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Abstract

We present a formula for the five-loop anomalous dimension of N = 4 SYM twist-three
operators in the sl(2) sector. We obtain its asymptotic part from the Bethe Ansatz and
finite volume corrections from the generalized Lüscher formalism, considering scattering
processes of spin chain magnons with virtual particles that travel along the cylinder. The
complete result respects the expected large spin scaling properties and passes non-trivial
tests including reciprocity constraints. We analyze the pole structure and find agreement
with a conjectured resummation formula. In analogy with the twist-two anomalous di-
mension at four-loops wrapping effects are of order (log2 M/M2) for large values of the
spin.
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1 Introduction and discussion

Recent developments in computing finite size effects on the asymptotic spectrum of N = 4
SYM twist-two operators are very promising in order to ultimately find the complete spectral
equations of the dilatation generator.

The revealing of integrable structures on both sides of the AdS/CFT correspondence
[1] gradually led to powerful tools for computing anomalous dimension of gauge invariant
operators by means of the Bethe Ansatz [2]. The factorized two-body S-Matrix [3] that
governs scattering processes of the spin chain particles and excitations of the AdS5 × S5

string worldsheet is determined by the psu(2, 2|4) symmetry of N = 4 up to a phase factor
[4]. In order to also determine this algebraic ambiguity a crossing-like equation for the dressing
phase has been derived [5]. It allows for multiple solutions [6], one of which gets singled out
[7] by reconciliation with an explicit diagrammatic calculation of the four-loop anomalous
dimensions of twist-two operators in the large spin limit [8]. It still remains an open problem
to explicitly show the crossing invariance of the dressed asymptotic Bethe equations. For this
purpose the representations of the dressing factor in [9] might prove useful.

It was shown that these equations are asymptotic in nature, and need to be corrected
by wrapping effects [10]. An explicit calculation of the anomalous dimension of twist-two
operators from the asymptotic Bethe Ansatz at four-loops unequivocally showed that the
pole prescript by BFKL physics can not be fulfilled [11]. The Bethe Ansatz therefore does
not produce the correct result at and beyond wrapping order.

However, for exactly these operators complete results have been obtained for the first time.
For the simplest representative of twist-two operators, the Konishi-field, a field theoretical
calculation starting from the asymptotic dilatation generator [12], finite-size corrections to
the Bethe Ansatz using Lüscher formulas [13], and finally a full-fledged Feynman calculus [14]
identically determined the complete anomalous dimension.

The successful application of the Lüscher formalism relies on a generalization of the
Lüscher formulas [15] to both non-relativistic models as well as multi-particle states, which
had been conjectured in [16, 13]. With this formalism applied to the 2d worldsheet QFT of
the AdS5×S5 superstring it has been possible to compute the four-loop anomalous dimension
of twist-two operators at general values of the spin [17]. The result passed several non-trivial
tests from BFKL and reciprocity constraints [17, 18]. The leading transcendental part had
been confirmed in an impressive field theory computation [19].

For the complete spectral equations of N = 4 SYM, however, thermodynamic Bethe
Ansatz methods ought to be applied, as has been initiated for string and gauge theory in
[20, 21]. A Y-system, which is believed to yield anomalous dimensions of arbitrary local
operators of planar N = 4 SYM has been recently conjectured in [22].

The aim of this work is to continue the application of the Bethe Ansatz and the Lüscher
formalism to the next operators in reach, namely twist-three operators. The leading wrapping
contribution to the anomalous dimension of twist-three operators will appear at five-loops.
In order to compute the complete five-loop anomalous dimension of the ground state we start
from an ansatz based on the maximum transcendentality principle [23] for both the asymp-
totic and wrapping contributions. The asymptotic part can be determined from the Bethe
equations after the initial ansatz has been upgraded with further constraints from reciprocity.
To compute the wrapping contribution, we apply the generalized Lüscher formulas [17] to
operators of twist-three.

Our result passes some important consistency tests. Its leading asymptotic behavior for

2



large values of the spin reproduces the universal scaling function at five-loop order. The first
subleading correction coincides with the results of [24, 25]. Contributions from finite-size
effects start at order (log2 M/M2), as in the case of twist-two operators [18]. In contrast to
the latter, there is no BFKL equation for twist-three operators, and therefore no prediction
for the pole structure of our result. However, we analyze the behavior of the anomalous
dimension at the singular value of spin M = −2. Interestingly, the pole structure agrees
with the conjectured resummation formula of [11], once contributions from wrapping effects
are taken into account. Additionally, the wrapping correction obtained from the Lüscher
formula precicesly matches with the computation from the Y -system1 [22]. The complete
result, including the wrapping contribution, is reciprocity respecting.

The main body of the paper follows to the above outlined procedure. Some basic defi-
nitions of harmonic sums are recalled in Appendix A. Appendix B contains the analysis of
the asymptotic structure of the anomalous dimensions and their corresponding P -kernels up
to five loops. Speculations related to a pattern in the asymptotic structure of anomalous
dimensions of twist operators are also given in Appendix B.

2 Asymptotic Bethe equations

We will start our analysis with the contribution to the final result stemming from the asymp-
totic Bethe Ansatz equations. Twist-three operators are embedded in the sl(2) sub-sector of
N = 4 SYM. They can be represented by an insertion of M covariant derivatives D into the
protected half-BPS state TrZ3

Tr (Ds1Z Ds2 Z Ds3Z) + . . . , with M = s1 + s2 + s3 . (2.1)

Their anomalous dimensions can be obtained from a non-compact, length-three sl(2) spin
chain with M excitations underlying a factorized two-body scattering [3]. However, the
interaction range between scattering particles increases with orders of the coupling constant
in perturbation theory. If it exceeds the length of the spin chain and wraps around it, the
S-matrix picture [3, 4] loses its meaning, as no asymptotic region can be defined any longer.
For twist L operators this effect, delayed by superconformal invariance, starts at order g2L+4.
Nevertheless, the Bethe Ansatz does not cease to work but gives an incomplete result, which
does not incorporate these corrections [11].

It was shown that the Bethe Ansatz result for twist-two operators can be completed by
considering additional scattering effects with virtual particles [17]. It passes non-trivial tests
with BFKL [17], as well as reciprocity [18] constraints and reproduces the correct scaling
behavior at large values of the spin M [18, 7], proposing a certain confidence. We compute
these wrapping effects for twist L = 3 in section 5.

