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Abstract

We derive the Bethe ansatz equations on the half line for particles interacting through factorized
S-matrices invariant relative to the centrally extended su(2|2) Lie superalgebra and su(1|2) open bound-
aries. These equations may be of relevance for the study of the spectrum of open strings on AdS5 × S5

background attached to Y = 0 giant graviton branes. A one-dimensional spin chain Hamiltonian associated
to this system is also derived.
© 2009 Elsevier B.V. All rights reserved.

PACS: 05.50+q; 02.30.Ik

Keywords: Bethe ansatz; Reflecting magnons; Open boundaries

1. Introduction

Integrability in gauge and string theories has been a subject of intensive research in the last
years, where a variety of novel integrable structures has emerged. The existence of integrable
structures in gauge theories, at the classical as well as at the quantum level, has been suspected for
a long time by means of different setups [1], but undoubtedly it gained a whole new significance
in the scenario of the AdS/CFT correspondence [2]. In this context the celebrated Bethe ansatz
acquired a new status in contemporary physics providing the spectrum of certain string and gauge
theories.

Currently the most well studied case of gauge/string duality consist of the type IIB string
theory in AdS5 × S5 space together with its gauge counterpart N = 4 super-Yang–Mills in
four dimensions, where a large amount of evidences supports integrability. One natural ques-
tion emerging in this scenario is if the integrability of the N = 4 super-Yang–Mills [3] and of the
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classical string sigma model in the AdS5 × S5 space [4] is present in other theories. In the N = 4
super-Yang–Mills integrability is made manifest in the computation of anomalous dimensions of
single trace operators. However, the gauge theory also contain baryonic operators [5] which, for
instance, are given by determinants instead of traces. Such baryonic operators, i.e. the so-called
giant gravitons [6], are of particular interest in the context of AdS/CFT duality corresponding to
D-brane excitations in the string counterpart.

From the string theory point of view it is expected to have boundaries when we consider
D-branes. The excitations of open strings are then described by a two-dimensional field theory
with a boundary and in the context of integrable field theories it is often possible to define the sys-
tem on a half line with suitable boundary conditions such that the system remains integrable [7].
Such D-branes can appear in several circumstances, for instance: conformal field theories with
defects [8], gauge theories added with fundamental flavours [9] and certain baryonic operators
in N = 4 super-Yang–Mills [10]. Concerning the last case, Berenstein and Vazquez have shown
in [10] that the one-loop mixing of non-BPS giant gravitons can be described within the paradigm
of integrable spin chains with open boundary conditions, and given the current status of higher
loop integrability for single trace operators in N = 4 super-Yang–Mills [11], it is a reasonable
goal to examine the spin chain interpretation of the mixing of non-BPS giant gravitons beyond
one-loop order. This problem was first approached in [12] where the author computed the corre-
sponding two-loop open spin chain Hamiltonian. Subsequently, in [13] Hofman and Maldacena
obtained a two-loop integrable open spin chain for open strings like operators coupled to maxi-
mal giant gravitons. Previous works studying open strings with a variety of boundary conditions
and the corresponding gauge theory open spin chain also include, for instance, Refs. [14–20].

Integrability at the boundaries is often associated with the so-called boundary Yang–Baxter
equation or reflection equation [21,22]. In this context, the authors in [13] proposed a reflection
matrix setup in order to study open strings attached to maximal giant gravitons in AdS5 ×S5 back-
ground. Here we shall focus on the Y = 0 giant graviton brane case or su(1|2) theory described
in [13] and the aim of this paper is to derive the associated Bethe ansatz equations determining
the energy of the system.

This paper is organized as follows. In the next section we present the centrally extended
su(2|2) invariant S-matrix in a suitable basis for a further algebraic Bethe ansatz analysis. In
Section 3 we describe the double-row transfer matrix with the required symmetries associated to
the problem of open strings on AdS5 × S5 background attached to Y = 0 giant graviton branes.
Sections 4 and 5 are devoted to the derivation of the associated spectrum and in Section 6 we
derive a spin chain Hamiltonian with open boundary conditions based on a non-regular su(1|2)

reflection matrix. Concluding remarks are discussed in Section 7 and in Appendix A we establish
the formal connection between previous results presented in the literature concerning the explicit
form of the Y = 0 reflection matrix.

