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Abstract

A proof of strong cosmic censorship is presented for a class of solutions of the
Einstein-Maxwell equations, those with polarized Gowdy symmetry. A key
element of the argument is the observation that by means of a suitable choice
of variables the central equations in this problem can be written in a form
where they are identical to the central equations for general (i.e. non-polarized)
vacuum Gowdy spacetimes. Using this, it is seen that the deep results of
Ringstrdm on strong cosmic censorship in the vacuum case have implications
for the Einstein—-Maxwell case. Working out the geometrical meaning of these
analytical results leads to the main conclusion.

PACS number: 04.40.Nr
Mathematics Subject Classification: 83C05, 83C22, 83C75

1. Introduction

The Gowdy spacetimes are a class of solutions of the vacuum Einstein equations with two
commuting spacelike Killing vectors. Factoring by the symmetry leads to effective equations
in one time and one space dimension. To date, the Gowdy spacetimes are one of the best
model systems for obtaining a mathematical understanding of the dynamics of inhomogeneous
solutions of the Einstein equations. It is known that close analogues of the Gowdy spacetimes
exist in the case that the vacuum Einstein equations are replaced by the source-free Einstein—
Maxwell equations (see, for instance, [4]). It is thus natural to ask to what extent the known
results on the physical properties of Gowdy spacetimes can be generalized to the case with
an electromagnetic field. This question is the subject of this paper. When referring to
Gowdy spacetimes in the following, the spatial topology is always assumed to be 77 (a
three-dimensional torus) except where the contrary is stated explicitly.

A variety of deep mathematical results have been obtained concerning Gowdy spacetimes,
culminating in the work of Ringstrom [16, 17, 19]. In particular, it was shown in [19] that
strong cosmic censorship holds in the class of Gowdy spacetimes. This means that for generic
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initial data within this class, the corresponding maximal globally hyperbolic development is
inextendible. (Precise definitions of these terms are given later in this paper.) A relatively
simple special case of the Gowdy spacetimes are those which are polarized. In this case, the
main field equation becomes linear and this simplifies many things. In the case of the Einstein—
Maxwell equations, it is also possible to make a definition of polarized Gowdy symmetry but
in this case the main field equations are no longer linear. In fact, as shown explicitly below,
when expressed in suitable variables they are identical to the full (non-polarized) Gowdy
equations of the vacuum case. Hence the results of Ringstrém concerning the solutions of the
partial differential equations can be taken over directly. On the other hand, the geometrical
and physical meaning of the variables is different in the two cases so that the interpretation of
the results is different. This will be worked out in detail in the following. It leads in particular
to a result on strong cosmic censorship for solutions of the Einstein-Maxwell equations with
polarized Gowdy symmetry (theorem 2).

To put this result into context, it is worth recalling for which matter models strong cosmic
censorship has been proved for any inhomogeneous solutions of the Einstein-matter equations.
In [7], strong cosmic censorship was proved for solutions of the Einstein—Vlasov system with
T? symmetry. The genericity assumption made there excludes the vacuum case. The matter
content is used in an essential way. Although it is plausible that the methods of [7] could
be extended to many other matter models, they do not suffice to treat the case of a Maxwell
field alone. Similar results have been proved for solutions of the Einstein—Vlasov system with
spherical symmetry and hyperbolic symmetry in [8]. The results of [7] were extended to the
case with a positive cosmological constant in [20]. Strong cosmic censorship has been proved
for the plane symmetric Einstein-scalar field system in [21]. For those Gowdy spacetimes
(not considered further in the following) with topologies other than T cosmic censorship has
been studied in the polarized case in [5]. The results which have been listed are those existing
positive results known to the authors on strong cosmic censorship of this level of generality.
They are valid for inhomogeneous solutions of the field equations, with or without matter.
They concern solutions which belong to some symmetry class but do not require smallness
assumptions on the initial data.

Apart from cosmic censorship, more detailed information is obtained about the qualitative
properties of the solutions of the Einstein-Maxwell equations near the initial singularity and
at late times. For generic solutions, it is shown that the Kretschmann scalar R,g, s RoPY3
blows up uniformly on certain regions as the singularity is approached. It is also shown that
the spacetimes are geodesically complete towards the future and that they exhibit oscillatory
behaviour at late times analogous to that found in [16] for Gowdy spacetimes.

