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Abstract

A gauged version of Berkovits twistor string theory featuring the particle content of N = 8

supergravity was suggested by Abou-Zeid, Hull and Mason. The equations of motion for

a particular multiplet in the modified theory are examined on the level of basic twistor

fields and thereby shown to imply the vanishing of the negative helicity graviton on-shell.

Additionally, the restrictions emerging from the equation of motion for the new gauge field B̄

reveal the chiral nature of interactions in theories constructed in this manner. Moreover, a

particular amplitude in Berkovits open string theory is shown to be in agreement with the

corresponding result in Einstein gravity.
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1 Introduction

In search of a string theory description for gauge theories Witten proposed a topological

B-model on supertwistor space [1]. The target space of this string theory is related to four

dimensional spacetime by Penrose’s twistor construction [2]. In this context, open string

states can be identified with gauge fields in spacetime and closed strings correspond to

conformal supergravity. The theory describes a duality between the perturbative expansion

of N = 4 super Yang-Mills (SYM) and the D-instanton expansion of string theory. As a

consequence, amplitudes localize on holomorphically embedded algebraic curves in twistor

space.

An alternative string theory in twistor space was formulated by Berkovits [3] shortly

after, in which both gauge theory and conformal supergravity states come from open string

vertex operators. Amplitudes in spacetime follow from usual string correlators, which again

localize naturally on algebraic curves in twistor space. The closed string sector of the theory

remains unexplored.

Tree amplitudes with external conformal supergravity states have been calculated em-

ploying twistor string theory [4, 5]. For those the results can not be compared with any field

theoretical calculation: conformal supergravity [6, 7] is a higher derivative and nonunitary

theory, whose properties are not accessible employing the common Feynman formalism.

So the twistor string formalism is presently the only way to approach calculations in that

kind of theory, although the interpretation of S-matrix elements in a nonunitary theory is

unclear.

With the objective of realizing a description of Einstein gravity (or supersymmetric

extensions thereof), Abou-Zeid, Hull and Mason (AHM) suggested a new family of twistor

strings in [8]. In order to do so, it is necessary to reduce the conformal symmetry to

Poincaré symmetry. This can be achieved by fixing the twistor analogue of the light cone

at infinity, which has to be added in order to compactify Minkowski spacetime. In twistor

space it is represented by the infinity twistor.

In the proposal of AHM, the Berkovits open twistor string theory is modified by in-

troducing additional worldsheet gauge fields, which are coupled to currents preserving the

infinity twistor. Among others, one of the modified theories was expected to describe N = 8

supergravity, which was supported by the computation of a three-point graviton correla-

tor. However, in [9] Nair showed the conjugated amplitude to vanish, thus questioning the

original interpretation.

The aim of the article is to further investigate the properties of the theory mentioned

above. Therefore, we examine the equations of motion and the gauge invariances of the

negative helicity graviton multiplet by translating them into Minkowski spacetime. We

point out that the graviton multiplet contains no on-shell degrees of freedom. Furthermore,

the equation of motion for the additional gauge field changes the localization properties of

the original theory: for amplitudes localizing in higher instanton sectors the moduli space of
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algebraic curves is now reduced, which suggests the vanishing of these correlators. From the

restriced set of algebraic curves it follows that the amplitudes can only depend nontrivially

on one type of spinor momenta, rendering the theory to be chiral.

Finally, we show the equality of a certain three-point conformal supergravity amplitude

with the known Einstein supergravity result.