The Bethe Ansatz equations for the operators (2.1) with our choice of the coupling con-

stant g2 =
g2
YM

N

16 π2 are given by

(

x+
k

x−
k

)3

=
M
∏

j=1
j 6=k

x−
k − x+

j

x+
k − x−

j

1 − g2/x+
k x−

j

1 − g2/x−
k x+

j

exp(2iθ(uk, uj)) ,
M
∏

k=1

x+
k

x−
k

= 1 . (2.2)

1We thank Pedro Vieira for his support in the numerical cross-check.
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The spectral parameters x± are defined in terms of the rapidities u by [26]

x±(u) = x(u ± i/2) , x(u) =
u

2

(

1 +
√

1 − 4g2/u2
)

. (2.3)

The phase shift θ(uk, uj) acquired by two particles with rapidities uk, uj passing each other
is given to five-loop order by the expansion [7]

θ(uk, uj) =
(

4ζ3g
6 − 40ζ5g

8
)

(q2(uk)q3(uj) − q3(uk)q2(uj)) + O(g10) , (2.4)

where the qr(u) correspond to the conserved magnon charges [26]

qr(u) =
i

r − 1

(

1

(x+(u))r−1
−

1

(x−(u))r−1

)

. (2.5)

From the solution to (2.2) given in terms of the Bethe roots x±
k one computes the anomalous

dimension by

γABA(g) = 2g2
M
∑

k=1

q2(uk) . (2.6)

Due to the length L = 3 of the operators (2.1), wrapping effects are expected to contribute
at order g10, such that the anomalous dimension is written perturbatively as

γ(M) = g2 γ2(M) + g4 γ4(M) + g6 γ6(M) + g8 γ8(M) (2.7)

+g10 (γABA

10 (M) + γwrapping

10 (M)) + . . . ,

where we tacitly assumed that to order g8 the complete result is identical to γABA and therefore
dropped its index.

At one-loop the Bethe roots uk are given by zeros of the Wilson polynomial [11]

PM (u) = 4F3

(

−M
2 , M

2 + 1, 1
2 + iu, 1

2 − iu
1, 1, 1

∣

∣

∣

∣

1

)

. (2.8)

Closed expressions for the corrections to the Bethe roots to three-loop order have also been
obtained in [27] from the Baxter approach [28]. However, it is currently unclear if the asymp-
totic Baxter equation [28] reproduces the same result as the Bethe Ansatz at and beyond
wrapping order.

In order to obtain closed expressions for the anomalous dimension we will therefore solve
(2.2) perturbatively for fixed values of the spin M and match the coefficients in an appropriate
ansatz which assumes the maximum transcendentality principle [23]. Up to four loops, these
expressions have been derived in [11] and [29]. They are given by

γ2 = 8 S1 (2.9)

γ4 =−16 S1 S2 − 8 S3 (2.10)

γ6 = 32 S1 S2
2 + 48 S3 S2 + 16 S1 S4 + 40 S5 − 32 S2,3 + 64 S1 S3,1 + 32 S4,1 − 64 S3,1,1 (2.11)

γ8 = 8 S7 + 112 S1,6 + 240 S2,5 − 80 S3,4 − 464 S4,3 − 336 S5,2 − 80 S6,1 − 640 S1,1,5 (2.12)

−512 S1,2,4 + 384 S1,3,3 + 512 S1,4,2 − 512 S2,1,4 + 320 S2,2,3 + 640 S2,3,2 + 64 S2,4,1

+384 S3,1,3 + 704 S3,2,2 + 384 S3,3,1 + 576 S4,1,2 + 576 S4,2,1 + 384 S5,1,1 + 1280 S1,1,1,4

−256 S1,1,3,2 + 512 S1,1,4,1 − 384 S1,2,2,2 + 256 S1,2,3,1 − 384 S1,3,1,2 − 384 S1,3,2,1

−384 S1,4,1,1 − 384 S2,1,2,2 + 256 S2,1,3,1 − 384 S2,2,1,2 − 384 S2,2,2,1 − 384 S2,3,1,1

−384 S3,1,1,2 − 384 S3,1,2,1 − 384 S3,2,1,1 − 384 S4,1,1,1 − 1024 S1,1,1,3,1 − 128 S1 S3 ζ3 .
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All sums are evaluated at argument M/2 and only positive indices appear. At four loop-
order, the dressing phase of the Bethe equations starts to contribute to (2.12) with a term
proportional to ζ3.

To determine the five-loop result in the same fashion implies a tremendous computational
effort in view of the necessary precision 2. We have obtained rational values for the anomalous
dimension up to M ≈ 200, which is however too far from the requirement to fit the coefficients
of the corresponding ansatz vector of constant degree of transcendentality. In order to find
a closed form for γABA

10 in terms of nested harmonic sums further constraints to reduce the
number of coefficients are needed.

3 Parity invariance of γ(M)

The multi-loop anomalous dimension γ(M) is conjectured to obey a powerful constraint known
as generalized Gribov-Lipatov reciprocity. This constraint, arising in the QCD context, has
been presented in [31, 32] as a special (space-time symmetric) reformulation of the parton
distribution functions evolution equation, and approached in [33] from the point of view of
the large M expansion. In particular, in [33] such analysis has been generalised to anoma-
lous dimensions of operators of arbitrary twist L, and reciprocity has been dubbed parity
invariance in the sense clarified below. Reciprocity has been checked in various multi-loop
calculations of weakly coupled N = 4 gauge theory [34, 35, 36, 37, 29, 18].

The reciprocity or parity invariance condition is easily expressed in terms of the P -function
(kernel), depending on the Lorentz spin M , which is in one-to-one correspondence, at least
perturbatively, with the anomalous dimension γ(M) as follows from [31, 33, 32]

γ(M) = P
(

M + 1
2γ(M)

)

. (3.1)

The parity invariance condition is a constraint that arises in the large M expansion of P (M),
which is expected to take the following form

P (M) =
∑

ℓ≥0

aℓ(log J2)

J2 ℓ
, J2 =

M

2

(

M

2
+ 1

)

, (3.2)

where the aℓ are coupling-dependent polynomials. Eq. (3.2) implies an infinite set of con-
straints on the coefficients of the large M expansion of P (M) organized in a standard 1/M
power series. The name parity-invariance is related to the absence of terms of the form
1/J2n+1, odd under J → −J .

