by solving for the c±p and accord-
ingly performing the sums in (20). For the first terms we
find

B2(g + c1) = (log 2
g − γ

E
)f(g + c1) − 4g − 1

+
1

g

K

2π2
− 1

g2

9ζ(3)

28π3
+

1

g3

(9 β(4)

27π4
− K2

27π4

)

− 1

g4

(6831 ζ(5)

218π5
− 423 K ζ(3)

213π5

)

+ O(1/g5), (26)

where c1 = 3 log 2
4π . We made the same shift of the cou-

pling constant as was suggested in [4].

A. Subleading spin corrections

The NLIE is written in terms of the roots of the trans-
fer matrix, the so called holes, see [1, 11] for details. For
L = 2, using the explicit expression for the holes [27],

uh =± 2g2 + q2√−2 q2
,

q2 = −1

4

(

(

2M + 2 + γ2(g)
)(

2M + γ2(g)
)

+ 2
)

, (27)

it is possible to further expand the NLIE of [11]. Expand-
ing to O((log M)2/M2) changes the factor that multiplies
K(2gt, 0) in (2) to

log M + γ
E

+
f(g)

2

log M + γ
E

M
+

1 + B2(g)

2 M
, (28)

apart from this the integral equation remains unchanged.
In analogy with the above computation we find, for twist-
two operators,

γ2(g, M) = f(g)
(

log M + γ
E

+
f(g)

2

log M + γ
E

M

+
1 + B2(g)

2 M

)

+ B2(g) + . . . , (29)
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in perfect agreement with the result from string theory
[21] and in agreement with reciprocity relations [28]. It is
possible to formally continue the expansion but the next
correction O((log M)2/M2) receives contributions from
wrapping effects [18], and the NLIE therefore does not
produce the correct result.

IV. CONCLUSION

We have computed the finite order correction to the
logarithmic scaling of large spin operators of arbitrary
twist at weak and strong coupling. As we obtained the
integral equation from the infinite-volume NLIE we have
unequivocally shown that the asymptotic Bethe ansatz
[29] is capable to determine the first subleading term in
the large spin expansion of twist operators, unaffected by
wrapping effects.

At strong coupling and twist L = 2 we can reproduce
the string theory results of [21] and determine the con-
stant that arises in the one-loop sigma-model calculation.

For this special value of twist we also determined sub-
leading correction in spin M up to wrapping order in
agreement with string theory.

We have also established the first steps in order to fill
the gap between certain Wilson line expectation values
and logarithms of multi-loop gluon scattering amplitudes
as the virtual part B is responsible for the difference be-
tween the subleading singularities in these two quanti-
ties. It remains a challenge to ascertain an operator in-
terpretation of the missing link to the complete collinear
anomalous dimension, denoted as Geik, see [22].
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