
JOURNAL OF MATHEMATICAL PHYSICS 53, 102110 (2012)

Quantum mechanics in fractional and other anomalous
spacetimes

Gianluca Calcagni,1,2,a) Giuseppe Nardelli,3,4,b) and Marco Scalisi1,5,c)

1Max Planck Institute for Gravitational Physics (Albert Einstein Institute), Am Mühlenberg 1,
D-14476 Golm, Germany
2Instituto de Estructura de la Materia, CSIC, Serrano 121, 28006 Madrid, Spain
3Dipartimento di Matematica e Fisica, Università Cattolica, via Musei 41,
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We formulate quantum mechanics in spacetimes with real-order fractional geome-
try and more general factorizable measures. In spacetimes where coordinates and
momenta span the whole real line, Heisenberg’s principle is proven and the wave-
functions minimizing the uncertainty are found. In spite of the fact that ordinary time
and spatial translations are broken and the dynamics is not unitary, the theory is in
one-to-one correspondence with a unitary one, thus allowing us to employ standard
tools of analysis. These features are illustrated in the examples of the free particle
and the harmonic oscillator. While fractional (and the more general anomalous-
spacetime) free models are formally indistinguishable from ordinary ones at the
classical level, at the quantum level they differ both in the Hilbert space and for a
topological term fixing the classical action in the path integral formulation. Thus,
all non-unitarity in fractional quantum dynamics is encoded in a contribution de-
pending only on the initial and final states. C© 2012 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4757647]

I. INTRODUCTION

In the attempt to understand the relation between the ultraviolet (UV) finiteness of different
theories of quantum gravity and their geometric properties, a framework has been formulated
where the geometry of spacetime displays most of the characteristics of multi-fractals, with an
anomalous and scale-dependent dimensionality. A traditional perturbative field theory lives in a
background geometry described by fractional calculus.1–7 Renormalizability is achieved, at least
at the level of power counting, thanks to the change of correlation functions with the scale, from
a four-dimensional infrared down to small scales where spacetime is effectively two-dimensional.
This is a general property of models in spacetimes with Lebesgue–Stieltjes measures,8–10 which are
particular realizations of dimensional flow in quantum gravity.11–13 Contrary to general Lebesgue–
Stieltjes measures, the coordinate dependence of fractional measures is factorized,2, 3 which crucially
allows one to define momentum space and a “Fourier” transform.5 Also, fractional measures make
it possible to realize multi-scale geometries in a quantitative, controlled way.6, 7

Depending on its interpretation and applications, multi-fractional theory constitutes either a
fundamental or effective framework. In the second case, it aims to describe the geometry of other
models through the tools of multi-fractal geometry, transport and stochastic theory. These tools are
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generic enough to allow for a “portable” description of the physics across the models. For instance,
the effective cyclic-invariant measures in classical coordinates of κ-Minkowski and other non-
commutative spacetimes with non-linear algebras are of fractional type and link non-commutative
and fractal geometries.4 Also, the fractal properties of the renormalization group flow in asymptotic
safety14 are reproduced via fractional multi-scale diffusion equations.

Taken as a fundamental description of spacetime, on the other hand, fractional geometry is
promising but a number of elementary questions still need to be addressed. A very basic one is,
in fact, whether quantum mechanics exists in such geometries and, if it does, how it is modified
with respect to the ordinary case. The presence of a non-trivial measure breaking all Poincaré
symmetries and with a singularity at the coordinate axes may in fact carry unforeseen consequences
for quantization (first as well as second) and the structure of Hilbert spaces and operators.

The purpose of this paper is to answer the above question in the affirmative and show that
quantum mechanics on fractional spacetimes is well defined. Thanks to a simple field redefinition,
the case of a free non-relativistic particle can be formally recast as the one in standard geometry, the
only difference at the canonical level being in the profiles of the wave-functions. As a consequence,
even the free theory is non-trivial. It is also very easy to work out the quantum fractional harmonic
oscillator in all its details. For interacting systems (non-linear equations of motion), the underlying
genuine fractal/anomalous nature of space and time is further stressed by the fact that the measure
weight cannot be reabsorbed completely into the position variables.

Although ordinary time and space translations are lost, there survives a modified notion of them
which highlights the existence of a very convenient mapping of the dynamics into a unitary one. Even
if the dynamics is non-unitary due to the typical dissipative nature of fractional models, we shall
still be able to introduce self-adjoint operators, manipulate probabilities and define scalar products
and temporal evolution in almost the same fashion as standard quantum mechanics. This is possible
for the following reason. In conventional dissipative systems, signals decay in time and space and
states cannot evolve unitarily. This means that there do not exist observables associated with a self-
adjoint operator ˆ̄P = −i�∂x generating spatial translations and with a Hamiltonian ˆ̄H generating
time translations. The problem is circumvented in the fractional scenario because both space and
time are modified in such a way that one can construct momentum and Hamiltonian operators
P̂ �= ˆ̄P and Ĥ �= ˆ̄H which are not self-adjoint with respect to the standard scalar product, but that
are self-adjoint with respect to the natural scalar product on fractional spaces. Thus, one obtains a
notion of conserved scalar product and eigenfunctions of stationary states do not decay. To achieve
this, it is sufficient to notice a one-to-one correspondence between operators ˆ̄A of the ordinary theory
and operators Â of the one with factorizable (in particular, fractional) measure. In position space,

ˆ̄A ←→ Â := 1√
vi (x)

ˆ̄A
√

vi (x), (1)

where vi (x) is the spatial part of the non-trivial measure weight. For the evolution operator Û
from time t′ to t, there is also an extra time dependence in the form

√
v0(t ′)/v0(t), where v0 is the

time-dependent part of the measure weight. Although the theory is non-unitary, the S-matrix limit of
the fractional propagator is unitary due to trivialization of the term

√
v0(t ′)/v0(t) in the double limit

t′ → − ∞, t → + ∞, provided v0 depends on |t|. Furthermore, it is shown that the classical action
Scl evaluated on classical trajectories is the same in ordinary and fractional theory. Nevertheless,
Scl enters the path integral formulation in a rather interesting way, i.e., augmented by a topological
term distinguishing the ordinary from the fractional path integral; this term is, again, nothing but a
rewriting of the ratio

√
v0(t ′)/v0(t). All these features will be discussed in due course.

After briefly recalling the main properties of fractional geometries and extending the discussion
to even more general measures (Sec. I A), in Sec. II we motivate bilateral fractional spaces (introduced
in Ref. 5) by the interpretational difficulties arising in quantum mechanics if both coordinates and
momenta are positive definite. We define a pair of self-adjoint operators (position and momentum)
for quantum mechanics and prove Heisenberg’s uncertainty principle. The latter, which is formally
the same as in the integer case, is minimized by a weighted version of Gaussian functions. The
Schrödinger equation and the operator of time evolution are then constructed. The classical and
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quantum free particle and the harmonic oscillator are studied in Sec. III, while the path integral
formulation on fractional spaces is developed in Sec. IV. Conclusions are in Sec. V.

Before starting, we comment on other works falling under the unrelated but almost homonymous
topic of “fractional quantum mechanics.” It is known that the fine-scale structure of a quantum
mechanical particle path is very irregular and described by a nowhere-differentiable curve akin to a
Brownian path.15, 16 (This prompted an early attempt to formulate a model of quantum mechanics in
fractal spacetime,17 not based on fractional calculus.) As normal diffusion associated with a Wiener
process is only one among many possibilities realized by Nature, and anomalous diffusion described
by fractional equations is the rule rather than the exception (see Refs. 7, 18–20 and references
therein), it is spontaneous to ask what type of quantum mechanics would emerge from “anomalous”
paths. Anomalous transport takes place in chaotic quantum systems, of which fractional dynamics
is a model in certain regimes.21, 22 Breaking of time reversal and dissipation typical of classical
fractional mechanics translate to a non-conservation of probability in the quantum realm. These
facts prompted curiosity in formulating first-quantization dynamics with fractional derivatives. The
Schrödinger equation was generalized to the case where the Hamiltonian Ĥ features a spatial Riesz
Laplacian23–31 (stemming from a path integral over Lévy paths); long-range interactions in quantum
lattices can be modeled by this type of dynamics.32 Other modifications of the Schrödinger equation
involve a non-Markovian time evolution of the form [(i�)β∂

β
t − Ĥ ]ψ = 0, where ∂

β
t is the fractional

derivative of order 0 < β ≤ 133–35 (in particular, when β = 1/2 fractional dynamics can be described
by a comb model36, 37), or both time and space fractional derivatives.38, 39 See Ref. 40 for another
type of heuristic application of fractional operators to quantum mechanics.