In section 2, definitions of Gowdy and polarized Gowdy symmetry are introduced. These
definitions, which make use of discrete symmetries, have not previously been worked out
in the literature and so are treated in detail here. In section 3, a number of equations are
displayed. They are the basic equations of the class of spacetimes which are of interest in the
following. In sections 4 and 5, the main results on the asymptotic behaviour of solutions in
the past and future directions respectively are proved. These results are combined in section 6
to give the main result (theorem 2) and some thoughts are presented on how the results of this
paper might be generalized in future.

This paper is based in part on the diploma thesis of the first author [12].

2. Gowdy spacetimes and discrete symmetries

Let g.p be a Lorentzian metric on a four-dimensional manifold M and suppose that g.g is a
solution of the Einstein equations coupled to some matter model. A symmetry of this solution
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is an isometry of the metric which also preserves the matter fields. The solution is said to have
T2 (or U(1) x U(1)) symmetry if this group acts on M by symmetries of the solution. Think of
a solution as being defined by Cauchy data. If the Cauchy data are invariant under a symmetry
group and the Einstein equations coupled to the given matter model have a well-posed initial
value problem, then there is an associated action of the group on the solution (cf the discussion
in section 9.2 of [15]).

Now suppose a spacetime is given where the metric takes the form

2= (—dr> +do*) +e*U[dx + Ady + (G + AH) d01> + e 2Y R*[dy + H d61%. (1)

Here 6, x and y are periodic coordinates on T3 and the functions n,U, A, G, H and R depend
only on ¢ and 6. This metric has T2 symmetry with the group action generated by the Killing

vectors % and % This is a form of the metric used in [2]. In that paper, it was shown

that in any globally hyperbolic spacetime with 72 symmetry and a Cauchy hypersurface
diffeomorphic to T3 coordinates of this type can be introduced in a neighbourhood of any
Cauchy hypersurface.

A metric of the form (1) will be said to have Gowdy symmetry if the transformation which
simultaneously maps x to —x and y to —y is an isometry. It follows that G and H must vanish.
Conversely, if G and H vanish, the spacetime has this extra symmetry. The terminology comes
from the fact that the solutions of the vacuum Einstein equations with this symmetry are
precisely the Gowdy spacetimes. A metric with Gowdy symmetry is said to be polarized if the
individual transformations mapping x to —x and y to —y are symmetries. This is equivalent to
the vanishing of A. Next, a more abstract characterization in terms of discrete symmetries will
be derived. Let G be the group of isometries of R? generated by translations and reflection
in the origin. Let the latter transformation be denoted by R;». G, is a semidirect product of
R? and Z,. Suppose that in a spacetime with T2 symmetry the action of T2 extends to an
action of G| by isometries. Then the coordinate form of the transformation corresponding to
R, , is given up to an overall translation by the transformation which simultaneously sends
xto —x and y to —y. This follows from the relation R, 7, ;, = T_, _, R which holds for
any translation 7, ,. To see this, note first that the isometry corresponding to R;, cannot
be a translation. Hence it has a fixed point. Evaluating the relation at that fixed point
gives the desired conclusion for the restriction on one orbit. Consider the geodesic in S
through that point orthogonal to the orbit. Its intersection with any other orbit must also be
a fixed point of R;,. Thus, the necessary translation is the same for all orbits on the initial
hypersurface. The same conclusion can then be obtained for any orbit in the spacetime by a
similar argument using a geodesic of the spacetime through the fixed point which is orthogonal
to the initial hypersurface. In this way, an abstract characterization of Gowdy symmetry in
terms of an action of the group G is obtained. Similarly, polarized Gowdy symmetry can be
characterized by the fact that the 7% action extends to an action by isometries of the group G,
of isometries of R? generated by translations and the reflections R; and R, in the two Cartesian
coordinates. The group G is a semidirect product of R? with Z, @ Z,. The elements R;
and R, satisfy the relations R T, = T_4»R; and Ry T, , = T, _, R>. It follows by the same
type of argument as in the previous case that R; and R; can be identified with reflections in x
and y.