2 Twistor String Theory

Twistor string theory, as proposed by Berkovits in [3], is a theory of maps from the

worldsheet Σ onto a supertwistor space with coordinates ZI = (ωA, πA′ , ψa), Z̄I . Following

the notation of [10], we will work with an Euclidean signature worldsheet, which implies a

complex target space CP 3|4 such that Z is the complex conjugate of Z̄ 1. The worldsheet

action is

S =

∫

d2z
(

YI ∂̄Z
I + ȲI∂Z̄

I + ĀJ +AJ̄
)

+ SC , (2.1)

where Z and Z̄ have conformal dimensions (0, 0), and Y , Ȳ are their conjugate variables

with conformal dimensions (1, 0) and (0, 1) respectively. Coupling to currents

J = YIZ
I , J̄ = ȲI Z̄

I , (2.2)

the worldsheet gauge fields A and Ā ensure that the theory is defined on projective twistor

space. Consequently, the action (2.1) exhibits a local GL(1,C)-symmetry:

ZI → gZI , YI → g−1YI , Z̄I → ḡZ̄I , ȲI → ḡ−1ȲI , (2.3)

Ā→ Ā− g−1∂̄g, A→ A− ḡ−1∂ḡ. (2.4)

The last part of the action, SC , denotes a conformal field theory with central charge c = 28,

which is assumed to include a current algebra of some gauge group G. This additional

system is required to cancel the conformal anomaly of the worldsheet theory.

The Berkovits open string theory is further determined by a gauge dependent boundary

condition, restricting the open string to live on a subspace RP 3|4, with isometry group

SL(4|4,R) instead of SL(4|4,C). Therefore, open string operators can be expressed in

terms of Z, Y and a set of variables originating from SC exclusively. Additionally, the scaling

symmetry group is broken into GL(1,R) by the boundary condition. As a consequence of

the target space being RP 3|4, the open string theory corresponds to a spacetime theory

defined in Klein (split) signature (++−−). We will assume in the following that amplitudes

calculated therein can be analytically continued to Lorentzian signature.

The gauge dependence of the boundary condition results in different solutions for Z

in each instanton sector d of the GL(1,R)-gauge field on the worldsheet. For the disk

worldsheet, solutions are

Z(z) =
d
∑

m=0

Z−mz
m. (2.5)

1We employ a twistor corresponence which results in anti-chiral superspace, as in [1, 3, 8]. This fixes the

infinity twistor up to a scale factor, which is chosen to be unity.
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The above equation describes an algebraic curve of degree d in twistor space for Z(z) = 0.

Conseqences thereof for the evaluation of open string correlators can be understood in the

path integral approach [9]. After contracting the nonzero modes of Z and Y , one is left with

integrations over the zero modes of Z, while Y does not exhibit zero modes. Since Z(z)

can be interpreted as algebraic curves, integration over the coefficents Z−m corresponds to

the integration over the moduli space of algebraic curves of degree d. Thus, amplitudes

in open twistor string theory localize naturally on algebraic curves of degree d in twistor

space, which is in accordance with Witten’s conjecture [1].

In the case of tree-level amplitudes, the degree of the curve necessary to yield a nonzero

result is determined by the particles involved in the scattering process. This can be under-

stood by counting the number of fermionic zero modes in the vertex operators, which has

to match the number of fermionic integrations.

Generators for the Virasoro and GL(1,R)-symmetry on the boundary are

T = YI∂Z
I + TC , J = YIZ

I , (2.6)

where TC is the stress tensor for the current algebra.

Vertex operators representing physical states need to be primary fields with respect to

the generators (2.6). The simplest form will represent SYM-states and can be constructed

combining the currents jr from SC with any field φ(Z) having zero conformal dimension

and being invariant under GL(1,R):

Vφ = jrφ
r(Z) r = 1, . . . ,dimG . (2.7)

Conformal supergravity states will be represented in twistor string theory by operators

Vf = YIf
I(Z) and Vg = gI(Z)∂ZI , (2.8)

where f and g have conformal dimension zero. In order for Vf and Vg to be neutral under

GL(1,R)-scalings as well, f and g have to carry charge 1 and −1 to compensate for the

contributions from Y and ∂Z respectively. Furthermore, in order to be primary with respect

to the Virasoro and GL(1,R)-generators, the following physicality conditions have to be

satisfied:

∂If
I = 0, ZIgI = 0. (2.9)

In addition to the above constraints, f I and gI exhibit the gauge invariances2 [3]

δf I = ZI  L and δ1gI = ∂Iχ . (2.10)