Our case is quite different with respect to both motivation (as stated above) and techniques.
The framework we present does not describe anomalous quantum systems in an ordinary spacetime
but ordinary quantum systems in an intrinsically anomalous (in particular, fractal) spacetime. At
a loose phenomenological level, this interpretation might also hold for some of the cited works,
but our technical implementation is unique to fractional spacetimes as declared in Refs. 1–3, and 5.
Morevover, our Laplacian is not a fractional operator but a plain second-order operator with fractional
weights, chosen from the three requirements of (i) reduction to two dimensions in the ultraviolet of
a quantum field theory,1, 3 (ii) of being a quadratic form, and (iii) of self-adjointness.5

A. Basic facts about fractional spacetimes

Fractional spacetimes are a continuum with anomalous properties realizing fractal as well as
non-fractal types of geometry. They have been introduced in Refs. 1 and 2 having a field theory in
mind, so they are formulated as a redefinition of the Lebesgue measure of time and space. Here, we
limit to a minimal set of definitions sufficient to the scope of the present paper. In D topological
dimensions, μ = 0, 1, . . . , D − 1 (where x0 = t is time), the measure dDx = dt dD − 1x is replaced
by

d�α(x) := d Dx vα(x) := dt vα0 (t)
D−1∏
i=1

dxivαi (xi ), (2a)

vαμ
(xμ) := |xμ|αμ−1

�(αμ)
, (2b)

where 0 < αμ ≤ 1 are D constants dubbed fractional charges and � is the gamma function. There
exists also a more fundamental definition of �α based on complex fractional charges, which leads to
a discrete spacetime texture1, 3 and is closely related to κ-Minkowski non-commutative geometry,4

but we shall not consider it here. The real-order measure (2) is said to be isotropic if all αμ = α

are equal. Without loss of generality, we consider a spatially isotropic configuration where all the
spatial charges are equal, αi = α, but the time-direction charge α0 may differ from them.

We distinguish between unilateral measures where xμ ≥ 0 and bilateral measures where the
support of vα is the whole real line (minus the axes xμ = 0). In the first case, the absolute value in
(2) is pleonastic and the world is limited to the first coordinate orthant.
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Clearly, the Poincaré group is completely broken. In general, one could define a non-factorizable
Lebesgue–Stieltjes measure weight v(t, x) preserving at least some of the symmetries, as in a
previous attempt to realize anomalous spacetimes with a rotation-invariant measure.8–10 However,
factorizability of the coordinate dependence is crucial for the definition of the momentum transform
in D dimensions, which is5

f̃ (k) :=
∫ +∞

0
d�α(x) f (x) cα,α′ (k, x), (3a)

f (x) =
∫ +∞

0
d�α′ (k) f̃ (k) cα,α′ (k, x), (3b)

cα,α′ (k, x) :=
(

2

π

) D
2 1√

vα′ (k)vα(x)

∏
μ

cos(kμxμ), (3c)

for the unilateral world, and

f̃ (k) :=
∫ +∞

−∞
d�α(x) f (x) e∗

α,α′ (k, x), (4a)

f (x) =
∫ +∞

−∞
d�α′ (k) f̃ (k) eα,α′ (k, x), (4b)

eα,α′ (k, x) := 1√
vα′(k)vα(x)

eik·x

(2π )
D
2

, (4c)

for the bilateral world. This is only one choice among an infinite class of transforms and we have
allowed for a momentum-space measure different from position space. Both cα,α′ and eα,α′ are
eigenfunctions of the fractional Laplacian (in Euclidean signature)

Kα :=
∑

μ

D2
μ, Dμ := 1√

vα(x)
∂μ

[√
vα(x) ·

]
, (5)

with eigenvalue − |k|2. For simplicity, we shall concentrate on this second-order operator, although
operators of fractional order are possible.7

Giving up factorizability in a generic weight v(t, x) quickly leads to a technically untractable
model. Here, we shall further stress this point in several occasions with novel arguments. Moreover,
contrary to the non-factorizable case fractional measures favour control over all details, including
the rigorous determination of the Hausdorff, spectral and walk dimension of spacetime2, 7 and the
formulation of a multi-scale geometry in direct contact with the definitions in complex systems.3, 7

Regarding the dimensions, the volume of a D-ball with radius R scales as V (D) ∼ RdH , where

dH =
∑

μ

αμ (6)

is the Hausdorff dimension.2 For our particular choice of spatial isotropy, dH = α0 + (D − 1)α. On
the other hand, the spectral dimension dS depends on the type of Laplacian and diffusion associated
with spacetime. In the simplest case of normal diffusion, dS = dH and the walk dimension is exactly
equal to 2.7

The physical picture envisages a spacetime which is effectively two-dimensional at small scales,
so that field theories therein have improved UV behaviour,3 while at large scales one must recover a
spacetime with Poincaré symmetries restored and the ordinary integer dimensionality dH = dS = D.
To realize this picture of “dimensional flow,” one needs to upgrade to a multi-scale geometry and sum
over all possible α’s, so that the total measure weight is of the form

∑
n gnvαn for some dimensionful

couplings gn.3, 7 This definition is based upon the standard one of multi-fractal geometry. For instance,
in an isotropic setting the minimum set giving rise to multi-scale behaviour is α ∈ {α*, 1}, where
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α* = 2/D is the UV fractional charge. A direct manipulation of multi-fractional measures can become
rather complicated, also because they may be no longer factorizable and it is not clear whether it
is possible to define a momentum transform across all the scales.5 Therefore, it is often simpler
to work at different “snapshots” of the geometry by considering a measure with fixed, constant
charges αμ.

Thanks to the resiliency of the formalism, we can generalize the discussion to factorizable
measures which are not fractional, by leaving the Ansatz

dtd D−1x −→ d�(x) = dt v0(t)
D−1∏
i=1

dxi vi (x
i ) (7)

completely unspecified. At one’s own convenience, one can replace fractional measures with this
general form and vice versa,

vα0 ↔ v0, vαi ↔ vi . (8)

As an added bonus, we may even regard vμ(x) = ∑
n gnvαμ,n (x) as an element of a factorizable

multi-fractional measure. For simplicity, we shall continue to call the measures (7) fractional, but
the reader should keep in mind this important generalization.

II. QUANTUM MECHANICS

Once defined a unitary momentum transform Fv on a suitable L2 space,5 it is natural to ask
whether it is possible to formulate quantum mechanics on fractional spacetimes and, more generally,
on spacetimes with factorizable measure. We shall:

(i) define a pair of self-adjoint operators Q̂ and P̂ obeying the Heisenberg algebra;
(ii) show that Q̂ and P̂ are related to each other by the momentum transform Fv , which is an

isomorphism between two equivalent Hilbert spaces (spanned by x and k);
(iii) check whether Heisenberg’s uncertainty principle holds;
(iv) find a complete basis of the function space as eigenstates of a self-adjoint operator;
(v) discuss time evolution, Schrödinger equation, and the Green function.

Applications of the formalism to the free particle and the harmonic oscillator will be given in
Sec. III.

In unilateral worlds, the momentum transform is real, hence wave-functions are real, too, and
there is no self-adjoint first-order derivative operator. (Every integration by parts entails a minus
factor, so that, at best, a first-order derivative could be an anti-hermitian operator. The first available
self-adjoint operator would then be second-order, which would have the chance to be self-adjoint
only because two integrations by parts restore the correct sign.) Moreover, a world with only
positive-definite momenta would be problematic: particles could only run away from the origin,
without stopping or coming back, and one would be unable to construct bound states and to confine
particles in a natural way. This is quite different from the ordinary situation of a particle with an
infinite potential wall at x ≤ 0, because in that case momentum space still would be the whole
real line. In quantum field theory, one would face similar paradoxes: Feynman diagrams would lose
their meaning, as all external legs in a diagram would carry only incoming momenta, the concept of
anti-particle would be missing, and so on. Looking back at the derivation of the unilateral transform,5

it is more sensible to interpret both x and k as, actually, the absolute values |x| and |k| of a bilateral
world. Therefore, we regard the bilateral world as the correct representation of fractional geometries
where one can attempt to do meaningful physics. (Since k2 is positive definite, the derivation of the
Green function of a scalar field in Ref. 3, worked out in the unilateral case, is unaffected. The only
difference is that, in a bilateral world, the spectrum is twice that of the unilateral one.)
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A. Hilbert space

From here on we specialize to one dimension (and still call vi the spatial measure weight). Let
L2

�(R) be the Hilbert space of functions ψ which are square integrable with respect to the non-trivial
measure. This space is equipped with the inner product

(ψ1, ψ2) :=
∫ +∞

−∞
d�(x) ψ∗

1 (x) ψ2(x), ψ1,2 ∈ L2
�

=
∫ +∞

−∞
dx vi (x) ψ∗

1 (x) ψ2(x). (9)

We shall often employ the bra-ket notation 〈ψ1|ψ2〉 and reserve the symbol 〈ψ1|ψ2〉0
:= ∫

dx ψ∗
1 (x) ψ2(x) for the scalar product with respect to the ordinary Lebesgue measure.

The existence and finiteness of the norm ‖ψ‖2 := (ψ , ψ) requires that

ψ(x)
x→∞∼ x−ν, Re(ν) >

α

2
, (10a)

ψ(x)
x→0∼ x−ρ, Re(ρ) <

α

2
. (10b)

Next, we define two self-adjoint operators on this space. For the position operator, we shall choose

Q̂ := x, (11)

with domain DQ = {ψ ∈ L2
� : xψ ∈ L2

�}. Looking at Eq. (5), it is natural to define as momentum
operator

P̂ := −i�Dx = −i�
1√

vi (x)
∂x

[√
vi (x) ·

]
. (12)

We establish the domain DP by requiring P̂ to be self-adjoint. First of all, it will be obviously
necessary that

√
vi (x) ψ(x) ∈ C1(R), in order to perform derivatives. Notice that the existence of

the derivative is required for the function
√

vi ψ , but not for ψ . Second, we should demand that the
image of P̂ is in L2

�, P̂ψ(x) ∈ L2
�. Finally, we need to check the absence of boundary terms when

performing integrations by parts. Let us choose for now ψa ∈ L2
�, a = 1, 2, such that

√
vi ψa ∈ C1(R).