Let us suppose for simplicity that the torus has unit coordinate volume with respect to the
coordinates (x, y). Then the area of an orbit of the symmetry group contained in the domain
of the above coordinate system is given by R. This can be used to extend the definition of R
to the whole spacetime by requiring its value at a given point to be equal to the area of the
orbit on which that point lies. The function R is called the area radius. It will be assumed in
the following that the Maxwell field does not vanish identically so that the spacetime is not
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flat. Recall that the Maxwell field satisfies the dominant energy condition. A proof of this is
given in the appendix. It follows from proposition 3.1 of [14] that the gradient of R is always
timelike. As a consequence the function R can be used as a time coordinate. This is referred
to as an areal time coordinate. It is not a priori clear whether in a given solution there is any
level surface of R which is a Cauchy surface. An argument which shows that there is a level
surface of this kind is presented in the following section.

Having defined Gowdy and polarized Gowdy symmetry for metrics, the next step is to
do the same for solutions of the Einstein-Maxwell equations. To do this, the action of the
groups G| and G, must be extended to the Maxwell field. Any diffeomorphism transports
any tensor field in a natural way. If the diffeomorphism is an isometry consistency with the
Einstein equations requires that the energy—momentum tensor must be transported in this way.
It is, however, possible to transport matter fields in a different way and this will be done
here. Consider the case that the electromagnetic field is defined by a four-potential A,. If
¢ is a diffeomorphism, consider the transformation (g, A) +— (¢.g, —¢+A). This leads to
the transformation F +— —¢,. F for the electromagnetic field. This ensures that the energy—
momentum tensor is left invariant. If the action of the group G, is extended so as to transform
the electromagnetic field in this way then Ay and A vanish. Denote the remaining components
of the potential by @ = A, and x = Aj3. This provides the definition of Gowdy symmetry
for the Einstein-Maxwell system. The only non-trivial components of the electromagnetic
field are Fy,, Fo3, F12 and Fy3. Taking instead G, provides the definition of polarized Gowdy
symmetry. This does not lead to a direct further restriction on the potential but does further
restrict the metric. It will be shown in the following section that the Einstein—-Maxwell
equations lead to a consistency condition which apparently forces one of the components of
the potential to be set to zero in the polarized case.

It would have been possible to use the more straightforward transformation (g, A) +—
(0.8, ¢+ A) instead of that just introduced. This leads to a different class of solutions of the
Einstein—-Maxwell equations. In that case, the only non-trivial components of the potential are
Ap and A;. The only component of the electromagnetic field which may be non-vanishing in
this case is then Fy,. If fields are allowed which do not arise from a potential then F,3 may also
be non-vanishing. Solutions of the Einstein—-Maxwell equations of this type were considered
in [22]. It seems that they exhibit oscillatory behaviour near the singularity and are thus more
complicated than the solutions considered in the following. This other symmetry class is not
considered further in the present work.

3. Basic equations

Consider Cauchy data for a solution of the Einstein—-Maxwell equations with polarized Gowdy
symmetry and suppose that these data have a constant value of R. In the solution evolving from
these data coordinates exist on a neighbourhood of the initial hypersurface where the metric
takes the form (1) with G = H = A = 0. The function R can be introduced as a new time
coordinate, and after that a new spatial coordinate can be introduced so that go; = 0. Then
the transformed metric is of the form (1) with G = H = A = 0 and R = ¢ except for the fact
that d#> may have been replaced by an expression of the form ad¢? for some function a(, ).
Using the fact that for the Maxwell field TO0 = —Tl1 one of the field equations (equation
(11.42) on p 224 of [15]) implies that o, = 0. It is possible, while maintaining the coordinate
conditions imposed up to now, to reparametrize the coordinate 6 on the initial hypersurface.
Because o does not depend on time, this can be used to impose the condition @ = 1. Introduce
new variables as follows: A = 4(n — U) +logt, P = 2U — log¢. Then the metric takes
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the form
1722 (—dr? +d0%) +1(eFdx? +e P dy?). )

In the new coordinates, the original Cauchy hypersurface is not a hypersurface of constant
t. That there does exist a Cauchy hypersurface of constant ¢ can be shown as follows. The
maximal Cauchy development of the initial data corresponds to a certain subset of (¢, 6)-
space. Suppose that this set has a past boundary point p at which ¢ is strictly positive. By using
standard light cone estimates for the Gowdy equations it can be shown that P, x and all their
derivatives all orders are uniformly bounded on the intersection of the region corresponding
to the maximal Cauchy development with a small neighbourhood of p. By uniform continuity
they extend continuously to p. Using arguments as in sections 4 and 5 of [1] or as in [3]
it can be concluded that the solution can be extended to a larger region in such a way as to
define a globally hyperbolic extension. This contradicts the definition of the maximal Cauchy
development. Hence no such boundary point p exists. The solution exists all the way tor = 0
and hence if ¢ is any positive number smaller than the minimum of 7 on the original Cauchy
hypersurface then ¢+ = #; will be a Cauchy surface of the type whose existence was to be
demonstrated.