2. The centrally extended su(2|2) S-matrix

Integrability in the context of planar AdS/CFT correspondence and in the one-dimensional
Hubbard model are intimately connected with the centrally extended su(2|2) Lie superalgebra.
As shown in [23–25], this algebra is strong enough to completely determine the form of the S-
matrix up to an overall multiplicative scalar factor. In Ref. [26] the authors derived a S-matrix
based on a q-deformation of the centrally extended su(2|2) Lie superalgebra. The above men-
tioned S-matrix satisfies the graded Yang–Baxter equation which, for instance, reads

(1)S12(λ1, λ2)S13(λ1, λ3)S23(λ2, λ3) = S23(λ2, λ3)S13(λ1, λ3)S12(λ1, λ2).



666 W. Galleas / Nuclear Physics B 820 [FS] (2009) 664–681
This equation is defined in the tensor product Vλ1 ⊗ Vλ2 ⊗ Vλ3 , where Vλi
is a finite-dimensional

Z2 graded space parameterized by a rapidity λi . Each one of such spaces carries a representation
Πλi

: Uq [G] → End(Vλi
), where G refers to the centrally extended su(2|2) Lie superalgebra, and

Sij consist of a complex-valued matrix Sij : C → End(Vλi
⊗ Vλj

) acting non-trivially in the ith
and j th spaces of End(Vλ1 ⊗ Vλ2 ⊗ Vλ3). Though our discussion will be restricted to the limit
q → 1, the structure of the q-deformed S-matrix presented in [26] has shown to be more suitable
for the forthcoming analysis.

The tensor products appearing in the above definitions are understood in the graded sense.
For instance, the matrix components of A ⊗ B are given by [A ⊗ B]αγ

βδ = Aα
βB

γ
δ (−1)(pα+pβ)pγ ,

which carries an explicit dependence of the Grassmann parities pα . These Grassmann parities
assume values on the group Z2 and enable us to characterize bosonic and fermionic degrees of
freedom. In particular, the αth degree of freedom is distinguished by the Grassmann parity

(2)pα =
{

0 for α bosonic,

1 for α fermionic.

We shall consider the limit q → 1 of the S-matrix given in [26] adopting the grading structure
BFFB. More precisely, the Grassmann parities are set to

(3)pα =
{

0, α = 1,4,

1, α = 2,3,

and the centrally extended su(2|2) invariant S-matrix can be written as

(4)S(λ1, λ2) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 a8 0 0 a10 0 0 0 0 0 0 0 0 0 0 0
0 0 a8 0 0 0 0 0 a10 0 0 0 0 0 0 0
0 0 0 a3 0 0 a7 0 0 −a7 0 0 a2 0 0 0
0 a9 0 0 a11 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 a4 0 0 0 0 0 0 0 0 0 0
0 0 0 −a7 0 0 a6 0 0 a5 0 0 a7 0 0 0
0 0 0 0 0 0 0 a11 0 0 0 0 0 a9 0 0
0 0 a9 0 0 0 0 0 a11 0 0 0 0 0 0 0
0 0 0 a7 0 0 a5 0 0 a6 0 0 −a7 0 0 0
0 0 0 0 0 0 0 0 0 0 a4 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 a11 0 0 a9 0
0 0 0 a2 0 0 −a7 0 0 a7 0 0 a3 0 0 0
0 0 0 0 0 0 0 a10 0 0 0 0 0 a8 0 0
0 0 0 0 0 0 0 0 0 0 0 a10 0 0 a8 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The 36 non-null entries are parameterized by complex variables x±
j = x±(λj ) constrained by the

relations

(5)
x+
j

x−
j

= eiλj and x+
j + 1

x+
j

− x−
j − 1

x−
j

= i

g
,

where in the context of the AdS/CFT duality, g corresponds to the string sigma model coupling
constant and λj denote the world-sheet rapidities. With the above considerations, the entries
of (4) can be explicitly written in terms of the variables x±

j as

a1 =
(

x+
1 x−

2

x−x+
) 1

2 (x+
2 − x−

1 )