Then,

(ψ1, P̂ψ2) = −i�
∫ +∞

−∞
d�(x) ψ∗

1 (x)Dxψ2(x)

= −i�
∫ +∞

−∞
dx

√
vi (x) ψ∗

1 (x) ∂x [
√

vi (x) ψ2(x)]

= −i�
[
vi (x)ψ∗

1 (x)ψ2(x)
] ∣∣∣+∞

−∞
+ i�

∫ +∞

−∞
d�(x)Dxψ

∗
1 (x) ψ2(x)

=
∫ +∞

−∞
d�(x) [−i�Dxψ1(x)]∗ ψ2(x)

= (P̂ψ1, ψ2). (13)

The boundary term in the third equality vanishes at infinity because ψi ∈ L2
�. Note that, due to the

presence of the (mild) singularity at x = 0 in the fractional measure vi (x) = vα(x), the behaviour of
vα(x)ψ∗

1 (x)ψ2(x) has to be checked also at the origin: it could be either singular or discontinuous.
However, since

√
vα ψa ∈ C1(R), then vα(x)ψ∗

1 (x)ψ2(x) is such (as product of two C1(R) functions)
and a fortiori continuous in R and, in particular, at the origin. In general, the boundary term indeed
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vanishes, and with the choice of domain DP = {ψ ∈ L2
� :

√
vi (x) ψ(x) ∈ C1(R), P̂ψ(x) ∈ L2

�} the

operator P̂ is self-adjoint.

B. Position and momentum operators

In the common domain DQ ∩ DP, the operators Q̂ and P̂ satisfy the Heisenberg algebra

[Q̂, P̂] = i�. (14)

In a fractional space, the generalized eigenfunctions of the position operator Q̂ are the fractional
Dirac distribution δv ,

Q̂δv(q, x) = q δv(q, x), (15)

where5

δv(x, x ′) := δ(x − x ′)√
vi (x)vi (x ′)

(16)

is consistent with the resolution of the identity provided by the transform (4).
The normalized eigenfunctions of P̂ , with real eigenvalue p = �k ∈ R, are given by Eq. (4c).

We set Fv to be an automorphism (α′ = α in fractional measures), which simplifies the discussion;
a generalization is straightforward. Then,

P̂ev(kx) = p ev(kx), ev(kx) = 1√
vi (k)vi (x)

eikx

√
2π

. (17)

Since the functions ev(kx) are symmetric under the exchange k ↔ x, Eq. (17) implies also

− i
1√
vi (k)

∂k

[√
vi (k) ev(kx)

]
= x ev(kx). (18)

Equations (17) and (18) establish the isomorphism between the two equivalent Hilbert spaces L2
�(x)

and L2
�(k) related by the (unitary) momentum transform (4), Fv : L2

�(x) → L2
�(k). In fact, once

functions are decomposed according to (4), Eqs. (17) and (18) show that the operators P̂ and Q̂ in
L2

�(x) can be equivalently realized as multiplicative (by k) and derivative (with respect to the variable
k) operators in L2

�(k): in L2
�(k) the two operators exchange their roles, and also their domains are

mapped one into the other. It should be noted that the request of having self-adjoint differential
operators severely restricts the form of the momentum operator in the fractional context and, in
particular, it rules out naive fractional derivatives. If P̂ were defined by a fractional derivative of
some order β, integration by parts would yield an infinite number of terms due a complicated Leibniz
rule (Eq. (2.66) of Ref. 2). Even in the “trivial” α = 1 case, one would still have a further problem:
(ψ1, ∂βψ2) = (∂̄βψ1, ψ2), where ∂̄β is the right derivative operator. Mixed fractional operators of
the form a∂β + a∗∂̄β exist which are self-adjoint,7 but we do not consider them here.

It is worth to stress that, for any given measure with a singularity at a point x̄ (in this case,
x̄ = 0), P̂ (hence Ĥ below) is uniquely defined because it is not translation invariant. This contrasts
with ordinary quantum mechanics, where ˆ̄P = −i�∂x is translation-invariant.

C. Heisenberg principle

The Schwarz inequality

|(ψ1, ψ2)|2 ≤ ‖ψ1‖2‖ψ2‖2 , (19)

which holds in our vector space, is sufficient to prove Heisenberg’s principle through the Robertson
inequality. Define the expectation value of an hermitian operator Â as 〈 Â〉 := (ψ, Âψ), and the
standard deviation about its mean value as (A)2 := 〈 Â2〉 − 〈 Â〉2 = ‖( Â − 〈 Â〉)ψ‖2. For any pair
of hermitian operators Â and B̂, apply the Schwarz inequality to the vectors ψA = ( Â − 〈 Â〉)ψ
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and ψB = (B̂ − 〈B̂〉)ψ , obtaining the Robertson inequality ‖ψA‖2‖ψB‖2 ≥ [〈[ Â, B̂]〉/(2i)]2. When
Â = P̂ and B̂ = Q̂, this becomes Heisenberg’s uncertainty principle,

(Q)2(P)2 ≥ �
2

4
, (20)

just like in ordinary quantum mechanics. Any dependence from the non-trivial measure has been
absorbed into the definitions of the position and momentum operators.

D. Hamiltonian

We can define a self-adjoint operator corresponding to the fractional quantum Hamiltonian of a
point particle of mass m in a real potential V (x):

Ĥ = 1

2m
P̂2 + V (Q̂)

= − �
2

2m
D2

x + V (x)

= − �
2

2m

1√
vi (x)

∂2
x

[√
vi (x) ·

]
+ V (x). (21)

For every Hamiltonian of this form, one can always consider the following ordered relation:

Ĥ = 1√
vi (x)

ˆ̄H
√

vi (x), (22)

where ˆ̄H = −[�2/(2m)]∂2
x + V (x) is the corresponding Hamiltonian operator of the ordinary non-

fractional quantum theory. By construction, Ĥ is self-adjoint.
The eigenvalue problem

Ĥψn(x) = Enψn(x), (23)

can be formulated as

ˆ̄Hϕn(x) = Enϕn(x), (24)

where

ϕn(x) :=
√

vi (x)ψn(x) (25)

are the eigenfunctions in the standard L2 space. If the latter are orthonormal under the L2 scalar
product, so are the fractional eigenfunctions ψn with respect to Eq. (9), 〈ψn|ψm〉 = δnm .

E. Time evolution and Schrödinger equation

As usual in an ordinary quantum mechanical framework, we regard time as a parameter and
consider the time evolution of the system. The use of a time with non-trivial fractional charge is strictly
connected to some features of fractional spacetimes regarding violations of energy conservation.

In the Schrödinger picture, the natural generalization of the Schrödinger equation for a quantum
mechanical state |ψ〉 is

i�Dt |ψ(t)〉 = Ĥ |ψ(t)〉 , (26)

where

Dt = 1√
v0(t)

∂t

[√
v0(t) ·

]
. (27)

The choice of Dt in Eq. (26) is dictated by naturalness (the classical system is defined via these
derivatives, not ∂ t) and guarantees that quantum mechanics retains the dissipative character of the
classical theory (a Schrödinger equation defined with ∂ t instead of Dt would lead to a unitary model).
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As a side note, the imaginary-time version of the Schrödinger equation is sometimes regarded as
the definition of the diffusion equation valid in a given space, where Ĥ is interpreted as the Laplacian
K and t → σ as an abstract diffusion time. The diffusion equation in fractional spacetimes typically
features the ordinary first-order derivative ∂σ , or a fractional derivative in anomalous models, but
never the diffusion operator Dσ because σ is an abstract parameter unrelated from the time fractional
structure of the geometry.2, 6, 7 Thus, there is a contrast between quantum mechanics and field theory
in fractional spacetimes, marked by a non-correspondence between Schrödinger and imaginary-time
diffusion equation. Since the difference lies in geometric weights, this somewhat reminds one of the
situation in general relativity, where the Laplacian is the Euclideanized Laplace–Beltrami operator
and the diffusion equation is manifestly non-covariant.

Let us define, first, the quantum state

|χ〉 :=
√

v0(t) |ψ〉 , (28)

and, then, the unitary state

|ϕ〉 :=
√

vi (x) |χ〉 =
√

vi (x)v0(t) |ψ〉 . (29)

Notice that vi (x)v0(t) is the total fractional measure in 1 + 1 dimensions and one could have
obtained it from the start by defining both Dt and Ĥ with a generic measure v(t, x). Factorizability
of the coordinate dependence in the measure plays a fundamental role in keeping time and space
dependence separated and it is essential in order to define the eigenvalue problem consistently.
Indeed, eigenfunctions of the Hamiltonian would depend on time in the case of a non-factorizable
measure v(t, x), as it is clear by looking at Eq. (25), and would lose their fundamental character as
stationary states.