In the following we will use the constraint Eq. (3.2) as a guiding principle in order to
obtain the five-loop expression γABA

10 . To this aim, we need to express it as a more practical
test such that it can be applied to any proposed combination of harmonic sums. This task
can be performed with a basic result of [18], which we recall in following.

3.1 Harmonic combinations with definite parity

The notation for complementary harmonic sums Sa is recalled in Appendix A. Let us introduce
the map ωa, a ∈ N, which acts linearly on linear combinations of harmonic sums

ωa(Sb,c) = Sa,b,c −
1

2
Sa+b,c. (3.3)

2See [30] for the five-loop anomalous dimension of a different class of operators (the field strength operators
TrFL), determined as a closed function of their length L.
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We also introduce a complementary map ωa, acting in a similar way on complementary sums

ωa(Sb,c) = Sa,b,c −
1

2
Sa+b,c. (3.4)

Finally, let us introduce the combinations Ω

Ωa = Sa, (3.5)

Ωa,b = ωa (Ωb), (3.6)

and the analogous complementary combinations Ωa. It is of course possible to change the
basis from Sa to Ωa. For example, up to a degree of transcendentality three, we have

Ω1 = S1 , Ω2 = S2 , Ω1,1 = S1,1 −
S2

2
, Ω3 = S3 , Ω2,1 = S2,1 −

S3

2
,

Ω1,2 =−
1

6
π2S1 −

S3

2
+ S1,2 , Ω1,1,1 =

S3

4
−

S1,2

2
−

S2,1

2
+ S1,1,1 , (3.7)

which can be inverted in order to obtain

S2 = Ω2 , S1,1 =
Ω2

2
+ Ω1,1 , S3 = Ω3 , S2,1 =

Ω3

2
+ Ω2,1,

S1,2 =
π2Ω1

6
+

Ω3

2
+ Ω1,2 , S1,1,1 =

π2 Ω1

12
+

Ω3

4
+

Ω1,2

2
+

Ω2,1

2
+ Ω1,1,1. (3.8)

The crucial result is then given by the following theorem [18].
Theorem:
(a) The combination Ωa1,...,ad

with positive {ai} is parity-even iff

(−1)a1+···+ad = (−1)d. (3.9)

(b) If this condition is not satisfied, the expansion of Ωa1,...,ad
is parity-odd, with the (trivial)

exception of the leading constant term.
(c) The combination Ωa1,...,ad

with positive odd {ai} is parity-even.

From this theorem we deduce the following
Theorem (parity-invariance test): a specific linear combination of harmonic sums is
parity invariant iff it does not contain parity-odd terms when transformed from the Sa basis
to the Ωa basis.

To see how this test can be used let us consider an illustrative example, the two-loop
anomalous dimension. One starts with the following ansatz of transcendentality three

γ4 = a1S3 + a2 S1,2 + a3 S2,1 + a4 S1,1,1 , (3.10)

with all sums evaluated at M/2. The corresponding P4-kernel, derived by inverting formula
(3.1) and replacing the perturbative expansion (2.7), reads in a canonical basis

P4 = γ4 −
1

4
γ2γ

′
2 ≡ (a1 − 16)S3 + (a2 + 16)S1,2 + (a3 + 16)S2,1 − 16 ζ2 S1 + a4S1,1,1 , (3.11)

where we used the one-loop result (2.9). Writing (3.11) in terms of the Ω basis one finds

P4 = c1 Ω1 + c3 Ω3 + c1,2 Ω1,2 + c2,1 Ω2,1 + c1,1,1 Ω1,1,1 + const , (3.12)
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where the ci are linear combinations of the coefficients ai. The combinations Ω1, Ω3, Ω1,1,1

are all reciprocity respecting, according to the above theorem. Imposing reciprocity on P4

implies the vanishing of the coefficients of those Ω with wrong parity, namely

c1,2 = a2 + 16 +
a4

2
= 0, c2,1 = a3 + 16 +

a4

2
= 0 . (3.13)

This leads to the conditions a3 = a2 and a4 = −2(16 + a2), that are indeed satisfied by the
expression in (2.10). Thus, reciprocity has determined 2 of the 4 unknown coefficients in the
initial ansatz for the anomalous dimension 3.

4 Determination of γABA

10

The strategy to derive the asymptotic part of the anomalous dimension at n = 5 loops
incorporates a combined use of the maximum transcendentality principle, reciprocity and
Bethe equations.

The starting point is to write γABA
10 as a linear combination of harmonic sums of transcen-

dentality τ = 2n − 1 = 9. For a given τ , basic combinatorics leads to the fact that there are
2τ−1 linearly independent harmonic sums with positive indices. This means that there are in
principle 256 terms which potentially contribute to the anomalous dimension.

From the numerical solution of the asymptotic Bethe equations it is possible to obtain
a long list of rational values for γABA

10 (M) for fixed values of M . The list-length is smaller
than 256 due to rather hard computational limitations. However, these limitations can be
overcome by means of parity-invariance.

To constrain the 256 unknown coefficients via reciprocity one has to impose parity in the
sense of Eq. (3.2) on the five-loop contribution P10 to the kernel P defined in Eq. (3.1). This
contribution can be derived from the anomalous dimension by simply inverting Eq. (3.1) and
taking into account the perturbative expansion Eq. (2.7). Finally, we apply the previous
parity-invariance test and obtain a large set of linear constraints on the unknown coefficients.
The total number of constraints from Bethe equations and parity-invariance is now larger
than 256 and we find an over-determined set of linear equations, which is solvable. The final
result is given in Table 1, in which terms multiplied by ζ3 and ζ5 are directly induced from
the dressing factor. As is the case for lower-loop orders, only positive indices appear in the
participating harmonic sums. The result that we have obtained by the above stated methods
can be checked as follows:

1. Scaling function (cusp anomaly). A consistency check of the formula presented in Ta-
ble 1 is given by its leading asymptotic behavior, namely

γABA

10 (M) ∼ 32
( 887

14175
π8 +

4

3
π2 ζ2

3 + 40 ζ3 ζ5

)

log M, for M → ∞ . (4.1)

It coincides with the five-loop contribution in the weak coupling perturbative expansion
of the integral equation obtained in [7], which is believed to describe the universal
scaling function. Put differently, we confirm its universality [38, 39] for twist-three at
five loops.