(x− − x+)
,

1 2 2 1
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a2 =
(

x+
1 x−

2

x−
1 x+

2

) 1
2 (x+

1 − x−
1 )

(x−
2 − x+

1 )

(x+
1 x−

1 x−
2 − x+

2 )

(x−
1 x−

2 − 1)x+
1

,

a3 = x−
1

x+
1

(
x+

1 x−
2

x−
1 x+

2

) 1
2 (x+

1 − x+
2 )

(x+
1 − x−

2 )

(x−
2 x+

1 − 1)

(x−
1 x−

2 − 1)
,

a4 = 1,

a5 = (x+
2 − x−

2 )

(x+
1 − x−

2 )

(x+
2 x−

1 x−
2 − x+

1 )

(x−
1 x−

2 − 1)x+
2

,

a6 = x−
2

x+
2

(x+
1 − x+

2 )

(x+
1 − x+

2 )

(x−
1 x+

2 − 1)

(x−
1 x−

2 − 1)
,

a7 = x−
1 x−

2

x+
1 x+

2

(
x+

1

x−
1

) 1
2 (x+

1 − x+
2 )γ1γ2

(x−
2 − x+

1 )(x−
1 x−

2 − 1)
,

a8 =
(

x+
2

x−
2

)− 1
2 (x+

2 − x+
1 )

(x−
2 − x+

1 )
,

a9 = (x+
2 − x−

2 )

(x−
2 − x+

1 )

γ1

γ2
,

a10 =
(

x+
1 x−

2

x−
1 x+

2

) 1
2 (x+

1 − x−
1 )

(x−
2 − x+

1 )

γ2

γ1
,

(6)a11 =
(

x+
1

x−
1

) 1
2 (x−

2 − x−
1 )

(x−
2 − x+

1 )
,

where γj =
√

−i(x+
j /x−

j )1/2(x+
j − x−

j ). In addition to the Yang–Baxter relation (1), the S-

matrix defined by (4)–(6) also fulfills the following properties:

Regularity: S12(λ,λ) = −P12,

(7)Unitarity: S12(λ1, λ2)S21(λ2, λ1) = I12,

where P and I denote respectively the graded permutation operator and the identity matrix. As
we shall see in the next sections these properties will be of relevance for the construction of
integrable systems with open boundaries.

3. Double-row transfer matrix and reflection matrices

The generalization of the Quantum Inverse Scattering Method for systems with open bound-
aries proposed by Sklyanin [22] gave a large impulse to the study of integrable systems with
non-periodic boundary conditions. In Sklyanin’s formalism the construction of integrable mod-
els with open boundaries is based on the solutions of the so-called reflection equations for a given
integrable bulk system.

In order to consider the centrally extended su(2|2) model some generalizations of Sklyanin’s
original approach have to be taken into account due to some particular features of the S-matrix.
Firstly, the S-matrix (4)–(6) does not depend on the difference of the spectral parameters and
in fact, it is equivalent to Shastry’s R-matrix [24,27] embedding the one-dimensional Hubbard
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model [28]. This feature leads us to consider the approach proposed in [29,30] and subsequently
considered by other authors [31]. It turns out that an inhomogeneous transfer matrix with open
boundaries can be written as the following supertrace over the auxiliar space A ≡ C

4,

(8)T
(
λ, {λj }

) = StrA
[
K+

A(λ)TA
(
λ, {λj }

)
K−

A(λ)T −1
A

(−λ, {λj }
)]

,

where λ is the world-sheet rapidity which parameterizes the integrable manifold1 and the set of
variables λ1, . . . , λN denotes the inhomogeneities. The matrix