The state |ϕ〉 satisfies the usual (unitary) non-fractional Schrödinger equation

i�∂t |ϕ(t)〉 = ˆ̄H |ϕ(t)〉 , (30)

where ˆ̄H is defined in Eq. (22). Then, considering the complex conjugate of Eq. (30),
−i�∂t 〈ϕ(t)| = 〈ϕ(t)| ˆ̄H †, and the requirement ˆ̄H = ˆ̄H †, under the ordinary L2 scalar product one
gets i�∂t 〈ϕ1(t)|ϕ2(t)〉0 = 〈ϕ1(t)| ˆ̄H †|ϕ2(t)〉0 − 〈ϕ1(t)| ˆ̄H |ϕ2(t)〉0 = 0, meaning that equal-time scalar
products of the type 〈ϕ1(t)|ϕ2(t)〉0 are time independent, as expected.

By using the relation (28), we see that, in a fractional space, time evolution preserves L2
�

products of the form

〈χ1(t)|χ2(t)〉 = 〈ψ1(t)|v0(t)|ψ2(t)〉
= 〈ψ1(t ′)|v0(t ′)|ψ2(t ′)〉
= 〈χ1(t ′)|χ2(t ′)〉 . (31)

This result lets us prefigure that time evolution in a fractional space and the associated operator are
not unitary, unlike in ordinary quantum mechanics.

1. Time evolution operator

Let ˆ̄U (t − t ′) = exp[−(i/�) ˆ̄H (t − t ′)] be the unitary operator associated with the time evolution
of the state |ϕ〉. As it is well known, Eq. (30) can be written as

i�∂t
ˆ̄U (t − t ′) |ϕ(t ′)〉 = ˆ̄H ˆ̄U (t − t ′) |ϕ(t ′)〉 , (32)

and, simply by multiplying and dividing by appropriate measure factors, we get

i�Dt

[
1√

vi (x)v0(t)
ˆ̄U (t − t ′)

√
vi (x)v0(t ′) |ψ(t ′)〉

]
= Ĥ

1√
vi (x)v0(t)

ˆ̄U (t − t ′)
√

vi (x)v0(t ′) |ψ(t ′)〉 ,

which is the analogue of Eq. (32) in a fractional space:

i�Dt Û (t, t ′) |ψ(t ′)〉 = ĤÛ (t, t ′) |ψ(t ′)〉 , (33)
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where U(t, t′) is the fractional time evolution operator defined as

Û (t, t ′) := 1√
vi (x)v0(t)

e− i
�

ˆ̄H (t−t ′)
√

vi (x)v0(t ′).

Expanding the exponential operator and resumming, we get a form of Û in which the fractional
Hamiltonian Ĥ appears explicitly:

Û (t, t ′) := 1√
vi (x)v0(t)

ˆ̄U (t − t ′)
√

vi (x)v0(t ′) =
√

v0(t ′)
v0(t)

e− i
�

Ĥ (t−t ′). (34)

The ordering of the factors in the last expression is irrelevant. Notice that we can rewrite this equation
as

Û (t, t ′) = e− i
�

Ĥ (t−t ′)− 1
2

∫ t
t ′ dτ ln v0(τ ) = e− i

�

∫ t
t ′ dτ [Ĥ− i�

2 ln v0(τ )]. (35)

The simultaneous presence of non-trivial real and imaginary contributions to the evolution operator
highlights the dissipative nature of the system. The ln v0 term will be further discussed in Sec. IV B.

One can check that Û still keeps some important features characterizing a time evolution
operator:

• The initial condition limt→t ′ |ψ(t)〉 = |ψ(t ′)〉 is compatible with

lim
t→t ′

Û (t, t ′) = 1. (36)

• The composition law required by time evolution holds:

Û (t, t ′) = Û (t, t ′′)Û (t ′′, t ′), t ′ ≤ t ′′ ≤ t. (37)

Nevertheless, the operator Û shows some novelties characterizing time evolution in a fractional
space:

• Time-translation invariance is broken and Û is not unitary:

Û (t, t ′)Û †(t, t ′) = Û †(t, t ′)Û (t, t ′) = v0(t ′)
v0(t)

�= 1, (38)

so that

Û † �= Û−1. (39)

Indeed,

Û−1(t, t ′) = e
i
�

Ĥ (t−t ′)

√
v0(t)

v0(t ′)
= Û (t ′, t) (40)

and

Û †(t, t ′) = Û−1(t, t ′)
v0(t ′)
v0(t)

. (41)

When time-translating the system forwards and, then, moving it back to the initial instant, one
gains a factor distinguishing the two states. This mechanism avoids the so-called “grandfather
paradox” and introduces an arrow of time also at the microscopic level.

Downloaded 17 Jan 2013 to 194.94.224.254. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions



102110-11 Calcagni, Nardelli, and Scalisi J. Math. Phys. 53, 102110 (2012)

• Û just implements what we found in Eq. (31), that is, L2
� products such as 〈ψ1|v0|ψ2〉 are

preserved during time evolution:

〈ψ1(t)|v0(t)|ψ2(t)〉 = 〈ψ1(t ′)|Û †(t, t ′)v0(t)Û (t, t ′)|ψ2(t ′)〉
= 〈ψ1(t ′)|v0(t ′)|ψ2(t ′)〉 . (42)

On the other hand, the scalar product 〈ψ1|ψ2〉 is not preserved in time.

Thus, while the wave-function ϕ evolves unitarily the fractional wave-functions ψ do not,

ψ(x, t) = 1√
vi (x)v0(t)

∫
dt ′ ˆ̄U (t − t ′)ϕ(x, t ′)

=
∫

dt ′ U (t, t ′)ψ(x, t ′). (43)

F. Green function

As we saw above, the evolution of a fractional quantum mechanical system is described by
Eq. (26), i�Dtψ(x, t) = Ĥψ(x, t), with an initial condition ψ(x, t) = ψ(x, t′) at t = t′. From a
mathematical point of view, we are dealing with a Cauchy problem. Therefore, also in the fractional
case, the general solution can be obtained by means of the Green function G(x, t; x′, t′) and, in
particular, by solving the following system:{

i�Dt G(x, t ; x ′, t ′) = Ĥ G(x, t ; x ′, t ′),

G(x, t ′; x ′, t ′) = δv(x, x ′).
(44)

The solution of Eq. (26) can be represented as

ψ(x, t) =
∫

dx ′ vi (x
′) G(x, t ; x ′, t ′) ψ(x ′, t ′). (45)

Following the same route outlined above, we rewrite Eq. (44) as i�∂t Ḡ(x, t ; x ′, t ′) = ˆ̄H Ḡ(x, t ;
x ′, t ′), where Ḡ := √

vi (x)v0(t)G and ˆ̄H are the unitary quantities of the ordinary quantum theory.
The solution of the last equation is well known:

Ḡ(x, t ; x ′, t ′) = c
∑

n

ϕn(x)ϕ∗
n (x ′)e− i

�
En (t−t ′),

where c is independent of x and t, and ϕn are the eigenfunctions of the Hamiltonian ˆ̄H . The value c
= 1 corresponds to the initial condition Ḡ(x, t′; x′, t′) = δ(x − x′). The form of G is then

G(x, t ; x ′, t ′) = c√
vi (x)v0(t)

∑
n

ϕn(x)ϕ∗
n (x ′)e− i

�
En (t−t ′). (46)

By imposing the initial condition of Eq. (44), we get the constant c = √
v0(t ′)/vi (x ′) and we can

finally write the fractional Green function as

G(x, t ; x ′, t ′) =
√

v0(t ′)
v0(t)

∑
n

ψn(x)ψ∗
n (x ′)e− i

�
En (t−t ′) , (47)

where we used the relation (25) and ψn are the eigenfunctions of the fractional Hamiltonian Ĥ . Again,
factorizability of the measure is fundamental. Using the completeness relation of the eigenfunctions,
it is straightforward to re-express Eq. (47) via the time-evolution operator:

G(x, t ; x ′, t ′) = 〈x ′|Û (t, t ′)|x〉 . (48)

All the non-unitarity of the theory is encoded in the pre-factor
√

v0(t ′)/v0(t). In Sec. IV B, we shall
provide a neat reinterpretation of this pre-factor as a topological term in the path integral formulation.
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For the time being, we notice that the S matrix, defined as

lim
t ′→−∞
t→+∞

〈x ′|Û (t, t ′)|x〉, (49)

is unitary in fractional theories, provided the limits are performed symmetrically, so that√
vα0 (t ′)/vα0 (t) → 1. This is not true in general for theories with measures (7), even if v0 is man-

ifestly positive. An example is v0(t) = exp(at), where a is a constant. A necessary and sufficient
condition is v0 to depend on |t|.

III. EXAMPLES

In this section, we shall develop the two basic quantum mechanical examples: the free particle
and the harmonic oscillator.