As explained in the previous section, the only non-vanishing components of the four-
potential defining the Maxwell field are A, = @ and A3 = x. With these choices the
Einstein—Maxwell equations can be computed. The details are given in [12]:

—Py —t7'P 4 Py = —2f71[67P (_wlz +w§) - eP(_th + Xez)] 3)
—wy + wgg = — Py + Pywy 4)
=X+ Xoo = —[— P x¢ + Py xol (5)
A= t(P,2 + POZ) + 4[e_P(a),2 + a)g) +ef ()(Zz + ng)] (6)
Ao =2t PPy +8(e P w,mp +e” xix0) (7)
W Xt = WpXo- (®)

The full set of Einstein equations includes one involving the second derivatives of A. Itis a
consequence of (6) and (7) and plays a minor role in what follows. It is written down in terms
of other variables later. Equation (8) is the consistency condition alluded to in the previous
section. The only large classes of solutions known which are consistent with this equation are
those where either @ or x vanishes. In [4], the authors considered other possibilities but this
did not lead to the discovery of other interesting classes of solutions. In most of what follows
it will be assumed that w = 0. Assuming x = 0 would lead to an equivalent problem. These
two cases are related by interchanging the roles of the two Killing vectors.

Equations (3), (5), (6) and (7) with @ = 0 can be shown to be equivalent to the equations
for (not necessarily polarized) Gowdy vacuum spacetimes by introducing new variables. These
are given by

P =1(P —logt) )
Xzi(k—logt)—f’. (10)

Then the equations for P, x and A coming from (3), (5), (6) and (7) are the basic equations for
Gowdy vacuum spacetimes (cf ([16]) with P replaced by P, Q replaced by x and A replaced
by A. These equations are

—Pl,—l‘_lpl+p99ZGZP(—XZZ-FX@Z) (11)
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—Xu =t X+ X006 = —2(=Pixs + Poxe) (12)
hy = t[Pf + P} + 2P (th + ng)] (13)
Ao = 2t[P, By + 2Py x0]. (14)

In terms of these variables the metric is

e20+P) (—dr? + do?) + 2 e dx? + e 2 dy?. (15)
The additional equation involving the second derivative of A reads
_5\,1[ _t_11t+5L90 =2(P02+62]3X92). (16)

4. Structure of the singularity

Since the equations for solutions of the Einstein—-Maxwell system with polarized Gowdy
symmetry are identical to the well-known Gowdy equations in the vacuum case, it can be
concluded from a theorem of [10] that the solution corresponding to any initial data with
constant R exists globally on the interval (0, c0) when expressed in areal time. The purpose of
this section is to investigate the asymptotics of these solutions in the limit # — 0. Interpreting
a result of [17] in terms of the present problem shows that for a fixed value of 6 the quantity

t[(P? +e* x2) . 0)]% converges to a limit vo,(0) as t+ — 0. This quantity is called the
asymptotic velocity at 6. It turns out to be useful to examine regions Dy, defined as the set of
points (¢, 9) such that |6 — 6y| < ¢. Intuitively this can be thought of as the causal future of a
point of the singularity defined by 6 = 6.