(9)TA
(
λ, {λj }

) = SAN(λ,λN) · · ·SA1(λ,λ1)

is the standard monodromy matrix which generates the corresponding closed chain with N sites
while T −1

A (−λ, {λj }) is given by

(10)T −1
A

(−λ, {λj }
) = S1A(λ1,−λ) · · ·SN A(λN,−λ)

due to unitarity property (7). In their turn the matrices K±
A(λ) describe the interactions at the

right and left ends of the open chain.
We remark here that an equivalent transfer matrix was constructed previously in the literature

for open strings attached to maximal giant gravitons [32]. However, we shall consider here a
different basis which results in a transfer matrix more suitable for an algebraic Bethe ansatz
analysis.

Integrability at the boundaries is governed by the so-called reflection equations. Within the
graded version of the Quantum Inverse Scattering Method the matrix K−(λ) is required to satisfy

(11)S12(λ,μ)K−
1 (λ)S21(μ,−λ)K−

2 (μ) = K−
2 (μ)S12(λ,−μ)K−

1 (λ)S21(−μ,−λ),

while the reflection at the opposite boundary is subjected to the dual relation

S
st1ist2
21 (μ,λ)K+

1 (λ)st1S
st1ist2
12 (−λ,μ)K+

2 (μ)ist2

(12)= K+
2 (μ)ist2S

st1ist2
21 (−μ,λ)K+

1 (λ)st1S
st1ist2
12 (−λ,−μ),

where the symbols stα and istα stand, respectively, for the operations of supertransposition in
the space with index α and its inverse operation as described in [30]. The role played by the
reflection equations for the boundaries is similar to the one played by the Yang–Baxter equation
for the bulk of the system and when the reflection matrices K±

A(λ) satisfy (11) and (12), the
double-row operator (8) constitutes an one parameter family of commutative transfer matrices,
i.e.

(13)
[
T

(
λ, {λj }

)
, T

(
μ, {λj }

)] = 0 ∀λ,μ ∈ C.

The commutativity of the transfer matrices for all values of the spectral parameters λ and μ

provides a complete set of operators in involution and thus ensures the integrability of the system.
In the past much work was devoted to develop a systematic quantum group approach enabling

us to find solutions of the reflection equations. The studies on boundary quantum groups were ini-
tiated in [33] and have been carried out since then in order to unveil the fundamental structure of
their generators [34]. In [35] it was shown that the boundary quantum group structure behind the
reflection equation associated to the Uq [sl(2)] S-matrix is actually a q-deformed Dolan–Grady
algebra invariant under the coproduct homomorphism of Uq [sl(2)]. However, for higher rank

1 We recall here that the variable λ is also related to variables x± through relations (5).
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affine Lie algebras the analogue of such algebraic relations remains an open question. From the
physical picture it is expected the presence of boundaries to break the quantum group symmetry
of the bulk down to a certain subgroup. This unbroken residual symmetry should be powerful
enough to determine the reflection matrix as the original symmetry does for the bulk S-matrix.
In Ref. [36] the authors proposed a general framework for obtaining solutions of the reflection
equation by solving a intertwining relation of certain coideal subalgebras of the symmetry al-
gebra intertwined by the S-matrix. Let then G be a Hopf algebra with generators denoted by Q
whose coproduct homomorphism Δ : G → G ⊗ G is intertwined by the S-matrix

(14)SΔ(Q) = Δop(Q)S ∀Q ∈ G,

where Δop stands for the opposite coproduct Δop(Q) = PΔ(Q)P . In addition to that let us also
consider the following intertwining relation

(15)KQ = Q̄K ∀Q ∈ B, B ⊂ G,

where Q̄ corresponds to the reflected generator Q, i.e. λ → −λ, and B is a left coideal subalge-
bra of G . The algebra B is also refereed as quantum affine reflection algebra and it was shown
in [36] that the K-matrices solving the intertwining relation (15) render solutions of the reflection
equation (11).