Formally, a classical mechanics system is insensitive to the choice of spatial measure. Its
fractional action is

S =
∫ t2

t1

dt v0(t) L , (50)

where only v0 appears. In order to get the equation of motion, we apply the variational principle by
finding the stationary points of the action,

δS = 0, (51)

under variations δq(t) preserving the extrema δq(t1) = δq(t2) = 0, namely,∫ t2

t1

dt v0(t)

(
∂L

∂Dt q
δDt q + ∂L

∂q
δq

)
= 0. (52)

Here, we assumed that the Lagrangian depends only on q and Dt q. Since

δDt q = Dt (q + δq) − Dt (q)

= 1√
v0(t)

∂t

[√
v0(t)(q + δq)

]
− 1√

v0(t)
∂t

[√
v0(t)q

]

= 1√
v0(t)

∂t

[√
v0(t)δq

]
= Dtδq, (53)

integrating by parts Eq. (52) we have

0 = −
∫ t2

t1

dt v0(t)

[
Dt

∂L

∂Dt q
− ∂L

∂q

]
δq(t) +

[
v0(t)

∂L

∂Dt q
δq(t)

]t2

t1

. (54)

The boundary term vanishes by virtue of δq(t1) = δq(t2) = 0 and one is left with the fractional
generalization of the Euler–Lagrange equation of motion

Dt
∂L

∂Dt q
− ∂L

∂q
= 0. (55)

Moving to Hamiltonian formalism, we define the conjugate momentum

p := ∂L

∂Dt q
, (56)
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which allows us to write the Hamiltonian as

H := pDt q − L . (57)

Upon postulating the canonical brackets {q, p} = 1 (the others vanish), fractional Hamilton’s
equations are

Dt q := {q, H}, Dt p := {p, H}, (58)

that are easily seen to be consistent with (55).

A. Free particle

1. Classical particle

The simplest example is that of a free particle. Its classical fractional Lagrangian is defined as

L = 1

2
m(Dt q)2, (59)

leading to the Euler–Lagrange equation of motion

D2
t q = 1√

v0(t)
∂2

t

[√
v0(t)q

]
= 0. (60)

Notice that by introducing the variable (this setting is the classical analog of the quantum state |χ〉
introduced in (28))

χ (t) =
√

v0(t)q(t), (61)

the fractional equation of motion written in terms of χ would be indistinguishable from that of a
free particle in a non-fractional space, i.e.,

χ̈ = 0. (62)

The classical fractional solutions are then easily written in terms of the non-fractional solutions
χ (t) = χ0 + wt , leading to

q(t) = 1√
v0(t)

(
χ0 + wt

)
. (63)

Since χ0 is an arbitrary constant, the first term of this equation highlights a symmetry of the La-
grangian (59) in a time-dependent change of the position, q(t) → q(t) + χ0/

√
v0(t), which reduces,

for fractional measures, to an ordinary translation when α = 1.
The classical fractional action evaluated on the solutions of the equation of motion is identical

to that of the corresponding non-fractional system χ ,

Scl =
∫ t2

t1

dt v0(t)
1

2
m(Dt q)2 = 1

2
mw2(t2 − t1). (64)

In spite of this fact, the interpretation is different: w is not the velocity (which is not constant) of the
fractional variable q(t).

The redefinition (61) and the corresponding trivialization of the problem obviously triggers the
following remark. Since this (and also the harmonic oscillator below) is a free system, the measure
weight can always be reabsorbed into the definition of the coordinates and the physics is classically
equivalent to the usual one identically.

Therefore, there is seemingly no point in working out fractional rules (variational principle, time
evolution, and so on) which turn out to be unnecessary, and fractional dynamics seems altogether
trivial. Even for a non-linear system with a potential V (q), one could simply consider an ordinary
setting with a non-autonomous potential f (t)V (χ ), for some function f. For instance, a power-
law potential would yield v0(t)V (q) = v0(t)qn = v

1−n/2
0 (t)χn . Are fractional spacetimes just trivial

reformulations of non-autonomous systems?
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At the classical level, the answer is mainly interpretational. A non-autonomous potential defined
in an ordinary space can be considered by all means, but a justification for a particular choice should
then be provided. So, while in ordinary spacetime a potential of the form |t|lχn with l > 0 would
come out of the blue, its origin as an effective description of a system with fractional time and
the subsequent relation l = (n/2 − 1)(1 − α0) between physical parameters are clear. In turn,
fractional time and the specific form of the time-dependent parts of the system are grounded upon a
rigorous implementation of fractal (in general, anomalous and multi-scale) geometry via fractional
calculus,2, 3, 5, 7 along the motivations outlined in the Introduction. The multi-scale anomalous/fractal
picture and its tools cannot be forfeited without loosing logical coherence and the motivational drive.

However, this perspective is not particularly compelling in the case of free systems, where one
can erase all measure dependence and work with χ coordinates. At the classical level, one could
simply bypass the problem by adopting a Laplacian of fractional order7 and invoking again the inter-
pretation according to fractal geometry. Unfortunately, this would not amount to an actual solution,
because second-order Laplacians are desirable in a field-theory setting.3 Quantum mechanics comes
to the rescue with a twofold simple answer. First, while the dynamics is formally reduced to the
standard case due to the linearity of the Schrödinger equation, even free systems are not equivalent to
non-fractional ones because the Hilbert space and the profile of wave-functions drastically change.
This will be made clear in the example of the harmonic oscillator. Second, at the level of the path
integral, the key difference between ordinary and fractional systems is a topological term, a total
derivative immaterial in the classical theory.

2. Quantum particle

The quantum mechanical system can be easily obtained starting from the classical Hamiltonian
that, according to (57), is H = p2/(2m). A self-adjoint Hamiltonian operator Ĥ in L2

� is promptly

obtained by replacing p with the self-adjoint operator P̂ as in (12). Then the eigenfunctions of
the Hamiltonian are just (17), with eigenvalue �

2k2/(2m). The spectrum is continuous, and the
eigenfunctions ψk(x) = ev(kx) are normalized per unit volume.

The Green function of the system can be obtained from (47) (with the obvious replacement∑
n → ∫

dk vi (k) due to the continuous spectrum):

G(x, t ; x ′, t ′) =
√

v0(t ′)
v0(t)

∫
dk vi (k) ev(kx)e∗

v(kx ′) e− i�
2m k2(t−t ′)

=
√

v0(t ′)
v0(t)vi (x)vi (x ′)

1

2π�

∫
dp e

i
�

p(x−x ′) e− i
2m�

p2(t−t ′)

=
√

v0(t ′)
v0(t)vi (x)vi (x ′)

√
im

2π�(t − t ′)
e

i
�

m (x−x ′ )2
2(t−t ′) , (65)

where, to perform the Gaussian integral, we used the regularization m → m + iε and took eventually
the limit ε → 0. The argument of the exponential in the last equality of (65) is just (i/�) times the
action (64), that is, e(i/�)Scl . Note, in fact, that the corresponding non-fractional χ particle would
have constant velocity w = (x − x ′)/(t − t ′). Later, we shall come back to the significance of the
pre-factor

√
v0(t ′)/v0(t).

B. Harmonic oscillator

As another application, we examine the harmonic oscillator. First, we build the classical frac-
tional theory and obtain the equation of motion as well as the dynamical variables. Second, we
move to the quantum theory, getting a complete orthonormal basis of L2

� by solving the associated
eigenvalue problem.
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1. Classical oscillator

We define the fractional action of the harmonic oscillator of mass m and frequency ω as

S =
∫ t2

t1

dt v0(t) L

=
∫ t2

t1

dt v0(t)

[
1

2
m (Dt q)2 − 1

2
mω2q2

]
, (66)

so that one gets the Euler–Lagrange equation

D2
t q + ω2q = 0, (67)

that is,

q̈ + v̇0

v0
q̇ + 1

2

(
v̈0

v0
− 1

2

v̇2
0

v2
0

+ ω2

)
q = 0. (68)

In the fractional case v0(t) = |t |α0−1/�(α0), we recognize an anti-friction and a potential term:

q̈ − 1 − α0

t
q̇ +

[
(1 − α0)(3 − α0)

4t2
+ ω2

]
q = 0. (69)

For α0 = 1, we recover the standard non-fractional equation.
Moving to Hamiltonian formalism, we define the conjugate momentum

p := ∂L

∂Dt q
= mDt q, (70)

which allows us to write down the Hamiltonian as

H := pDt q − L = 1

2m
p2 + 1

2
mω2q2. (71)

Fractional Hamilton’s equations turn to be

Dt q := {q, H} = p

m
, Dt p := {p, H} = −mω2q, (72)

where the definition of time evolution is consistent with the result (67). Invariance of the dynamics
under the exchange of p and q variables is evident in the case ω = 1/m.