The structure of the singularity will be described in detail for a generic set G, of initial
data, which is strictly analogous to a similar set introduced in [17], using the relation between
vacuum solutions and polarized Einstein—Maxwell solutions. By analogy with [17] we can
define what is meant by a solution having a non-degenerate false spike or a non-degenerate
true spike at some value of #. The detailed definition will not be reproduced here. For
convenience call a point 8 an ordinary point for a given solution if 0 < v,,(f) < 1 and
lim, 0t Pi(t,0) = —vo(8). Define G, . to be the set of initial data determining solutions
for which all points 6 are ordinary except for / non-degenerate false spikes and m non-
degenerate true spikes. Then G, is the union of G; ,, . over all non-negative integers / and m.
Data belonging to G, are called generic. This subset is open in the set of initial data in the
C? x C! topology and dense in the C™ topology [19]. A comment should be made on the
subscript ¢ which is included here for consistency with Ringstrém’s notation. It is a reminder
that initial data for the Gowdy equations must satisfy an integral constraint for topological
reasons. An analogous constraint occurs in the Einstein—Maxwell case. It arises by integrating
equation (14) with respect to 8. The integral of the left-hand side vanishes due to periodicity
and so the integral of the right-hand side must vanish too. If there is a false spike at 6 then
0 < vx(0) < 1 while if there is a true spike 1 < v (0) < 2. Thus, in particular, generic
data are such that vy, is never equal to 1 at any point. In the vacuum case, this statement is
enough to imply blow-up of the Kretschmann scalar along any past-directed causal curve due
to proposition 1.19 of [17].

To prove inextendibility it will be necessary to consider the case of normal points, false
spikes and true spikes separately. First the case of a normal point will be examined. The
expression for the Kretschmann scalar is unwieldy, and it might be thought that it would
be easier to prove inextendibility in the electromagnetic case by showing that the invariant
Fup F°f blows up. Unfortunately this turns out not to be the case. There is a large class of
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Gowdy solutions (the low velocity solutions) which, when translated to the case of interest
here, admit asymptotic expansions of the following form:

P(t,6) = —veo(0) logt + - - - (17)
X(t,0)=q®) + YO+, (18)

where the terms omitted are lower order as 7 — 0. It follows that e=2* is proportional to 2%

in leading order while

Xo — xf =q; — ALt 4 (19)
Since

F Fup = 2¢72 (52 — x2), (20)

it follows that the information contained in the above expansions and the fact that 0 < vy, < 1
do not always suffice to determine whether the invariant blows up or not. For if vy, = % and
g3 = 4v2 ¥, the leading term in the expansion for F*# F,5 vanishes and whether the next to
leading term blows up cannot be decided using the available information. For the solutions
considered here F*#* F,5 = 0 and so this invariant is not helpful.

Next the Kretschmann scalar will be examined. An observation which simplifies the
calculations is that, due to the discrete symmetries of the spacetimes under consideration, a
component Rg,s which does not vanish must have an even number of indices equal to 2
and an even number equal to 3. It follows that up to symmetries (not including the algebraic
Bianchi identity) the only components which may be nonzero are

Roi01, Ro202, Roz12, Ri212, Ro3o3, Rozi3, Ri313, Rosos. (2D

The Kretschmann scalar is equal to

101 202 1212 303
4[Ro101 R”""" + Roza R + Riz1n R + Roz03 R
3
+Ri3i3RP + Ryzps R¥7] + 8[Roain R™' + Roz13R” 1. (22)
In terms of the metric coefficients the individual terms are given by
Roio RO = 174D [—12%, — 2 Py + 17 (Pyg + hoo) ]
4 _4GaP)[LE == = = 22 57 \12
RyppnR®? = 174 e * D1, + 12 Pd, — 12 P,y — t P+ 17 (Bf + Pyhg) |
R1212R1212 = t_4 8_4(1+P)[[1, + ZZXZP, + Z‘Pl + tZI_)IZ — IZ(PQQ — P@Xg)]z
4 _AGAP)[L2 3 5= = 5T BN\T2
Rysp3R®P = 174D 2 B, — 2P, — 207 PF — 1> (Pyhg + P7) |
4 4GP 5= = = = = 5 \12
RizisRPP =174 e[ 2P, — 2P +1*(Pyg — 2P — Pyho)]
4 4GP = = 5272
Ry R¥D = 1% 4(A+P)[_tPt — 2P+ tngz]
R0212R02]2 = —l‘_4 6_4(X+p)[—l5»9 — I2Pt ]39 + [2[_3[9 — tzpejut — lzjx,g P,]z
R0313R0313 = —l_4 6_4(A+P)[—Z2Pt9 + fzpli\.g + lzf_’g;»t + 31‘2P, Pg]z.
The first six terms are manifestly non-negative while the last two are manifestly non-positive.
The fact that all terms contain a common factor helps when comparing their magnitudes. It
suffices to compare the magnitudes of the quantities in square brackets. Suppose it can be
shown that in a given solution at least one of the positive terms tends to infinity as t — 0
and that both the negative terms are negligible with respect to that positive term. Then this

implies that the Kretschmann scalar tends to infinity. It turns out, as will be explained in more
detail later, that for this question the spatial derivatives in these expressions are unimportant
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compared to the time derivatives. The essential information needed for the proof is contained
in the following expressions:

Rojot RO = 1~ e 40+P) 23 _ 2P, 1 +

Ry R®® = 1= e ** P13, + 2B A, — 2By — t B2 + - -

RipinR™12 = 440D 13, 4423, P, +1 P, + t2P2]2

RososR®® = 1744 0+P 2P, — P}, — 2% P; ]
RizsRP5 = 14 74(/\+P)[ P, — 2P ]
[~

Ry RBB = =4 e—4G+P) ]2 I

R0212R0212

R0313R0313

The terms not explicitly written in these equations are not relevant for the proof which follows.
It is not claimed that in the approach to the singularity each of the terms which have been
omitted is small in comparison to the terms which have been written out explicitly.

Consider now the case of a normal point 6y. Then proposition 1.5 of [17] provides
information about the limiting behaviour of the solution in a neighbourhood of 8. It implies
that P, converges to —v, and that P and t’P, tend to zero. It also shows that if
equations (13) and (14) are multiplied by ¢, the terms containing derivatives of x on the
right-hand sides tend to zero as t — 0. If follows that t4, converges to v, and tAs tends
to zero as t — 0. These facts together show that the quantities in square brackets in the
expressions for Rgy1oR%!? and Ry313R%!3 tend to zero at the singularity. The expression in
the square brackets in Rp33 R*2 converges to voo — v2, # 0. The expression e #F* s
asymptotic to an expression proportional to 4% Since voo(1 — Vo) < 1 this is enough
to conclude that the curvature blows up uniformly in a neighbourhood of a normal point 6.
It is also part of the conclusions of proposition 1.5 of [17] that if 6, is a false spike, a change
of variables can be carried out which gives a new solution with the asymptotic properties
which hold for a normal point. Since it is known that this transformation does not change the
spacetime geometry but only the way it is represented the curvature properties are unaffected.
Thus curvature blow-up also holds in the case of a false spike. It remains to treat the case
of a true spike at a point §y. In that case, proposition 6.7 of [17] implies that ¢ P, and e’ x4
converge to zero uniformly on Dy,. Corollary 6.8 shows that 7% P, also converges to zero there.
By proposition 6.11 of [17] and the remark following it ¢ P, and e x; converge to —v,, and
zero respectively on that region. In this case vy (1 — Vo) < 0. Thus the Kretschmann scalar
can be controlled as in the other cases, with the difference that the control is only obtained on
the region Dy, rather than for an interval of 6 containing 6.

In the following theorem, the topology on the set of initial data used is the C* topology.

Theorem 1. There is an open dense subset G, of the set of smooth initial data for the Einstein—
Maxwell equations with polarized Gowdy symmetry and constant areal time such that the
Kretschmann scalar tends to infinity along any inextendible past-directed causal geodesic.

Proof. The set G. has been defined above. For a solution evolving from data belonging to this
set each point 6 is either an ordinary point, a false spike or a true spike. It has been shown that
in each of these three cases the Kretschmann scalar blows up uniformly on Dy, as t — 0. It
is shown in [17] that any inextendible past-directed causal geodesic eventually lies in a region
of this type with some value of 6y as + — 0. The proof of this is pure Lorentzian geometry
and makes no use of the Einstein equations. Hence it also applies to the situation of this
theorem. O
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5. Future geodesic completeness

This section is concerned with the asymptotic behaviour of solutions in future, i.e. with the
behaviour as the areal time ¢ tends to infinity. The asymptotic behaviour of solutions of the
vacuum Gowdy equations has been determined in detail in [16]. This information suffices in
particular to prove future geodesic completeness in the vacuum case. It will be shown that
similar arguments can be used to give a proof of future geodesic completeness of solutions of
the Einstein-Maxwell equations with polarized Gowdy symmetry.