In order to consider the case of open strings on AdS5 × S5 background attached to Y = 0
branes, we regard G as the centrally extended su(2|2) Lie superalgebra in its fundamental four-
dimensional representation and the left coideal subalgebra B as the su(1|2) superalgebra, as
described in [13]. The corresponding S-matrix is given by relations (4)–(6) and in order to study
the associated reflection matrices it is necessary to first determine how the variables x± behave
under reflection.

In [13] the authors showed that the requirement of energy conservation when λ → −λ, pre-
serving the constraint (5), restrict us to the mapping x± → −x∓. This mapping together with the
representation of the states involved given in [26] allow us to use the intertwining relation (15)
in order to determine the reflection matrix K−(λ) up to an overall phase factor which we shall
omit at the moment. It turns out that the su(1|2) reflection matrix is then given by

(16)K−(λ) =
⎛
⎜⎝

−e−i λ
2 0 0 0

0 1 0 0
0 0 1 0
0 0 0 ei λ

2

⎞
⎟⎠ .

Strictly speaking, the approach devised in [36] considers only non-graded algebras. However,
the extension of the proposed method to Z2 graded algebras is expected to follow the same lines
of [37] for the solutions of the graded Yang–Baxter equation based on superalgebras. On the other
hand one could have considered the direct resolution of the reflection equation (11) similarly to
the analysis performed by Shiroishi and Wadati in [31] for the Hubbard model. By doing so one
finds that the class of diagonal solution (16) does not accommodate free parameters. The direct
inspection of the dual reflection equation (12) results in

(17)K+(λ) = K−(−λ)

in agreement with the reflection symmetry of the problem discussed in [13] and the crossing like
relation automorphism employed in [32].

Though they are equivalent, the K-matrix (16) is slightly different from the one derived in
[13] and the one obtained in [38] by means of the boundary Faddeev–Zamolodchikov algebra.
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The differences amount to a different choice of the grading structure and the gauge in which the
S-matrix is considered. In Appendix A their relationship are made precise.

4. The Bethe ansatz approach

The purpose of this section is to determine the spectrum of the double-row transfer matrix
defined by Eqs. (4)–(6), (8)–(10), (16) and (17). In this case the boundary elements are diagonal
and such eigenvalue problem can be tackled by the algebraic Bethe ansatz in the same lines
employed in Refs. [39,40].

The algebraic Bethe ansatz method was initially conceived for systems with periodic boundary
conditions but later on systems with more general boundary conditions were also included in this
framework as well. The basic ingredients are still the existence of a pseudovacuum state and
appropriate commutation rules between the elements of the associated monodromy matrix.

Due to the Yang–Baxter relation (1) and reflection equations (11), one can demonstrate within
Sklyanin’s approach that the double-row monodromy matrix

(18)UA
(
λ, {λj }

) = TA
(
λ, {λj }

)
K−

A(λ)T −1
A

(−λ, {λj }
)

satisfy the following quadratic algebra

S12(λ,μ)U1
(
λ, {λj }

)
S21(μ,−λ)U2

(
μ, {λj }

)
(19)= U2

(
μ, {λj }

)
S12(λ,−μ)U1

(
λ, {λj }

)
S21(−μ,−λ),

where here UA(λ, {λj }) consist of 4 × 4 matrix on the auxiliary space A ≡ C
4 with elements

acting on the tensor product
⊗N

j=1 C
4.

As a first step to establish an algebraic Bethe ansatz analysis we remark that the diagonal
structure of reflection matrices (16), (17) permit us to use the standard ferromagnetic state

(20)|Ψ0〉 =
N⊗

j=1

|0〉, where |0〉 =
⎛
⎜⎝

1
0
0
0

⎞
⎟⎠ ,

as pseudovacuum state. The existence of a pseudovacuum state does not guarantee that we can
successfully apply the algebraic Bethe ansatz and as another requirement we still need to be
able to disentangle relation (19) into appropriate commutation rules for the elements of the mon-
odromy matrix.