Like in the free-particle case, an equivalent way to get the same results is by defining a new
coordinate variable χ := √

v0q and a new Lagrangian L̄ := v0L . The dynamics is then the usual
(non-fractional) one. The equation of motion one gets is indeed χ̈ + ω2χ = 0, which is nothing
but Eq. (67). The χ solutions are χ (t) = Acos ωt + Bsin ωt, from which the solution q(t) trivially
follows. By choosing boundary conditions χ1 = χ (t1) and χ2 = χ (t2), the χ (t) solution reads

χ (t) = 1

sin[ω(t2 − t1)]
{χ2 sin[ω(t − t1)] − χ1 sin[ω(t − t2)]} , (73)

and the classical action evaluated on the solution (73) reads

Scl = mω

2 sin[ω(t2 − t1)]

{
(χ2

1 + χ2
2 ) cos[ω(t2 − t1)] − 2χ1χ2

}
. (74)

Just like in the free particle case, the classical action of the χ system (74) is indistinguishable from
the classical action S̄ we would have obtained substituting the corresponding fractional solution
q(t) = χ (t)/

√
v0(t) in the fractional action (66).
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2. Quantum oscillator

A complete orthonormal basis of L2
� can be obtained by solving the eigenvalue problem of

the fractional harmonic oscillator. Set � = 1 and also m = 1 = ω. The following Hamiltonian is
manifestly self-adjoint as sum of products of self-adjoint operators:

Ĥ = 1
2 P̂2 + 1

2 Q̂2. (75)

The eigenvalue problem

− 1

2
√

vi (x)
∂2

x

[√
vi (x)ψn(x)

]
+ 1

2
x2 ψn(x) = Enψn(x) (76)

is trivially solved once recognized that Eq. (76) is just the usual harmonic oscillator eigenvalue
equation when written in terms of the function ϕn(x) = √

vi (x)ψn(x), with normalized solutions and
eigenvalues

− 1
2 ∂2

x ϕn(x) + 1
2 x2 ϕn(x) = En ϕn(x),

ϕn(x) = e− x2

2 Hn(x)√√
π2nn!

, En = n + 1

2
, (77)

where Hn are Hermite polynomials

Hn(x) := (−1)nex2
∂n

x e−x2
, n ∈ N. (78)

The eigenvalues En and eigenfunctions ψn can be also obtained via the method of ladder operators;
thanks to the self-adjointness of Q̂ and P̂ , in fact, it is possible to define consistently a set of creation,
annihilation and number operators. The proof is identical to the standard case and we omit it. Since
{ϕn(x) | n ∈ N} is a complete orthonormal set in L2, then

ψn(x) = ϕn(x)√
vi (x)

= e− x2

2 Hn(x)√
vi (x)

√
π2nn!

(79)

is a complete orthonormal set in L2
�(x), and the ψn’s are the eigenfunctions of the Hamiltonian (75)

with eigenvalues En = n + 1/2. The Hamiltonian (75) is left invariant under the exchange P̂ ↔ Q̂,
so the corresponding equation in momentum space is identical, and its solutions are therefore the
same functions (79) with x replaced by k: this means that the orthonormal set (79) is left invariant
by the momentum transform Fv .

The wave-functions minimizing the uncertainty principle (20) are weighted Gaussians:

ψ(x) = e− (x−x0)2

2√
vi (x)

√
π

, ‖ψ‖2 = 1. (80)

Since 〈Q̂〉 = x0, 〈Q̂2〉 = x2
0 + 1/2, 〈P̂〉 = 0, and 〈P̂2〉 = 1/2, we obtain (Q)2(P)2 = 1/4. Note

that for x0 = 0 it gives just the lowest eigenfunction ψ0(x). In fractional spaces, the factor
[vi (x)]−1/2 = [vα(x)]−1/2 ∝ |x |(1−α)/2 guarantees that the probability to find the particle at the origin,
where the measure is integrably divergent, is zero.

It is important to stress that the shifted wave-function (80) ψ(x + x*), where x* is some constant,
no longer minimizes the uncertainty principle. This is not a surprise: translation invariance is broken
in fractional theories. In spite of this fact, all the functions (80) saturate the Heisenberg bound,
for any value of x0. This means that, although translation is no longer a symmetry, some similar
symmetry survives. Indeed, it is the symmetry generated by the operator P̂ . Let us consider its action
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on the basis functions ψn = ϕn(x)/
√

vi (x):

exp
(−x0 P̂

)
ψn(x) =

∞∑
m=0

(−x0)m P̂m

m!

ϕn(x)√
vi (x)

= 1√
vi (x)

∞∑
m=0

(−x0)m

m!
∂m

x

[√
vi (x)

ϕn(x)√
vi (x)

]

= 1√
vi (x)

exp [−x0∂x ] ϕn(x)

= ϕn(x − x0)√
vi (x)

. (81)

“P-translations” work in a very convenient way: they first remove the translation non-invariant (and
non-analytic) factor [vi (x)]−1/2, then act as a translation, and then put back the removed non-analytic
factor. In other words, assuming that vi always depends on |x|, P-translations shift only the analytic
part of the wave-functions. Thus, the system is not invariant under spatial translations but it is
invariant under P-translations. The eigenfunctions of the fractional harmonic oscillator equation
are ψn(x ; x0) = ϕn(x − x0)/

√
vi (x), for any x0, so that the Gaussians (80) saturating the Heisenberg

bound are nothing but the most general lowest-level eigenfunctions ψ0(x; x0) (including P-translation
degeneracy).

In the ordinary case, translational symmetry trivially corresponds to different choices of the
origin of the coordinate system. In the fractional case, different choices of x0 give different functions.
In Figure 1, the wave-function (80) is depicted for vi = vα and the values x0 = 0 and x0 = 1; it
vanishes at the origin, where it is not analytic (cusp). Contrary to the ordinary case, there are two
local peaks, the one near x0 being the higher. When x0 = 0, both peaks have the same height and are
symmetric with respect to the origin. These are two of the lowest eigenfunctions (parametrized by
x0) of the fractional harmonic oscillator, and both saturate the Heisenberg principle.

The presence of cusps is a clear evidence of non-analyticity of the wave-functions, which are
not differentiable at the origin. However, ordinary derivatives are not the most natural differential
operators in this fractional context, as they never correspond to hermitian operators. Only the
combination defining P̂ is hermitian and, regardless the presence of cusps, all the harmonic-oscillator
wave-functions are C∞ with respect to the P-derivatives. This property is somewhat reminiscent
of the fact that most fractal curves and other functions common in chaos theory are nowhere
differentiable in the ordinary sense, but they can be differentiable in the sense of fractional calculus
(e.g., Refs. 41 and 42).

Once given the complete set of normalized eigenfunctions, we can compute the Green function
using Eq. (47). To this purpose, one should first recall that, for any |z| < 1 (Eq. 18.18.28 of Ref. 44),

∞∑
n=0

ψn(x)ψn(y)zn = 1√
π vi (x)vi (y)(1 − z2)

e[4xyz−(x2+y2)(1+z2)]/[2(1−z2)]. (82)

Then, applying the above formula with z = e−i(t−t ′)/(�+iε) (in such a way that |z| < 1) and eventually
performing the limit ε → 0 we get

G(x, t ; x ′, t ′) =
√

v0(t ′)
v0(t)vi (x)vi (x ′)

√
1

2π i� sin(t − t ′)
e

i
�

1
2 sin(t−t ′) [(x2+x ′2) cos(t−t ′)−2xx ′]. (83)

As in the free particle case (usual and fractional), the argument of the exponential is the classical
action evaluated on the classical trajectory. Again, however, it should be stressed that the fractional
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FIG. 1. The fractional wave-functions (80) minimizing the uncertainty principle, peaked at x0 = 0 (thick curve, top panel)
and near x0 = 1 (thick curve, bottom panel), for α = 1/2. The dashed curves are the Gaussian in the ordinary case, α = 1.

action evaluated on the classical trajectory q(t) is indistinguishable from the classical non-fractional
action of the corresponding χ -labelled system. This means that, as it is, the exponent in (83) is
unable to discriminate between fractional and non-fractional systems. All the difference is in the
term

√
v0(t ′)/[v0(t)vi (x)vi (x ′)].

IV. PATH INTEGRAL

The path integral can be formulated in a fractional context. The Green function previously
obtained shall be recovered as a path integral. This formalism will permit to clarify the role of
the non-unitary pre-factor of the fractional theory, providing an interpretation of the latter as a
topological term.

A. Quantum mechanics from path integral

As is well known, the path integral picture of quantum mechanics relies on two postulates. It is
worth repeating them to understand how these should be intended in a fractional world.
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1. The Green function G(x, t; x′, t′) of the system is a sum of phases,

G(x, t ; x ′, t ′) = C
∑
paths

e
i
�

S[x,t ;x ′t ′]. (84)

The right-hand side of this equation is entirely classical. It is a sum over all possible classical
trajectories joining the point x′ at the time t′ with the point x at the time t. The argument of
the exponential is the classical action evaluated at that particular trajectory. All the trajectories
have the same weight.