3The coefficient a4 has only been kept to show the exact number of constraints coming from reciprocity. It
could have been set to zero from the beginning because at large M the term S1,1,1 ∼ log3 M is not compatible
with the universal leading logarithmic behavior (cusp anomaly).
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Asymptotic five-loop anomalous dimension of twist-three

operators

γABA

10 = 136S9 + 368S1,8 + 2832S2,7 + 4272S3,6 + 848S4,5 − 3024S5,4 − 2736S6,3 − 1168S7,2

−496S8,1 − 5376S1,1,7 − 12352S1,2,6 − 8832S1,3,5 + 1600S1,4,4 + 3968S1,5,3 − 64S1,6,2

−1344S1,7,1 − 12352S2,1,6 − 13760S2,2,5 − 2112S2,3,4 + 4288S2,4,3 − 960S2,5,2 − 5440S2,6,1

−9088S3,1,5 − 2432S3,2,4 + 5120S3,3,3 + 2688S3,4,2 − 4160S3,5,1 + 1280S4,1,4 + 5824S4,2,3

+6400S4,3,2 + 2112S4,4,1 + 5120S5,1,3 + 6208S5,2,2 + 5312S5,3,1 + 3904S6,1,2 + 3904S6,2,1

+1728S7,1,1 + 21504S1,1,1,6 + 22784S1,1,2,5 + 5632S1,1,3,4 − 1280S1,1,4,3 + 6912S1,1,5,2

+11520S1,1,6,1 + 22784S1,2,1,5 + 9088S1,2,2,4 − 1024S1,2,3,3 + 6784S1,2,4,2 + 17152S1,2,5,1

+5504S1,3,1,4 − 3456S1,3,2,3 − 1536S1,3,3,2 + 7680S1,3,4,1 − 4480S1,4,1,3 − 6272S1,4,2,2

−3584S1,4,3,1 − 3840S1,5,1,2 − 3840S1,5,2,1 + 768S1,6,1,1 + 22784S2,1,1,5 + 9088S2,1,2,4

−1024S2,1,3,3 + 6784S2,1,4,2 + 17152S2,1,5,1 + 9088S2,2,1,4 − 2688 S2,2,2,3 + 640 S2,2,3,2

+13440S2,2,4,1 − 3456S2,3,1,3 − 7040S2,3,2,2 − 768S2,3,3,1 − 4480S2,4,1,2 − 4480S2,4,2,1

+2816S2,5,1,1 + 6272S3,1,1,4 − 2944S3,1,2,3 − 1536S3,1,3,2 + 7936S3,1,4,1 − 2944S3,2,1,3

−7296S3,2,2,2 − 768S3,2,3,1 − 6656S3,3,1,2 − 6656S3,3,2,1 − 1024S3,4,1,1 − 3968S4,1,1,3

−6528S4,1,2,2 − 3584S4,1,3,1 − 6528S4,2,1,2 − 6528S4,2,2,1 − 4864S4,3,1,1 − 5376S5,1,1,2

−5376S5,1,2,1 − 5376S5,2,1,1 − 4608S6,1,1,1 − 32768S1,1,1,1,5 − 10240S1,1,1,2,4 − 3072S1,1,1,3,3

−17920S1,1,1,4,2 − 30720S1,1,1,5,1 − 10240S1,1,2,1,4 − 8704S1,1,2,3,2 − 24064S1,1,2,4,1

+1024S1,1,3,1,3 + 2560S1,1,3,2,2 − 4096S1,1,3,3,1 − 512S1,1,4,1,2 − 512S1,1,4,2,1 − 10240S1,1,5,1,1

−10240S1,2,1,1,4 − 8704S1,2,1,3,2 − 24064S1,2,1,4,1 + 3072S1,2,2,2,2 − 6656S1,2,2,3,1

+512S1,2,3,1,2 + 512S1,2,3,2,1 − 10752S1,2,4,1,1 + 1024S1,3,1,1,3 + 3072S1,3,1,2,2 − 3584S1,3,1,3,1

+3072S1,3,2,1,2 + 3072S1,3,2,2,1 − 2560S1,3,3,1,1 + 3072S1,4,1,1,2 + 3072S1,4,1,2,1 + 3072S1,4,2,1,1

+3072S1,5,1,1,1 − 10240S2,1,1,1,4 − 8704S2,1,1,3,2 − 24064S2,1,1,4,1 + 3072S2,1,2,2,2

−6656S2,1,2,3,1 + 512S2,1,3,1,2 + 512S2,1,3,2,1 − 10752S2,1,4,1,1 + 3072S2,2,1,2,2 − 6656S2,2,1,3,1

+3072S2,2,2,1,2 + 3072S2,2,2,2,1 − 5632S2,2,3,1,1 + 3072S2,3,1,1,2 + 3072S2,3,1,2,1 + 3072S2,3,2,1,1

+3072S2,4,1,1,1 + 3072S3,1,1,2,2 − 4096S3,1,1,3,1 + 3072S3,1,2,1,2 + 3072S3,1,2,2,1 − 2560S3,1,3,1,1

+3072S3,2,1,1,2 + 3072S3,2,1,2,1 + 3072S3,2,2,1,1 + 4608S3,3,1,1,1 + 3072S4,1,1,1,2 + 3072S4,1,1,2,1

+3072S4,1,2,1,1 + 3072S4,2,1,1,1 + 3072S5,1,1,1,1 + 16384S1,1,1,1,3,2 + 32768S1,1,1,1,4,1

+8192S1,1,1,2,3,1 + 4096S1,1,1,3,1,2 + 4096S1,1,1,3,2,1 + 20480S1,1,1,4,1,1 + 8192 S1,1,2,1,3,1

+12288S1,1,2,3,1,1 + 8192S1,2,1,1,3,1 + 12288S1,2,1,3,1,1 + 8192S2,1,1,1,3,1 + 12288S2,1,1,3,1,1

−16384S1,1,1,1,3,1,1 + ζ3 (896S6 − 2304S1,5 − 1792S2,4 − 768S3,3 − 1792S4,2 − 2304S5,1

+2560S1,1,4 + 512S1,2,3 + 1536S1,3,2 + 3584S1,4,1 + 512S2,1,3 + 1536S2,3,1 + 512S3,1,2

+512S3,2,1 + 2560S4,1,1 − 2048S1,1,3,1 − 2048S1,3,1,1) + 1280 ζ5 (S1,3 + S3,1 − S4)

Table 1: The result for the five-loop asymptotic dimension γABA
10

(

M
2

)

, written in the canonical
basis.
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2. Virtual scaling function. A further confirmation can be found from the evaluation of the
first finite-order correction to the asymptotic behavior (4.1). In general this quantity
is twist-dependend and thus non-universal [40]. However, it has been shown that this
dependence is only linear and an all-loop integral equation can be written [24] (see
also [41, 25]). The large M expansion of Table 1 leads to the O(1/M0) value

B
(5)
3 =

2048

945
π6ζ3 + 64ζ3

3 +
8

45
π4ζ5 −

440

3
π2ζ7 − 7448ζ9 . (4.2)

It coincides with the expression written explicitly in [25]. Further interesting obser-
vations on the other subleading terms in the asymptotic expansion of γABA

10 will be
discussed in Appendix B.