The particle spectrum represented by a twistor string vertex operator can be determined

employing the Penrose transformation, which states that a function with GL(1,R)-weight

n describes a massless particle of helicity 1 + n
2 in spacetime. Taking for example the

2The index 1 on the variation of g is introduced here for later notational convenience.
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vertex function φr(Z) into account, it is neutral under GL(1,R)-scalings (n = 0) and thus

describes a particle of helicity 1. The wavefunction in supertwistor space can be expanded

into its fermionic components resulting in the N = 4 multiplet

φr : ((1, 1), (1
2 , 4̄), (0, 6), (−1

2 , 4), (1, 1)). (2.11)

The bold number states the SU(4)R representation, which in turn is determined by the

requirement of φr transforming as a singlet under SU(4)R. We denote the dependence of

φr on the parameters ψa by a fermionic wavefunction

uφr(kψ) = φr
0 + kφr

1aψ
a + k2

2 φ
r
2abψ

aψb + k3

3! φ
r
3abcψ

aψbψc + k4

4! φ
r
4abcdψ

aψbψcψd. (2.12)

Here, k is a factor of GL(1,R)-weight −1 which keeps φ1a . . . φ4abcd weightless3. A con-

sistent choice for the complete vertex function resulting in a plane wave after transforming

to spacetime reads

φr(Z) =

∫

dk

k

2
∏

A′=1

δ(kπA′

− pA′

) exp(ikωApA)u(kψ), (2.13)

where u(kψ) is given by (2.12). We will use u(kψ) to shorten the notation for multiplets in

wavefunctions below.

As already mentioned, vertex operators of type Vf and Vg turn out to represent the

spectrum of linearized conformal supergravity as initially explored by Berkovits and Wit-

ten in [5]. Without taking the index I into account, f I has GL(1,R)-weight 1 and thus

corresponds to a particle of helicity 3
2 . The SL(2,C)-indices alter the helicity by either

adding or subtracting 1
2 . Therefore, one is left with a helicity 2 and a helicity 1 state from

each of the bosonic parts A and A′. The helicity 1 functions are removed by virtue of (2.9)

and (2.10), leaving fA and fA′ to serve as highest helicity states for two positive helicity

N = 4 graviton multiplets. From the fermionic part fa one obtains in addition four N = 4

multiplets with leading helicity 3
2 . A similar analysis shows the vertex operators of type Vg

to describe the helicity conjugated part to the spectrum obtained from Vf .

A complete set of vertex operators satisfying all constraints was found by Dolan and

Ihry in [4]. Considering the sector originating from vertex operators of type Vf first, there

are three consistent choices:

• Vfp
(z) = fAYA yields one graviton multiplet, ((2, 1), (3

2 , 4̄), (1, 6), (1
2 , 4), (0, 1)) of

positive helicity, where the vertex function fA is

fA =

∫

dk

k2
pA

2
∏

B′=1

δ(kπB′

− pB′

) exp(ikωDpD)u(kψ). (2.14)

3In the presence of an appropriate δ-function ensuring the proportionality of pA′

and πA′

, a possible

choice of k is k =
pA

′

α
A′

πB′
α

B′

, where αB′

is a reference spinor satisfying α · π 6= 0. Performing the k-integration

in one of the vertex functions given below and thus removing one of the δ-functions will result in the form

of vertex functions given in [5].
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• Vfc
(z) = fA′Y A′

+ f̃AYA delivers a second graviton multiplet of positive helicity as

above, where

f̃A = −isAs̄A′

∫

dk

k3

∂

∂πA′

2
∏

B′=1

δ(kπB′

− pB′

) exp(ikωDpD)u(kψ), (2.15)

and

fA′ = s̄A′

∫

dk

k2

2
∏

B′=1

δ(kπB′

− pB′

) exp(ikωDpD)u(kψ). (2.16)

Here spinors sA and s̄A′ are chosen to satisfy pAsA = 1 and pA′ s̄A′

= 1.