2. C is a constant to be determined in such a way that G behaves as a probability density: for any
intermediate t̄ ∈ [t ′, t], one must have

G(x, t ; x ′, t ′) =
∑

x̄

G(x, t ; x̄, t̄)G(x̄, t̄ ; x ′, t ′). (85)

Let us begin from (85). If the space has anomalous measure �(x), the sum over the intermediate
positions x̄ should be interpreted as an integral with measure d�(x̄) = dx̄ vi (x̄). But then, the identity
Green function (corresponding to no propagation) should be realized by a fractional delta, Eq. (16).
In turn, the identity Green function is attained for t = t′ and then t̄ = t ′ in Eq. (85). Consequently, this
equation can be interpreted as a resolution of the identity when evaluated at t = t̄ = t ′. Comparing
this with (4), whose integral over dp provides a resolution of the identity, one can conclude that all
the (x, x′) dependence in C is of the form

C = C(t ′, t)√
vi (x)vi (x ′)

, C(t, t) = const., (86)

where C(t′, t) is a function that can depend on time both explicitly and implicitly, through v0(t).
The latter dependence can be easily recovered by simple scaling arguments. From now on we shall
specialize to the case of quadratic Lagrangians, so that all the v0(t) factors can be reabsorbed with
the redefinition χ (t) = √

v0(t) x(t), while the whole x dependence in the action is through χ and its
time derivatives. For instance, in the free-particle case

1

2
m

∫ t

t ′
dτ v0(τ ) [Dτ x(τ )]2 = 1

2
m

∫ t

t ′
dτ [χ̇(τ )]2. (87)

Consequently, in the small t − t′ limit the resolution of the identity can only provide a δ(χ ), which
scales as δ(x)/

√
v0(t). Hence, the implicit t dependence of C(t′, t) is 1/

√
v0(t). In turn, this fixes the

v0(t ′) dependence as
√

v0(t ′), in such a way the v0 dependence cancels at t = t′. Summarizing, initial
conditions and scaling arguments fix the following form of C:

C = K

√
v0(t ′)

v0(t)vi (x)vi (x ′)
, (88)

where K is constant both in space and time.
Although most of the considerations will hold for any quadratic Lagrangian, we shall continue for

simplicity with the free-particle case. The sum over all the possible paths in (84) can be conveniently
performed by slicing the time interval t − t′ into N infinitesimal parts,

t = tN > tN−1 > tN−2 > · · · > t2 > t1 > t0 = t ′,

tn − tn−1 = ε, Nε = t − t ′, (89)

and then enacting the standard discretization of variables xn = x(tn). Notice that this is the ordinary
splitting except for the requirement that none of the points coincide with the singularity of the
measure; in the fractional case, tn �= 0. While this constraint on the internal points is immaterial
due to the eventual analytic continuation leading to the final result, it still holds for the initial
and final points t and t′. The singularities in the measure must not correspond to either boundary
point. Apart from this, there is no other complication and we do not even need to redefine time as
in other path integrals featuring integral singularities, like the hydrogen-atom system.43 We shall
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evaluate first the discretized Green function GN(x, t; x′, t′), performing eventually the N → ∞ limit.
The constant K in (88) is also defined as a limit, K = limN → ∞κN, κN being the corresponding
constant in the discretized Green function which, by virtue of (85), can only be a pure power,
κN = (κ)N.

Within the nth slice, the action attains the value

i Sn

�
= im

2�ε

[√
v0(tn)xn −

√
v0(tn−1)xn−1

]2
. (90)

Iterating N − 1 times Eq. (85), we obtain

G N (x, t ; x ′, t ′) = κ N

√
v0(t0)

v0(tN )

∫
d�(x1) . . . d�(xN−1) e

i
�

∑
n Sn

√
vi (xN )vi (xN−1) · · · √vi (x1)vi (x0)

= κ N

√
v0(t0)

v0(tN )vi (xN )vi (x0)

∫
dx1 · · · dxN−1e

i
�

∑
n Sn

= κ N

√
VN

√
v0(t0)

v0(tN )vi (xN )vi (x0)

∫
dχ1 · · · dχN−1 exp

[
im

2�ε

N∑
n=1

(χn − χn−1)2

]
,

(91)

where we set χ0 = √
v0(t0) x0 ≡ χ ′ and χN = √

v0(tN ) xN ≡ χ . Note that all the vi factors can-
celled pairwise, except the first and the last. The integration measure simplifies, and all the integrals
are Gaussian. Positivity of the measure is instrumental to perform all simplifications without pick-
ing up phases. In the last equality, we performed the change of variables χn = √

v0(tn) xn , with
Jacobian

1√
VN

:=
N−1∏
n=1

1√
v0(tn)

. (92)

Here, VN is the regularized (discretized) determinant of the operator defined by the kernel V(t, τ )
= v0(t)δ(t − τ ) in the interval (t0, tN). Its N → ∞ limit is either 1 or an ill-defined constant (zero
or infinity) that will be reabsorbed in the constant κN prior to the N → ∞ limit. The remaining
Gaussian integrals are straightforward, leading to

G N (x, t ; x ′, t ′) = G N (xN , tN ; x0, t0)

=
(

κ22πε�

imV1/N
N

) N
2
√

im

2π�Nε

√
v0(t0)

v0(tN )vi (xN )vi (x0)
e

im(χN −χ0)2

2�Nε . (93)

In taking the limit N → ∞ in Eq. (93), one should recall that Nε = t − t′, so that the argument
of the exponent is just the action of the classical non-fractional particle evaluated on the classical
solution (a particle with constant velocity w = (χ − χ ′)/(t − t ′)). The only delicate term is the first
one. Its large N limit is undefined, unless

κ N

√
VN

=
(

im

2π�ε

)N/2

. (94)

For such a value, the first factor gives 1 for any N, and the Green function of the free particle exactly
coincides with Eq. (65),

G(x, t ; x ′, t ′) := lim
N→∞

G N (x, t ; x ′, t ′)

=
√

v0(t ′)
v0(t)vi (x)vi (x ′)

√
im

2π�(t − t ′)
e

im(χ−χ ′ )2
2�(t−t ′ ) , (95)
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where, we recall, χ = √
v0(t) x and χ ′ = √

v0(t ′) x ′. In similar fashion, it can be shown that also the
Green function (83) of the fractional harmonic oscillator can be obtained along the same lines.

B. Non-unitarity and topological considerations

Whatever the method chosen to evaluate the Green function (either via Eq. (47) or through the
path integral), we encountered the following general property: all the non-unitarity of the theory is
encoded in the pre-factor

√
v0(t ′)/v0(t) appearing in Eqs. (65) (or (95)) and (83) and in the general

expression (47) (the vi terms, instead, provide the correct normalization factors for the L2
� space).

Were it not for such a term, the theory would be unitary and indistinguishable from the corresponding
ordinary one. As we are going to see now, understanding the origin of this pre-factor also clarifies
the main difference between ordinary and fractional theory at the quantum level, and the reason why
classical free theories are equivalent.

The non-unitary term can be rewritten as an additional exponential of a time integral (b �= 0 is
an arbitrary constant) √

v0(t ′)
v0(t)

= e−{ln[b
√

v0(t)]−ln[b
√

v0(t ′)]}

= e− ∫ t
t ′ dτ∂τ ln[b

√
v0(τ )]

= e− 1
b

∫ t
t ′ dτDτ (b). (96)

In the non-fractional case, the Green function of a free particle is the exponential of (i/�)S̄, S̄ being
the classical action evaluated on the classical solution. In the fractional theory, the classical action
Scl evaluated on the classical solution is identical to the free case, Scl = S̄ (see Eqs. (65) and (83)),
so the same classical action cannot serve as exponent of the quantum Green function also in the
fractional context. The crucial and only discriminator between fractional and ordinary free theory
is the total derivative (96). In fact, the non-unitary pre-factor needed to obtain the correct Green
function can be completely reabsorbed in a redefinition of the action

Scl −→ Squ = Scl + i�

b

∫ t

t ′
dτ Dτ (b) . (97)

The difference between Scl and Squ is a boundary term and the two actions are classically equivalent
(their difference is an integral of a total derivative that does not contribute to the equations of motion).
Quantum mechanically, they are not: both of them describe free theories, but the former in a standard
spacetime, the latter in a fractional one. Therefore, all the effects of a fractional spacetime can be
encoded in a purely topological term.

To summarize, the traditional recipe G ∼ e(i/�)S̄ for the path integral is incomplete inasmuch
as two systems having the same classical action on classical trajectories may be still physically
inequivalent quantum mechanically, and they can be distinguished by a topological term. This term
strongly reminds us of a 1-cocycle,45 although its interpretation is different. While 1-cocycles arise
whenever the action possesses a symmetry not enjoyed by the Lagrangian and they enter as projective
representations of such symmetry, in this case the topological contribution tells apart ordinary from
fractional quantum systems.

C. Path integral from quantum mechanics

The purpose of this section is complementary to the previous ones: we wish to recover the path
integral postulate (84) entirely from a quantum mechanical setting. We fix m = 1.