3. BFKL-like poles. An indirect indication of the correctness of the result emerges by
looking at its analytical continuation to complex values of the spin. In particular, the
structure of the expansion around M = −2 will be presented in Section 6.

4. Dressing self-consistency. The dressing induced terms in γABA
10 are separately parity

invariant. The dressing factor starts to contribute at four loops. It was observed that at
this order terms of the anomalous dimensions of twist-two and -three operators coming
from the dressing factor are reciprocity respecting separately [36, 34, 18]. The analysis
of P10 in the case of γABA

10 confirms this feature. The five-loop term proportional to
ζ3 is reciprocity respecting if combined with the corresponding four-loop ζ3-term. The
ζ5-term at five loops is reciprocity respecting separately (see formula B.16). This seems
to indicate a perturbative pattern for the reciprocity of terms that are dressing-induced.
Terms proportional to transcendental sums ζi, which newly appear at a given loop order
should automatically be reciprocity respecting. Terms proportional to transcendental
sums that are also present at lower-loop orders are invariant under (3.2) when combined
altogether.

5. Additional structural properties. All coefficients of the harmonic sums are integers,
likewise to the lower loop orders. Also, P10 turns out to be a combination of allowed
parity-even combinations of type Ω, a condition being stronger than the general parity
invariance.

5 The wrapping contribution

In this section we evaluate the leading wrapping correction to the asymptotic anomalous
dimension of twist-three operators.

The Lüscher type formula for multi-particle states was conjectured in [13] and successfully
applied to the Konishi-operator in [13] as well as twist-two operators of general spin in [17].
It consists of two parts. One describes the modification of the particle quantization condition
due to the finite volume (which will not contribute at leading order), while the second comes
from the propagation of virtual particles around the cylinder and is given by

∆E(L) = −
∞
∑

Q=1

∫ ∞

−∞

dq

2π
STra1

[

Sa2a
a1a(q, p1)Sa3a

a2a(q, p2) . . . Sa1a
aMa(q, pM )

]

e−ǫ̃a1
(q)L . (5.1)
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This formula applies to a M -particle state of identical particles of type a, whose consecutive
self-scatterings preserve the state and determine their momenta pi via the ABA equations.
The matrix Sca

ba(q, p) describes how a virtual particle of type b with momentum q scatters on
a real particle of type a with momentum p. The exponential factor can be interpreted as the
propagator of the virtual particle.

For twist-three operators the momenta of the particles are determined by the ABA equa-
tions in terms of the rapidities u by

u(p) =
1

2
cot

p

2

√

1 + 16g2 sin2 p

2
.

At one-loop the rapidities are given by roots of the Baxter-Q function PM (u) in (2.8). As
this is an even polynomial of order M , we can repeat the derivation of [17], which leads to a
result similar to the twist-two case. However, we have to take into account two differences.
The first one is that the length is equal to L = 3, which renders the exponential part to be of
the form

e−ǫ̃Q(q)L =
4Lg2L

(q2 + Q2)L

L=3
=

64g6

(q2 + Q2)3
.

Additionally, the one-loop energy of twist-three operators differs from the the twist-two one.
It is given by

M
∑

k=1

16

1 + 4u2
k

= 8S1

(

M
2

)

.

In the end, we can write the wrapping correction in a very elegant way as

∆γ = −64g10 S1

(M

2

)2
∞
∑

Q=1

∫ ∞

−∞

dq

2π

TM (q,Q)2

RM (q,Q)

64

(q2 + Q2)3
, (5.2)

where RM and TM are functions given by the same expressions that are valid in the case of
twist-two operators

RM (q,Q) = PM

(

1
2(q − i(Q − 1))

)

PM

(

1
2(q + i(Q − 1))

)

×PM

(

1
2(q + i(Q + 1))

)

PM

(

1
2(q − i(Q + 1))

)

,

TM (q,Q) =

Q−1
∑

j=0

[ 1

2j − iq − Q
−

1

2(j + 1) − iq − Q

]

PM

(

1
2(q − i(Q − 1)) + ij

)

.

In order to obtain the wrapping contribution we calculated (5.2) for all even values of M
up to M = 40. Assuming the maximal transcendentality principle, we expect the wrapping
correction to have the following structure

γwrapping(M) = S1

(

M
2

)2
(C0(M)ζ7 + C2(M)ζ5 + C4(M)ζ3 + C7(M)) , (5.3)

where the coefficients Cn(M) have a degree of transcendentality n. We used the fact that S2
1

is factored out in the Lüscher formula (5.2). Likewise to the case of the asymptotic Bethe
Ansatz we are looking for coefficients that are linear combination of harmonic sums with
positive indices. For a given degree of transcendentality n, there are 2n−1 independent sums.
Thus, in order to obtain C0, C2 and C4 it is sufficient to know γwrapping(M) to values of

10



M = 2, M = 4 and M = 16, respectively, such that they can be determined from the results
we computed. However, to unequivocally fix C7 it is necessary to know γwrapping(M) to values
of the spin M = 128 which is far from our reach. Nevertheless, we can assume, as a natural
refinement of the maximal transcendentality principle, that the coefficients of the harmonic
sums entering C7 are integers. With this assumptions a result is easily found 4. The final
result with all harmonic sums being of argument M/2 is given by

γwrapping(M) =−64 g10 S2
1

(

35ζ7 − 40S2ζ5 + (−8S4 + 16S2,2)ζ3

+2S7 − 4S2,5 − 2S3,4 − 4S4,3 − 2S6,1 + 8S2,2,3 + 4S3,3,1

)

. (5.4)

For fixed values of M this result matches exactly numerical evaluations of the proposed Y -
system [22].