• Vff
(z) = fmYm + f̂AYA finally describes a gravitino multiplet of positive helicity

transforming in the 4 of SU(4)R: ((3
2 , 4), (1, 15⊕1), (1

2 , 20⊕4̄), (0, 10⊕6), (−1
2 , 4)).

Since explicit expressions of fm and f̂A will not be used, we refer the reader to [4].

Switching to vertex operators of type Vg, one finds the following three functions to satisfy

all constraints:

• Vgp(z) = gA′

∂πA′ corresponds to a negative helicity graviton multiplet, ((0, 1), (−1
2 , 4̄),

(−1, 6), (−3
2 , 4), (−2, 1)), where the vertex function gA′

reads

gA′

=

∫

dk k πA′

2
∏

B′=1

δ(kπB′

− pB′

) exp(ikωDpD)u(kψ). (2.17)

• Vgc(z) = gA∂ω
A + g̃A′

∂πA′ delivers a second graviton multiplet of the above type,

where

gA = isA

∫

dk
2
∏

B′=1

δ(kπB′

− pB′

) exp(ikωDpD)u(kψ), (2.18)

and

g̃A′

= −is̄A′

sAω
A

∫

dk k

2
∏

B′=1

δ(kπB′

− pB′

) exp(ikωDpD)u(kψ). (2.19)

• The multiplet containing gravitini of negative helicity ((1
2 , 4̄), (0, 10⊕ 6), (−1

2 , 20 ⊕

4), (−1, 15 ⊕ 1), (−3
2 , 4̄)) is given by Vgf

(z) = gm∂ψ
m + ĝA′

∂πA′ . Again, explicit

expressions for gm and ĝA′

will not be needed and can be found in Dolan and Ihry

[4].

However, states represented by Vfp
and Vfc

(and similarly Vgp and Vgc) are not independent

particles, but comprise a so called dipole ghost [6]. On the field theory side of conformal

gravity, the fourth order equation of motion 2
2φ = 0 has the following general solution

φ(x) =

∫

d4k (a(k) exp(ik · x) + b(k)A · x exp(ik · x)) + c.c., (2.20)
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where A · k 6= 0 and c.c. denotes the complex conjugated expression. The part containing

exp(ikx) will be called a plane wave φp, while a solution proportional to A · x exp(ikx) will

be denoted as conformal wave φc. Under infinitesimal translations, the parts of (2.20) do

not transform independently

φp → φp

φc → φc + φp, (2.21)

but constitute a doublet.

The same effect carries over into twistor space. Applying the twistor version of a

spacetime translation to Vfp
results in a shifted plane wave solution, while the action on Vfc

is twofold. Besides of the expected shifted particle one additionally obtains a contribution

proportional to a plane wave:

Vfp
→ Vfp

Vfc
→ Vfc

+ Vfp
. (2.22)

Performing the above consideration for vertex operators of type Vg, one can identify Vfp

and Vgp with a plane wave and Vfc
and Vgc with the conformal wave part of (2.20) by

comparison of their properties under translations.

The preceeding analysis suggests that the degrees of freedom corresponding to the plane

wave part reside in fA and gA′ , while the functions fA′ and gA contain the degrees of

freedom of the conformal wave part of the particles. In section 3.2 it will be shown that the

degrees of freedom can not be seperated into two parts of the bosonic twistor. While the

decomposition of the bosonic index into SL(2C)×SL(2,C) is natural in twistor space, the

components A and A′ mix in spacetime as shown in [2]. In particular, the two bosonic parts

of the wavefunction are coupled by the equation of motion in spacetime (see eq. (3.18)).

Nevertheless, the terms fA′Y A′

and gA∂ZA are closely related to the conformal wave part

of the particle, because of their behaviour under translations as shown in [5].

3 New twistor string theories

3.1 Additional worldsheet symmetries

In the Berkovits open string theory the GL(1)-structure of projective twistor space has

been incorporated into the action (2.1) by employing gauge fields A and Ā without kinetic

terms, thus taking the role of Lagrange multipliers. In the same manner new gauge fields

corresponding to conserved currents have been suggested by AHM in order to preserve the

infinity twistor.