Let us follow the standard way by considering a time interval and subdividing it into N small
parts as in Eq. (89). Recalling Eq. (48), we introduce N − 1 completeness relations∫

dx vi (x) |x〉 〈x | = 1. (98)
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Then, the time evolution operator must be factorized as

Û (t, t ′) = 1√
v0(t)

e− i
�

Ĥεe− i
�

Ĥε . . . e− i
�

Ĥε
√

v0(t ′), (99)

and it is clear that the following formula holds:

G N (x, t ; x ′, t ′) =
√

v0(t ′)
v0(t)

∫ N−1∏
s=1

dxs vi (xs)
N−1∏
n=0

Gn+1,n(xn+1, xn, tn+1, tn), (100)

where

Gn+1,n =
〈
xn+1

∣∣∣e− i
�

Ĥε
∣∣∣ xn

〉

=
〈

xn+1

∣∣∣∣∣
(
1 − i

Ĥε

�
+ · · ·

)∣∣∣∣∣ xn

〉
. (101)

Consider a Hamiltonian operator of the form Ĥ = P̂2/2 + V (Q̂). Then,

〈xn+1|Ĥ |xn〉 =
〈
xn+1

∣∣∣∣1

2
P̂2 + V (Q̂)

∣∣∣∣ xn

〉

=
∫

dp vi (p) 〈xn+1|p〉
〈

p

∣∣∣∣1

2
P̂2 + V (Q̂)

∣∣∣∣ xn

〉

=
∫

dp

2π�

e
i
�

p(xn+1−xn )

√
vi (xn+1)vi (xn)

[
1

2
p2 + V (xn)

]
, (102)

where we used Eq. (17) for the eigenfunctions of the fractional momentum operator P̂ . Thus, we
have

Gn+1,n =
∫

dp

2π�

e
i
�

p(xn+1−xn )

√
vi (xn+1)vi (xn)

[
1 − i

H (p, xn)ε

�
+ · · ·

]

=
∫

dp

2π�

e
i
�

[p(xn+1−xn )−εH (p,xn )]

√
vi (xn+1)vi (xn)

. (103)

The various spatial measures in Eq. (100) simplify except for those corresponding to (x, t) and
(x′, t′), and we have

G N (x, t ; x ′, t ′) =
√

v0(t ′)
v0(t)vi (x)vi (x ′)

1

(2π�)N

∫
dx1 · · · dxN−1dp1 · · · dpN

× exp

{
iε

�

N−1∑
n=0

[
pn+1(xn+1 − xn)

ε
− p2

n+1

2m
− V (xn)

]}
. (104)

Integrations over momenta are Gaussian, giving

G N (x, t ; x ′, t ′) =
√

v0(t ′)
v0(t)vi (x)vi (x ′)

(
mi

2π�ε

)N/2 ∫
dx1 · · · dxN−1

× exp

{
iε

�

N−1∑
n=0

[
m(xn+1 − xn)2

2ε2
− V (xn)

]}

=
√

v0(t ′)
v0(t)vi (x)vi (x ′)

κ N
∫

dq1 · · · dqN−1

× exp

(
iε

�

N−1∑
n=0

{
m[

√
v0(tn+1) qn+1 − √

v0(tn) qn]2

2ε2
− v0(tn)V (qn)

})
, (105)
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where, in the last equation, we used Eq. (94) and changed variables xn = √
v0(tn) qn . The Jacobian

of the change of variables is precisely that in (94), and we used the fact that the potential is quadratic
to scale a v0 factor out of V .

We now perform the large N limit to get the Green function G(x, t; x′, t′). In this limit, the first
factor gives (88), the differentials

∏
ndqn provide the definition of the functional measure [dq], and

the action in the exponential is just the fractional action,

G(x, t ; x ′, t ′) = K

√
v0(t ′)

v0(t)vi (x)vi (x ′)

∫
[dq] exp

{
i

�

∫ t

t ′
dt v0(t)

[
1

2
m(Dt q)2 − V (q)

]}
, (106)

in full agreement with Sec. IV A. For non-quadratic Lagrangians the problem is subtler but, in those
cases, the path integral is typically unsolvable.

Notice that the last line of Eq. (104) defines the relation between Hamiltonian and Lagrangian.
The discrete expression ε L̄n = pn + 1(xn + 1 − xn) − εHn, Hn := p2

n+1/(2m) − V (xn), translates
into the Legendre transform L̄ = pẋ − H , where L̄ is the ordinary Lagrangian. Changing variables
before integrating over the momenta, this relation becomes L = pDt q − H for the fractional theory,
in agreement with the Ansatz (57).

V. DISCUSSION

Spaces with non-trivial but factorizable measures provide an interesting arena where to explore
avenues towards ultraviolet-complete models of Nature. All questions asked in standard scenarios
of space, time, and matter should be addressed also in these anomalous-spacetime models. As an
application of the existence of unitary invertible transforms5 between configuration and momentum
fractional spaces, we have constructed a well-defined quantum mechanics on such spaces, proving
Heisenberg’s principle, formulating the path integral and considering the standard examples of the
free particle and the harmonic oscillator. In the latter case, the energy levels of the Hamiltonian
are the usual ones but the eigenfunctions of the problem are augmented by a factor dependent on
the Hausdorff dimension of the space. These wave-functions have several unusual properties. They
are “P∞,” i.e., non-analytic in the origin but everywhere differentiable, infinitely many times, with
respect to the first-order fractional momentum operator P̂ . This operator generates a modification of
ordinary translations which do not leave invariant the shape of the wave-functions, yet it transforms
one into another with the same Heisenberg uncertainty. Similarly, the time evolution operator
realizes a fractional modification of ordinary time translations. In general, the theory is non-unitary
due, however, to a topological effect dependent on the initial and final state. This effect, which
tells apart fractional from standard quantum dynamics, clearly arises from a topological term in the
path-integral formulation.

Before concluding, we examine an issue related to the fractal character of quantum mechanical
paths. As we recalled in the Introduction, the path of a free quantum particle is continuous but
nowhere differentiable.15 This property, together with their self-affinity (in general, these curves are
not self-similar), counts quantum paths as random-fractal curves. At scales larger than the Compton
wavelength of the particle but smaller than the de Broglie wavelength, in D = 1 the graph (i.e., the
plot of q(t) versus t) of a quantum-mechanical non-relativistic particle has Hausdorff dimension dH

= 3/2, while the path (i.e., the “trace” left by the particle in configuration space q) has dH = 1. In
D ≥ 2, both have dH = 2.16, 46–52 At smaller scales dH = 1, as one can understand from the analogy
between quantum paths and Brownian motion.47, 49, 53 The relativistic particle was studied as well,
and dH = 1.54 Given the intrinsic “fractal” nature of the classical spacetime wherein the particle
moves in fractional theories, one could wonder how the above results on the Hausdorff dimension
of graphs and paths are altered. The answer is that they are not altered at all. One can show this
by an explicit calculation following, e.g., the one in Ref. 16 based on wave-functions and the time
evolution operator. One starts from the operational definition of fractal dimension (which, in most
cases, coincides with the Hausdorff dimension dH). Since fractional spacetimes are continuous, this
“fractal dimension” is indeed dH and we can simply refer to it as the Hausdorff dimension. Let l
be the ordinary length of a curve measured with a probe with some given finite resolution x �= 0.
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The Hausdorff length lH of the curve is defined as lH = limx→0 l(x)dH−1. For a smooth curve,
dH = 1 and the Hausdorff and ordinary lengths coincide, while for fractal curves only lH is a
meaningful geometric indicator. In fact, as the resolution x decreases l tends to infinity (because
one needs, say, more and more balls to cover the curve); the Hausdorff dimension is always larger
than the topological dimension of the fractal set (in this case, 1). (On the other hand, dH cannot be
greater than the topological dimension of the space wherein the curve is embedded.) Requiring that
lH be resolution independent yields the correct value of the Hausdorff dimension; the example of the
von Koch curve can be found, e.g., in Ref. 52.

For a quantum particle, l is replaced by the average distance 〈l〉 covered by the particle in a
time interval t = t − t′. The average is calculated on a state associated with a sequence of position
measurements localizing the particle in a region of size x. The only difference, immaterial for
the final result, with respect to the standard case is in the non-unitary pre-factor v0(t ′)/v0(t) in the
expression for 〈l〉. Up to this factor, clearly inherited from the fractional operator Û (appearing
twice in the expectation value), the scaling of the average distance is the standard one, 〈l〉 ∝ t/x .
Replacing this into lH and demanding the Hausdorff length to be resolution-independent yields dH

= 2. This result was expected because the quantum dynamics of the free particle is the same in
ordinary and fractional spacetimes except for a boundary term. The latter, of course, does not modify
the local structure of quantum paths, hence the conclusion.

A viable construction of quantum mechanics on fractional spacetimes opens up the possibility
to test the latter as models of Nature. As stated in the Introduction, eventually one would like
to make predictions in a field-theory context where the dimension of spacetime changes with the
scale. However, at large-enough space/time scales the effect of dimensional flow is small and
one can consider a fractional spacetime with fixed dimensionality close to 3 + 1, corresponding
to an expansion in the small parameters ε0,i ∼ 1 − α0,i . The scales at which this approximation
holds are at least atomic,3 possibly smaller. It is in this context that the framework presented here
can help to place bounds on the theory from experiments in quantum mechanics. For example,
the difference between the theoretical predictions and experimental data for the Lamb shift in
hydrogen can be ascribed to dimensional effects in order to give an upper bound for ε. For theories
with naive dimensional-regularization-like modifications, the constraint is |ε| < 10− 11 at scales
� ∼ 10− 11 m.55, 56 It also turns out that this upper bound is more stringent than others at electroweak
or astrophysical scales.3 A revisit of the same problem in fractional spacetimes should be able to
yield a similar constraint, probably of the same order of magnitude. This will be the subject of future
investigations.
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