Wrapping corrections, by their nature, should not modify the leading asymptotic behavior
(4.1). The result (5.4) confirms this expectation, since the factor S2

1 ∼ log2 M multiplies a
linear combination of harmonic sums, which have a leading asymptotic behavior ∼ 1/M2.
The first wrapping contribution to the asymptotic behavior therefore only enters at order
(log2 M/M2) (see Appendix B, formula (B.6)),

γwrapping(M) ∼ −
(

768ζ3 −
16π4

15

) log2 M

M2
, for M → ∞ . (5.5)

Thus, for large values of the spin wrapping corrections are of the same order as in the case
of twist-two operators [18]. Further similarities with the asymptotic expansion of twist-two
operators are discussed in Appendix B.

In the previous section we stated that the asymptotic part given in Table 1 is reciprocity
invariant. Hence, for the complete anomalous dimension to be reciprocity invariant, (5.4) has
to satisfy this property separately. Writing (5.4) in terms of Ω and Ω

γwrapping(M) = −64 g10 Ω2
1

(

35 ζ7 + 4 Ω3,3,1 + 8 Ω2,2,3 + 24 ζ3 Ω2,2 − Ω7

)

, (5.6)

one checks that this is indeed true, since according to the theorem in section 3.1 the appearing
structures are all parity-invariant.

We conclude this section giving the prediction that our conjecture given in Table 1 and
(5.4), together with the formulas in (2.9)-(2.12), give for the five-loop anomalous dimension
of the simplest twist-three operator with even spin (M = 2)

γ(2) = 8 g2−24 g4+136 g6−(920+128 ζ3) g8+8(833+144ζ3+480ζ5−280ζ7) g10+O(g12). (5.7)

6 Analytic continuation

As already mentioned, no direct checks of the consistency of the multi-loop anomalous di-
mension (2.7) from its pole structure are possible.

4 As is usual in such kind of conjectures, there is a powerful numerical test that can be applied to any
guesswork. Typically, one is able to compute spin dependent expressions like C7(M) up to a reasonable
maximum value of M in exact (rational) form. On the other hand, numerical values can be obtained with a
very high number of digits for quite larger values of M . Thus, given a conjectured expression obtained from
data up to Mmax one can always test it beyond that limit with a precision of several hundreds of digits. These
kinds of tests are always passed by the expressions we derive in this paper.
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However, it is worth to analyze the behavior of the anomalous dimension to four-loops
(2.9)-(2.12) and the five-loop part given in Table 1 and (5.4) at the singularity nearest to the
origin, M = −2. Thus, we need the small ω expansion of general nested harmonic sums of
the form

Sa1,...,ad
(−1 + ω), ai ∈ N. (6.1)

The analytic continuation we need can be obtained by observing that from the definition of
harmonic sums it follows that

Sa,b(−1 + ω) = Sa,b(ω) −
1

ωa
Sb(ω). (6.2)

This simple identity allows us to proceed by trivially expanding the r.h.s around ω = 0. This
is a straightforward task, once one makes use of the general formula for the derivatives of
nested harmonic sums [18], and takes into account that Sa(0) = 0.

The expansion of the n-th loop anomalous dimension γn has the general NNLO form

γn = an ω1−2 n + bn ζ2 ω3−2 n + cn ζ3 ω4−2 n + · · · , an, bn, cn ∈ Q. (6.3)

Up to four loops, the explicit formulas for the two highest terms (NLO) of the analytic
continuation are given in [11]5. We recall them here for convenience, also adding the NNLO
contribution

γ2 =−
8

ω
+ 8 ζ2ω − 8 ζ3ω

2 + . . . , γ4 = −
8

ω3
+

16 ζ2

ω
+ 16 ζ3 + . . . , (6.4)

γ6 =−
8

ω5
+

48 ζ2

ω3
+

48 ζ3

ω2
+ . . . , γ8 = −

8

ω7
+

80 ζ2

ω5
+

80 ζ3

ω4
+ . . . . (6.5)

In [11], an all-loop resummation at NLO was proposed6 and conjectured to be valid for the
asymptotic γABA part.

At five loops, we have found for the contributions of the γABA and γwrapping parts, respec-
tively, the expressions

γABA

10 = −
136

ω9
+

496ζ2

ω7
−

784ζ3

ω6
+ . . . , γwrapping

10 =
128

ω9
−

384ζ2

ω7
−

128ζ3

ω6
+ . . . . (6.6)

The analytical continuation of the complete five-loop anomalous dimension is thus given by

γ10 = −
8

ω9
+

112ζ2

ω7
−

912ζ3

ω6
+ · · · . (6.7)

Interestingly enough, only the above formula for the complete anomalous dimension
matches the proposed resummation exactly. The latter can therefore be rewritten as

γNLO = −8
g2

ω

(

1

1 − t
− ζ2

1 + 3 t2

(1 − t)2
ω2

)

, t =
g2

ω2
, , (6.8)

with the equality valid in a perturbative sense. It is obviously tempting to extend such a
conjecture to NNLO, trying to resum the poles that appear in (6.3) with ζ3 as a coefficient.
However, the five data-points available (one for each loop) hardly allow for a genuine resum-
mation. In fact, the NNLO term in the above expression is likely to contain enough more

5See Eq. (5.12) there.
6See Eq. (5.14) there.

12



terms to be at least in a one-to-one correspondence with the available constraints. Neverthe-
less, we find intriguing that the following simple parameterization can be given, valid at five
loops,

γNNLO = −8
g2

ω

(

1

1 − t
− ζ2

1 + 3 t2

(1 − t)2
ω2 + ζ3

1 − 5 t + 3 t2 + t3 + 128 t4

(1 − t)3
ω3

)

. (6.9)
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Appendix A: Harmonic sums

In this Appendix we recall some useful formulas for harmonic sums with positive indices. The
generalization to the case of arbitrary sign for the indices is treated in many references, for
example [42] (see also Appendix A of [18]).

The basic definition of nested harmonic sums Sa1,...,an is recursive

Sa(N) =

N
∑

n=1

1

na
, Sa,b(N) =

N
∑

n=1

1

na
Sb(n), (A.1)

Given a particular sum Sa = Sa1,...,an we define

depth (Sa) = n, (A.2)

transcendentality(Sa) = a ≡ a1 + · · · + an. (A.3)

For a product of S sums, we define transcendentality to be the sum of the transcendentalities
of the factors.