As in the vacuum case, it is convenient in the proof of geodesic completeness to distinguish
between homogeneous and inhomogeneous spacetimes. The homogeneous case is that in
which P, x and A depend only on t. Geodesic completeness in the homogeneous case follows
from theorem 2.1 of [13]. That theorem applies to solutions of the Einstein equations coupled to
a general class of matter models which satisfy two conditions: the dominant energy condition
and the non-negative sum pressures condition. Both of these hold for the Maxwell field. In
fact the second follows from the first because the energy—momentum tensor of the Maxwell
field has vanishing trace. It should also be noted that for these solutions, which are of Bianchi
type I, the mean curvature of the hypersurfaces of constant ¢ is everywhere negative and hence,
in particular, bounded above.

It remains to consider the inhomogeneous case. From proposition 1.8 of [16], it can
be concluded that P,, Py, e’ x, and e’ xs are O(t~'/?) as t — oo, uniformly in #. This
means in particular that A, is bounded in future. From theorem 1.7 of [16], it follows that
L = c;t+O(logt) for a positive constant c3 ast — oo. Itis at this point that the condition that
the solution is inhomogeneous is used. Combining these facts shows that .+ P = ¢;1+ O (t?).
Define an orthonormal frame {e,} by normalizing the coordinate basis vectors %, %, %, ;’—y
A computation shows that the corresponding rotation coefficients satisfy an inequality of the
form

18(Ve,e0,e,)| < Cr7ze P (23)

for a constant C whenever at least two of the indices (i, v, p) are equal to 2 or 3. The facts just
listed suffice to show that the argument used to prove geodesic completeness in the vacuum
case in [16] also applies to the Einstein—Maxwell case, proving geodesic completeness in that
case too.

In [16] further information about the late-time behaviour of Gowdy spacetimes is derived.
It is shown that, remarkably, there are solutions with oscillations of P which persist for all
times. More precisely, the amplitude of the oscillation does not decay and the fact that P,
converges to zero is explained by the fact that the frequency of the oscillation decreases
with time. The derivative Py does decay, which means that in a sense the solution becomes
homogeneous asymptotically. Nevertheless the dynamics of these solutions is different from
that of any homogeneous solution. These solutions can be used to produce solutions of
the Einstein—-Maxwell equations by the correspondence which is central to this paper. The
statements made about P in the vacuum case apply directly to P in the electromagnetic case.
Considering y it is seen that the electromagnetic potential oscillates with an amplitude which
does not decay while the decrease in the frequency of the oscillation leads to decay of the
electric field. The potential becomes spatially homogeneous asymptotically and this gives
decay of the magnetic field.

A key step in proving the results about future asymptotics in the vacuum case is to show
that the following energy-like quantity tends to zero as t — 00:

(@) = %/ [P?+ P} +e* (07 + 03)]t. 0) do. (24)
Sl
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Of course there is a corresponding quantity in the Einstein-Maxwell case which also tends to
zero as t — oo. Itis given explicitly by

5(t) = % / [P2+ P2+ (x2+x2)],0) do. (25)
Sl

6. Conclusions and outlook

Given a matter model in general relativity for which the Einstein-matter equations have a
well-posed initial value problem there exists a maximal Cauchy development corresponding
to each initial data set. The strong cosmic censorship hypothesis says that for generic initial
data this maximal development is not extendible to a larger spacetime. There are some
technical choices involved in this definition: how much regularity is assumed for the data,
what topology is put on these data and what regularity properties are assumed of an extension.
Here no general discussion of these issues will be given—we will just make one reasonable
choice. It is assumed that the data are smooth, i.e. C*°. They are topologized using the C*
topology, i.e. the topology of uniform convergence of a geometrical object together with its
derivatives of all orders. Extendibility is taken in the sense of extensions of the geometry
of class C2. It should be noted that since cosmic censorship is such a hard problem, it is
common to consider the related problem where the initial data is generic subject to some extra
restrictions, e.g. symmetry restrictions. This is the case in the results of this paper.

The main theorem of the paper can now be given. It is a statement about strong cosmic
censorship for the class of spacetimes involved.

Theorem 2. For data belonging to the open dense subset G, of the set of smooth initial data for
the Einstein—-Maxwell equations with polarized Gowdy symmetry and constant area radius,
the corresponding maximal Cauchy development is inextendible.