While AHM introduce a general gauge mechanism which is applicable in a wide range

of situations, we will mainly focus on the case which leads to the N = 8 supergravity

proposition. The derivation of constraints will be restricted to holomorphic quantities, the
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antiholomorphic part works analogously and is fixed by boundary conditions in the open

string case we are concerned with.

Assuming the target space of the open string theory (2.1) to be equipped with a one-

form kI , the corresponding bosonic current K = kI(Z)∂ZI can be coupled to a gauge field

B̄ to result in the action:

S =

∫

d2z
(

YI ∂̄Z
I + ĀJ + B̄K

)

+ SC + barred part. (3.1)

In order for K to be well defined on the target twistor space RP 3|4, its interior product

with the Euler operator Υ = ZI ∂
∂ZI

has to vanish, which implies

ZIkI = 0. (3.2)

The above condition fixes kI to have GL(1,R)-charge −1 and therefore K has homogeneity

degree 0. In order to guarantee vanishing of the GL(1,R)-anomaly, one has to require K to

have conformal weight 1, which determines kI to be a worldsheet scalar. As a consequence,

all commutators of currents J and K vanish so that J and K generate an abelian Kac-

Moody algebra with central charge zero. Together with the cancellation between bosons

and fermions in the Y Z-system this is sufficient to guarantee the absence of a GL(1,R)-

anomaly. Moreover, in order to have vanishing conformal anomaly, the central charge of

the current system SC is now determined to be c = 30.

Parallel to the situation in the original open twistor string theory, vertex operators for

physical fields are chosen to be primary with respect to the symmetry generators T, J and

K. Therefore, conditions (2.9) and gauge invariances (2.10) have to be accompanied by

additional constraints

f IkI = 0, f Ik[I,J ] = 0, (3.3)

while gI obtains a further gauge symmetry δ2gI = ηkI . Vertex operators Vφ are not affected

by the additional symmetry.

The appropriate expression for the nonzero components of the infinity twistor in our

setup are

IA′B′

= εA
′B′

, (3.4)

and consequently IAB = εAB . In order to keep IIJ invariant, the one-form kI is chosen to

be

kI = −Θ(Z)IIJZ
I , (3.5)

where Θ denotes a function with homogeneity degree −2 compensating the contributions

from other components in the one-form above, which can be chosen as Θ = Θ(π), see ref.

[8]. Condition (3.2) and the second part of (3.3) are then satisfied trivially, such that one

is left with

∂If
I = 0 (3.6)

δf I = ZI  L (3.7)

f IIIJZ
JΘ(Z) = fA′πA′

= 0 (3.8)
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for the positive helicity graviton. The other graviton g is constrained in the following way:

ZIgI = 0 (3.9)

δ1gI = ∂Iχ (3.10)

δ2gI = ηkI = ΘIIJZ
Jη. (3.11)

In our setup the nonzero components of (3.11) are

δ2g
A′

= Θ · ηεA
′B′

πB′ ≡ ηΘπ
A′

. (3.12)

The fermionic multiplets are not affected by the additional gauge symmetry.

Abou-Zeid, Hull and Mason use the above constraints and gauge invariances to set fA′

and gA′

to zero. Their interpretation is that one of the degrees of freedom contained in

the bosonic part of f I and gI , respectively, is removed. Summing up the remaining states,

there are six N = 4 vector multiplets missing in order to reproduce the N = 8 supergravity

spectrum. Assuming the gauge group G of SC to be six-dimensional, one obtains the correct

number of states:

Helicity −2 −3
2 −1 −1

2 0 1
2 1 3

2 2

gA 1 4 6 4 1

ga 4 16 24 16 4

φr
6 24 36 24 6

fa 4 16 24 16 4

fA 1 4 6 4 1

N = 8 1 8 28 56 70 56 28 8 1

Note that in the above table the negative helicity N = 4 graviton multiplet is closely

related to a conformal wave, which should not be the case in an Einstein gravity theory.