Complementary harmonic sums are defined recursively by

Sa = Sa, (A.4)

Sa = Sa −
ℓ−1
∑

k=1

Sa1,...,ak
Sak+1,...,aℓ

(∞), (A.5)

This definition is valid when the rightmost index of a is not 1. Otherwise, the above recursive
definition leads to a polynomial in the formal quantity S1(∞). In this case our definition of
Sa prescribes to set S1(∞) → 0 in the end.
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Appendix B: Analysis of the asymptotic structure of γ and P

Here we analyze the first few orders of the large M expansion of the twist-three anomalous
dimension up to five-loops and its corresponding kernel P 7.

The expansions of (2.9)-(2.12) to O(1/m−3) are given by

γ2 = 8 log m̄ +
4

m
−

2

3 m2
+ O

( 1

m4

)

, (B.1)

γ4 =−
8

3
π2 log m̄ − 8ζ3 +

1

m

[

16 log m̄ −
4π2

3

]

−
1

m2

[

8 log m̄ −
2π2

9
− 12

]

+
1

m3

[8

3
log m̄ −

28

3

]

+ O
( 1

m4

)

, (B.2)

γ6 =
88

45
π4 log m̄ − 8ζ5 +

8

3
π2ζ3 −

1

m

[32

3
π2 log m̄ + 16ζ3 −

44π4

45

]

−
1

m2

[

16 log2 m̄ −
(

32 +
16π2

3

)

log m̄ − 8 +
20π2

3
+

22π4

135
− 8ζ3

]

+
1

m3

[

16 log2 m̄ −
(

64 +
16π2

9

)

log m̄ + 16 +
44π2

9
−

8ζ3

3

]

+ O
( 1

m4

)

, (B.3)

γ8 =−
(584π6

315
+ 64ζ2

3

)

log m̄ −
32

15
π4ζ3 +

8

3
π2ζ5 + 440ζ7 +

1

m

[48π4

5
log m̄ −

292π6

315
+

32

3
π2ζ3

−32ζ2
3 − 16ζ5

]

+
1

m2

[

16π2 log2 m̄ −
(

64 + 32π2 +
24π4

5
− 64ζ3

)

log m̄ − 128 −
8π2

3

+
88π4

15
+

146π6

945
− 32ζ3 −

16

3
π2ζ3 +

16ζ2
3

3
+ 8ζ5

]

+
1

m3

[64

3
log3 m̄ − (96 + 16π2) log2 m̄

+
(

96 +
176π2

3
+

8π4

5
− 64ζ3

)

log m̄ + 112 −
56π2

3
−

64π4

15
+ 80ζ3 +

16

9
π2ζ3 −

8ζ5

3

]

+O
( 1

m4

)

, (B.4)

where m = M
2 and m̄ = m exp γE .

7In the case of higher twist L > 2, anomalous dimensions occupy a band [43]. In this paper we have
considered the minimal anomalous dimension, see [44] for an asymptotic study of the full spectrum up to three
loops.

14



At five loops, the large M expansion of Table 1 and (5.4) leads to

γABA

10 =
(28384π8

14175
+

128

3
π2ζ2

3 + 1280ζ3ζ5

)

log m̄ +
2048

945
π6ζ3 + 64ζ3

3 +
8

45
π4ζ5 −

440

3
π2ζ7

− 7448ζ9 −
1

m

[(9472π6

945
+ 256ζ2

3

)

log m̄ −
14192π8

14175
+

448

45
π4ζ3 −

64

3
π2ζ2

3 −
32

3
π2ζ5

− 640ζ3ζ5 − 880ζ7

]

+
1

m2

[(

256 −
272π4

15
− 128ζ3

)

log2 m̄ +
(

1280 +
128π2

3

+
496π4

15
+

4736π6

945
− 128ζ3 −

160

3
π2ζ3 + 128ζ2

3 − 288ζ5

)

log m̄ + 1920 +
128π2

3

+
64π4

45
−

128π6

21
−

7096π8

42525
+ 64ζ3 + 32π2ζ3 +

224

45
π4ζ3 − 208ζ2

3 −
32

9
π2ζ2

3 − 32ζ5

−
16

3
π2ζ5 −

320

3
ζ3ζ5 − 440ζ7

]

−
1

m3

[256π2

9
log3 m̄ −

(

128π2

+
272π4

15
− 64ζ3

)

log2 m̄ +
(

768 +
320π2

3
+

2752π4

45
+

4736π6

2835
− 320ζ3 −

160

3
π2ζ3

+
128ζ2

3

3
− 288ζ5

)

log m̄ + 1536 + 32π2 −
904π4

45
−

1792π6

405
+ 160ζ3

+
208

3
π2ζ3 +

224

135
π4ζ3 −

496ζ2
3

3
+ 96ζ5 −

16

9
π2ζ5 −

440ζ7

3

]

+ O
( 1

m4

)

, (B.5)

γwrapping =−
(

768ζ3 −
16π4

15

) log2 m̄

m2
+

(

768ζ3 −
16π4

15

)

(log2 m̄ − log m̄)
1

m3
+ O

( 1

m4

)

(B.6)

As expected in the case of minimal anomalous dimension for operators of twist L ≤ 3,
logarithmic enhancements in the asymptotic expansions of γ are always positive in power 8.

Notice that, when expressed in terms of the variable M = 2m, the maximal logarithmic
terms logp m/mp in the expansions up to four loops, formulas (B.1)-(B.4), are compatible
with a resummation of type

γ(M) = f(g) log
(

M + 1
2f(g) log M + . . .

)

+ . . . . (B.7)

According to this, their coefficients are simply proportional to fm+1

γ(M) ∼ f log M +
f2

2

log M

M
−

f3

8

log2 M

M2
+ ... (B.8)

where f is the universal scaling function, whose weak coupling expansion to five-loop order
can be found in [7]. At five loops, the pattern (B.8) is broken by the term log2 M/M2 in the
expansion (B.5) above 9. Interestingly, it is precisely at this order in the large M expansion
that wrapping corrections start to contribute. Explicitly, while on the basis of (B.8) one

8Terms with negative powers of the logarithm appear for twist L ≤ 3, but for non-minimal anomalous
dimensions [45]. For twist L > 3 terms ∼ 1

logp M
are present both for large L and M [46] and for finite twist,

see a similar discussion in [47] and reference therein. For a general method to derive higher order terms in the
1/M expansion at fixed L see [48].