Proof. Let (g, A) be initial data belonging to G.. By the results of section 4 the maximal
Cauchy development of these data is inextendible towards the past since the Kretschmann
scalar is unbounded along any inextendible past-directed causal geodesic. By the results of
section 5, the maximal development is future geodesically complete and hence inextendible
towards the future. This completes the proof. ]

In fact inextendibility towards the future already follows from global existence to the
future in areal time, as has been shown in [6]. It is nevertheless good that more has been
proved about the future asymptotics since this gives more insight into what is going on. It
should also be noted that the argument using global existence in areal time is fundamentally
restricted to spacetimes with symmetry while proving geodesic completeness is a strategy
which can in principle be applied to situations without any symmetry.

Note that the fact that the above theorem deals only with initial data with constant area
radius is not a serious restriction since any solution admits a Cauchy hypersurface carrying
data of this type.

In this paper, the dynamics of solutions of the Einstein—-Maxwell equations with polarized
Gowdy symmetry has been analysed rather comprehensively. This was based on the existing
analysis of the dynamics of vacuum Gowdy spacetimes which need not be polarized. This
raises the obvious question, whether it is possible to do something similar for general solutions
of the Einstein—-Maxwell equations with Gowdy symmetry. Some aspects of this problem will
now be discussed. In the full Einstein—-Maxwell case, there are two metric coefficients P and
Q as in the vacuum case and two components w and x of the potential.

10
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In looking at the behaviour of the solutions in the past, a possible starting point is to
try to extend the results on the existence of low velocity solutions of the Gowdy equations
proved in [9] using Fuchsian methods. A more complicated system of this type, the Einstein—
Maxwell-dilaton-axion system was discussed from this point of view in [11]. Setting the
dilaton, the axion and the dilaton coupling constant in that system to zero gives rise to the
Einstein—-Maxwell system. A special case considered in [11] is in principle relevant to this
but unfortunately it is not self-consistent in the non-polarized case since one of the field
equations was neglected (cf the remarks on p 166 of [15]). Other special cases considered
in [11] may provide an avenue to a greater understanding of singularities of solutions of the
full Einstein—Maxwell-dilaton-axion system. In any case, the question of whether Fuchsian
techniques can be used to obtain solutions of the Einstein-Maxwell equations with Gowdy
symmetry depending on the full number of free functions (i.e. eight) remains open.

Global existence in the future in areal time is known and this suffices to prove the part
of strong cosmic censorship which concerns the future evolution using the arguments of [6].
On the other hand, the detailed asymptotics have not been determined. Parts of the argument
which applies to the vacuum Gowdy case have been extended to the Einstein—-Maxwell case
in [18]. These are the parts which concern the decay of an energy-like quantity analogous to
those defined in (24) and (25). However other important parts of what was done in the vacuum
case have not yet been generalized.

These remarks show that the task of extending the results on the Einstein—-Maxwell
equations with polarized Gowdy symmetry obtained in this paper to the case of solutions with
fully general Gowdy symmetry presents some interesting challenges.

Appendix A. The dominant energy condition for the Maxwell field

It is common knowledge that the Maxwell field satisfies the dominant energy condition but
it is difficult to find a concise, elementary and self-contained proof in the literature. For the
convenience of the reader one will be included here. The dominant energy condition for an
energy—momentum tensor 7 can be formulated as the condition that T,sv*w? > 0 for all
future-pointing causal vectors v and wf. Since any future-pointing causal vector can be
written as a sum of two future-pointing null vectors, it suffices to verify the condition in the
case that v* and w® are equal to future-pointing null vectors [* and n*. By possibly rescaling
[* and adding two spacelike vectors x* and y* these may be completed to a null basis where
the vectors have the following inner products: [,n® = —1,[%x, = [*yy = n%xq = n%y, =0,
X%y = y*yo = 1, x%y, = 0. The electromagnetic field can be expanded in this basis to give

Taﬂ = Al[anﬁ] + Bl[o,xﬂ] + Cl[ayﬂ] + D)C[O,yﬁ] + En[ax,g] + Gn[ay,_«;], (Al)
where the coefficients are constants. Straightforward computations give
Fay Fg"1°n" = 1(A>+ EB+ GC), F.p F** = L(D* — A>) — EB — GC (A.2)
and

1
Tpl*nf = ——(A? + D?). A3
w1 = 3 ¢ ) (A-3)
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