However, the two bosonic parts of a twistor are coupled by their equation of motion and

therefore do not exhibit independent degrees of freedom. The implications resulting from

this structure will be discussed in the next section.

3.2 Degrees of freedom

While the leading helicity degrees of freedom resulting from f I subject to gauge invariances

and constraints (3.6-3.8) have been shown to describe an Einstein graviton in [11], we

will carry out the corresponding investigation for the negative helicity graviton in this

subsection.

Following the ideas of [12], we will Penrose transform gI and the appropriate gauge

invariances and constraints (3.9-3.11) into Minkowski space. The consideration can be

limited to the bosonic part α = (A,A′), because the fermionic degrees of freedom ga are

independent of the bosonic ones.
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Penrose transforming the graviton vertex function gα = (gA, gA′) of GL(1,R)-weight

−5 results in

gα ↔ Γα(B′C′D′) =

(

ψA(B′C′D′)

φA′(B′C′D′)

)

, (3.13)

where the last part is the decomposition of α into (A, A′). The spacetime analogue of (3.9)

reads

Zαgα = 0 ↔

(

0

φA′

(A′C′D′)

)

= 0, (3.14)

which can be rewritten as

φA′

(A′C′D′) = εB
′A′

φA′(B′C′D′) = 0. (3.15)

In equation (3.12), ηΘ has GL(1,R)-weight −6 in order to match the homogeneity degree

of gα. Therefore, the Penrose transform of (3.12) yields

IαβZ
βηΘ ↔

(

0

η(A′B′C′D′)

)

. (3.16)

Furthermore, equations of motion for a massless particle have to be obeyed:

∇BB′

Γα(B′C′D′) = 0, (3.17)

which reads in components4:

∇BB′

ψA(B′C′D′) = 0 and ∇BB′

φA′(B′C′D′) + εABψA(B′C′D′) = 0. (3.18)

The constraint (3.15) is solved by a totally symmetric function φ(A′B′C′D′), which can be

set to zero via (3.16). Plugging this result into the equation of motion (3.18), one obtains

∇BB′

ψA(B′C′D′) = 0 and εABψA(B′C′D′) = 0. (3.19)

Interpreting the above equation leads to an obvious conclusion: while φA′(B′C′D′) can be

gauged to zero, the field ψA(B′C′D′) vanishes on-shell and thus the corresponding twistor

function gα does not describe any physical degrees of freedom. Similar computations can

be performed for the other components in the negative helicity graviton multiplet, showing

the corresponding gα to either be pure gauge or to vanish on-shell.

3.3 An overconstrained system?

To conclude the discussion about the modified theory, implications of the constraints arising

from the equation of motion for the gauge field B̄ will be investigated. Varying (3.1) with

respect to B̄ yields

K = kI∂Z
I = Θ(Z)IIJZ

J∂ZJ ∼ πA′∂πA′

= 0. (3.20)

4The derivative ∇BB′

acts on twistor indices via the local twistor connection.
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Due to its purely classical nature, this constraint does only affect zero modes of π. As

long as the amplitude resides in the (d = 0)-sector, πA′

does not depend on the worldsheet

coordinate z, such that equation (3.20) is satisfied by ∂πA′

= 0 trivially. However, in the

(d = 1)-instanton sector, the equation of motion

πA′∂πA′

= (π0A′ + π−1A′z)(πA′

−1) = π0A′πA′

−1 = 0 (3.21)

enforces proportionality of πA′

0 and πA′

−1. Considering the (d = 2)-instanton sector, one now

obtains

πA′∂πA′

= (π0A′ + π−1A′z + π−2A′z2)(πA′

−1 + 2πA′

−2z)

= π0A′πA′

−1 + 2π0A′πA′

−2z + π−1A′πA′

−2z
2 = 0. (3.22)

In order to satisfy the above equation, each part of the sum must vanish separately, leading

to

πA′

0 = m−1π
A′

−1 and πA′

0 = m−2π
A′

−2, (3.23)

where m−i denote factors of proportionality. Generalising to the d-instanton sector, one

can show that all coefficients in the expansion have to be proportional to πA′

0 :