9Further maximal logarithmic terms as log3 M/M3, log4 M/M4 continue to obey the rule as dictated by
further orders in (B.8). Coefficients of terms logp M/Mp with p > 4 are absent in the expansion, as checked

up to 1/M25. This is again consistent with (B.8), being such coefficients of the form f6

160
,− f7

384
, . . . , they would

contribute starting at 6 loops.
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would expect at five loops a term of type

(c22)5
log2 M

M2
with (c22)naive

5 =
(

− f3

8

)

5
= −1024

15 π4 = −6144 ζ4 , (B.9)

reexpressing (B.5) and (B.6) in terms of M one finds

(c22)ABA
5 = 1024 − 512ζ3 − 6528ζ4 and (c22)wrapping

5 = −3072 ζ3 + 384 ζ4 . (B.10)

The sum of these terms does clearly not reproduce (B.9). This is analogous to the case of
twist two operators [18] 10.

It is interesting to notice that the structure, lost at higher orders in 1/m, of the first
terms in the expansion for γwrapping is also present in its twist-two analogue. The appearance
of an overall coefficient multiplying the 1/m2 and 1/m3 terms was already noticed in formula
(C.5) of [18]. Another analogy between the leading asymptotic behavior of twist-2 and twist-3
wrapping contributions is their negative sign and their common pattern ∼ cn ζn + cn+1 ζn+1,
where n coincides with the twist.

Concerning the P -kernel, the logarithmic structure to four loops is remarkably simpler
than the one of the corresponding anomalous dimension, as it is only linear in log M [36].
In particular, there are no maximally enhanced terms of the form (log M/M)k. As discussed
in [33, 32], this feature of P translates into the chance of a resummation of type (B.7). This
asymptotic structure changes at five loops.

The P function, derived by inverting formula (3.1), reads in terms of m = M
2 (∂ ≡ ∂m)

to five-loops

P(m) =

∞
∑

k=1

1

k!

(

−1
4∂

)k−1
[γ(m)]k = γ−

1

8
(γ2)′ +

1

96
(γ3)′′−

1

1536
(γ4)′′′ +

1

30720
(γ5)′′′′ + · · · .

Replacing γ by the perturbative expansion (2.7) we can formally write at five loops

P10 = γ10 −
1

4
(γ4γ6 + γ2γ8)′ +

1

32
(γ2γ

2
4 + γ2

2γ6)′′ −
1

384
(γ3

2γ4)′′′ +
1

30720
(γ5

2)′′′′ . (B.11)

Expanded at large M , including the wrapping contribution, this becomes

P10 =
(28384π8

14175
+

128

3
π2ζ2

3 + 1280ζ3ζ5

)

log m̄ +
2048

945
π6ζ3 + 64ζ3

3 +
8

45
π4ζ5 −

440

3
π2ζ7

− 7448ζ9 +
1

m

[14192π8

14175
+

64

3
π2ζ2

3 + 640ζ3ζ5

]

+
1

m2

[(

256 − 896ζ3

)

log2 m̄ +

+
(

1280 +
128π2

3
−

16π4

15
− 128ζ3 −

64

3
π2ζ3 − 320ζ5

)

log m̄ + 1920 +
128π2

3
+

64π4

45
+

−
1024π6

945
−

7096π8

42525
+ 64ζ3 − 64ζ2

3 −
32

9
π2ζ2

3 −
320

3
ζ3ζ5

]

−
1

m3

[

(256 − 896ζ3) log2 m̄ +
(

1024 +
128π2

3
−

16π4

15
+ 768ζ3 −

64

3
π2ζ3 − 320ζ5

)

log m̄

+ 1280 +
64π2

3
+

88π4

45
−

1024π6

945
+ 128ζ3 +

32

3
π2ζ3 − 64ζ2

3 + 160ζ5

]

+ O
( 1

m4

)

. (B.12)

10One difference is however that the degree of transcendentality of the asymptotic and wrapping contribu-
tions, that differs in (B.10), is the same in the twist-two case.
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The “simplicity” feature is lost, because at order 1/m2 a term log2 m/m2 appears, which is
responsible for the above formula (B.10).

We recall that the consequences (B.7) and (B.8) of the simplicity of the P function and
the knowledge of f to presumably all loops [7] allow in principle an all-loop prediction for
such maximal logarithmic terms, whose coefficients should be simply proportional to fm+1.
Indeed, such inheritance has been checked at strong coupling in [47] up to one-loop in the
semiclassical sigma model expansion, as well as in [49] at the classical level. An independent
strong coupling confirmation of (B.7) for twist-two operators has recently been given in [24].
To clarify if and how the difference in the simplicity of the P at weak and strong coupling
works, further orders in the semiclassical sigma model expansion would be needed.

We conclude the appendix by reporting the separate contributions to P10 coming from
the dressing factor, which obey the property described in point 4 of Section 4. They read

P
(ζ3)
10 ≡ γ

(ζ3)
10 −

1

4
(γ2 γ

(ζ3)
8 )′ = 896S6 − 2304S1,5 − 1792S2,4 − 768S3,3 − 1792S4,2 − 2304S5,1

+2560S1,1,4 + 512S1,2,3 + 1536S1,3,2 + 3584S1,4,1 + 512S2,1,3 + 1536S2,3,1 + 512S3,1,2

+512S3,2,1 + 2560S4,1,1 − 2048S1,1,3,1 − 2048S1,3,1,1 + 512ζ2S1S3 − 512S1S2S3

+768ζ4S
2
1 − 768S2

1S4 , (B.13)

P
(ζ5)
10 ≡ γ

(ζ5)
10 = 1280 S1 S3 . (B.14)

In the first line we included the dressing-induced contribution at four loops, which is propor-
tional to ζ3. These contributions can be expressed in terms of parity invariant combinations
(see Theorem (c) in Section 3.1) as

P
(ζ3)
10 = 256(8 Ω1 Ω1,1,3 − 4Ω2

1 Ω1,3 + Ω3,3 + S1 Ω5 + 2ζ2Ω1 Ω3 + 3ζ4 Ω2
1) , (B.15)

P
(ζ5)
10 = 1280 Ω1 Ω3. (B.16)
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