πA′

0 = m−iπ
A′

−i ∀ i = 1, . . . d. (3.24)

What does the proportionality imply? While the ω-part of twistor space is not modified,

the expansion for π looks different compared to (2.5):

ωA = ωA
0 + ωA

−1z + ωA
−2z

2 + · · · + ωA
−dz

d (3.25)

πA′ = π0A′ + π−1A′z + π−2A′z2 + · · · + π−dA′zd

= π0A′(1 +m−1z +m−2z
2 + · · · +m−dz

d). (3.26)

While the degree of the algebraic curve is not altered, the dimension of its moduli space

in twistor space is reduced. Featuring 4(d + 1) dimensions in the unconstrained case,

there are now d additional conditions from (3.24) leaving 3d + 4 integrations: 2(d + 1)

integrations over the ω-zero modes, two integrations over πA′

0 and d integrations over the

factors of proportionality, m−i. So not all algebraic curves of degree d in twistor space are

considered, but a subset thereof.

While one could imagine the constraints from additional symmetries to be incorporated

in this way, problems arise from a different direction: the calculation of twistor string

amplitudes relies on a well balanced number of integrations and δ-functions, which after

performing all integrals results in the momentum conserving δ-function. Implementing the

additional constraints originating from the equation of motion for the field B̄ by inserting

additional δ-functions into the correlator, one would obtain an overconstrained system for

d 6= 0.

In order to further investigate the consequences of the additional conditions described

above, let us examine a constrained correlator more closely. Leaving aside integrations over
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the moduli space of algebraic curves and the insertion points z for a moment, a n-particle

amplitude localizing in instanton sector d is proportional to

M ∼
n
∏

i=1

∫

dki δ
2(kiπ

A′

i − pA′

i )
d
∏

j=1

δ(π0π−j), (3.27)

where n integrations and 2n δ-functions originate from the vertex functions, while d δ-

functions additionally ensure proportionality according to (3.24). Before performing the

integrals, all πi can be replaced employing (3.26), yielding

M ∼
n
∏

i=1

∫

dki δ
2(kiπ

A′

0 Ai − pA′

i )

d
∏

j=1

δ(π0π−j), where Ai =

d
∑

l=1

m−lz
l
i. (3.28)

In order to proceed further, one has to assume Ai 6= 0 ∀ i. This is a reasonable assumption,

because otherwise, by virtue of the first δ-function the corresponding momentum would

vanish, resulting in a trivial dependence of the amplitude on pA′

i . Thus, the above equation

can be rewritten as

M ∼
n
∏

i=1

∫

dki
1

π1′
0 Ai

δ

(

ki −
p1′

i

π1′
0 Ai

)

δ(kiπ
2′
0 Ai − p2′

i )

d
∏

j=1

δ(π0π−j)

∼
n
∏

i=1

1

π1′
0 Ai

δ

(

π2′
0 p1′

i

π1′
0

− p2′
i

)

d
∏

j=1

δ(π0π−j)

∼
n
∏

i=1

1

Ai
δ(π0 pi)

d
∏

j=1

δ(π0π−j). (3.29)

This result is in concordance with the conclusion of the previous paragraph: the first set of

δ-functions in the above equation implies the proportionality of all primed momenta pA′

i to

πA′

0 and consequently to each other. Hence all spinor brackets [ij] disappear, which implies

chirality of all (d > 0)-interactions in the gauged string theory.

4 A surprising result in conformal supergravity

The three-point correlator describing the scattering of one conformal wave graviton with

negative helicity and two positive helicity plane wave gravitons

〈Vfp1
Vfp2

Vgc3
〉 = 〈fA

1 YAf
B
2 YB(g3C∂ω

C
3 + g̃C′

3 ∂π3C′)〉 (4.1)

localizes in the zero instanton sector. Following the procedure described in section two

above, Wick-contractions have to be performed in the next step employing the operator

product expansion

〈ZI(z)YJ(w)〉 =
δI
J

(z − w)
. (4.2)

Since contractions give nonzero results only if taken between quantities carrying the same

type of indices, there is no quantity which can be combined with ∂π3C′ to give a nonzero

11



result. But any (d = 0)-correlator containing an uncontractable expression of the form ∂Z

will vanish, because the zero-modes of Z is not a function of the worldsheet coordinate z

in zeroth order of the instanton expansion. Starting therefore from

〈fA
1 YA f

B
2 YB g3C∂ω

C
3 〉 , (4.3)

and applying all possible Wick-contractions results in

1

(z1 − z2)(z2 − z3)(z3 − z1)

〈

fA
1 f

B
2 ∂[Ag3B]

〉

=
1

(z1 − z2)(z2 − z3)(z3 − z1)

〈

fA
1 f2A ∂Bg3B

〉

(4.4)

after partial integration. Evaluating the above expression by plugging in the appropriate

vertex functions (2.14) and (2.18), integrating over the moduli-space RP 3|4 and taking the

worldsheet SL(2,C)- and target space GL(1,R)-invariances into account yields

〈Vfp1
Vfp2

Vgc3
〉 = δ4

(

∑

i

Pi

)

〈12〉8

〈12〉2〈13〉2〈23〉2
, (4.5)

which surprisingly agrees with the result from Einstein gravity [13].

Equation (4.4) can be found as an intermediate result in the calculation of AHM. For

their as well as Dolan and Ihry’s choice of vertex operators the expression ∂BgB can be

shown to represent a plane wave in spacetime. Therefore, the calculation in either scenario

results in (4.5). So the correlator evaluated in AHM’s article reproduces the result of a three-

graviton amplitude in conformal supergravity, with two positive helicity plane wave and

one negative helicity conformal wave graviton. This is not surprising: since the particular

correlator calculated localizes in the (d = 0)-sector, the constraints from the additional

gauge symmetry are satisfied trivially as pointed out in the previous paragraph. Therefore,

the integration measure remains untouched compared to the unconstrained case.

5 Conclusion

In this paper, the consequences of gauging an additional current in Berkovits open string

theory as proposed by Abou-Zeid, Mason and Hull are shown to require some adjustments

in the interpretation of the resulting theories compared to [8].

The negative helicity N = 4 supergraviton multiplet is shown to vanish on-shell, if

the additional current (3.5) is gauged. Since the equation of motion for the new gauge

field B̄ restricts the possible interactions of the theory significantly above the (d = 0)-

instanton level, the only remaining interactions are chiral. Moreover, the equations of

motion of B̄ render the correlators for d > 0 overconstrained, which questions the existence

of interactions above three-point tree-level.

Among other theories, Abou-Zeid, Mason and Hull suggested two theories employing

the current (3.5). For the first one, N = 4 supergravity coupled to N = 4 SYM, the

absence of the negative supergraviton multiplet reduces the spectrum of the supergravity

12



sector to be self-dual. Moreover, while the SYM spectrum is untouched the chirality of

the interactions carries over to the SYM-part. If additionally all d > 0 correlators would

vanish, the SYM-part is suggested to be the self-dual theory described by Siegel in [14].

In the second case, which is proposed to describe N = 8 supergravity, the intepretation

of the remaining spectrum is less clear. Physical states described by the theory are a

N = 4 gravity multiplet, four N = 4 gravitini multiplets of each chirality and six N = 4

SYM mulitplets. All interactions of the theory have to be chiral and probably there are

no interactions above three-point tree-level. Nevertheless, the vanishing of only one of the

N = 4 supermultiplets necessary to build up the complete spectrum seems to rule out the

interpretation as N = 8 supergravity or a self-dual version thereof.

Finally, scattering of two plane wave gravitons with a conformal wave graviton part of

opposite helicity in the Berkovits open twistor string is shown to agree with the correspond-

ing gravity three-point interaction in Einstein gravity. This poses the question, whether

other tree-level amplitudes in supergravity might be constructed in a similar manner.
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