For instance, we need to find among the elements of UA(λ, {λj }) the operators playing the
role of creation and annihilation fields with respect to the state |Ψ0〉. The previous works on the
algebraic Bethe ansatz for the centrally extended su(2|2) algebra [27] and for the Hubbard model
with open boundaries [39] suggest us to represent

(21)UA
(
λ, {λj }

) =

⎛
⎜⎜⎝

B(λ, {λj }) B1(λ, {λj }) B2(λ, {λj }) F (λ, {λj })
C1(λ, {λj }) A11(λ, {λj }) A12(λ, {λj }) B∗

1 (λ, {λj })
C2(λ, {λj }) A21(λ, {λj }) A22(λ, {λj }) B∗

2 (λ, {λj })
F ∗(λ, {λj }) C∗

1 (λ, {λj }) C∗
2 (λ, {λj }) D(λ, {λj })

⎞
⎟⎟⎠

in order to depict appropriate creation and annihilation fields.
Now we can turn our attention to the eigenvalue problem,

(22)T
(
λ, {λj }

)|Ψ 〉 = Λ
(
λ, {λj }

)|Ψ 〉,
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for the double-row transfer matrix. In the framework of the boundary algebraic Bethe ansatz, this
eigenvalue problem is more conveniently written in terms of shifted operators

Ãαβ

(
λ, {λj }

) = Aαβ

(
λ, {λj }

) − δαβf1(λ)B
(
λ, {λj }

)
,

(23)D̃
(
λ, {λj }

) = D
(
λ, {λj }

) − f2(λ)B
(
λ, {λj }

) + f1(λ)

2∑
α=1

Aαα

(
λ, {λj }

)
,

where f1(λ) = x−−x+
2(x+x−)1/2 and f2(λ) = (x−−x+)[(x−)2−1]

2x−(x+x−+1)
. Taking into account the Grassmann par-

ities (3) and the shifted operators (23), Eq. (22) reads2

[
ω+

1 (λ)B
(
λ, {λj }

) + ω+
2 (λ)

2∑
i=1

Ãαα

(
λ, {λj }

) + ω+
3 (λ)D̃

(
λ, {λj }

)]|Ψ 〉

(24)= Λ
(
λ, {λj }

)|Ψ 〉,
where the functions ω+

α (λ) are given by

ω+
1 (λ) = − (x−)

1
2 (x+ + x−)[1 + (x+)2]
2(x+)

3
2 (1 + x+x−)

,

(25)ω+
2 (λ) = −x+ + x−

2x+ , ω+
3 (λ) =

(
x−

x+

) 1
2

.

As we can see from (24) the diagonal elements of the monodromy matrix constitutes the trans-
fer matrix eigenvalue problem and within the framework of the algebraic Bethe ansatz we expect
the off-diagonal elements to play the role of creation and annihilation fields. With respect to the
pseudovacuum state |Ψ0〉, the diagonal elements of UA(λ, {λj }) satisfy the following relations:

B
(
λ, {λj }

)|Ψ0〉 = ω−
1 (λ)

N∏
j=1

a1(λ,λj )a1(λj ,−λ)|Ψ0〉,

Aαα

(
λ, {λj }

)|Ψ0〉 = ω−
2 (λ)

N∏
j=1

a11(λ,λj )a8(λj ,−λ)|Ψ0〉,

(26)D
(
λ, {λj }

)|Ψ0〉 = ω−
3 (λ)

N∏
j=1

a3(λ,λj )a3(λj ,−λ)|Ψ0〉,

with

ω−
1 (λ) = −

(
x−

x+

) 1
2

, ω−
2 (λ) = x+ + x−

2x+ ,

(27)ω−
3 (λ) = (x+ + x−)[1 + (x−)2]

2(x+x−)
1
2 (1 + x+x−)

,

2 We recall here that the supertrace of a n × n matrix A is given by Str(A) = ∑n (−1)pα Aαα .
α=1
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while some of the off-diagonal elements exhibit the annihilation properties

Cα

(
λ, {λj }

)|Ψ0〉 = C∗
α

(
λ, {λj }

)|Ψ0〉 = 0,

A12
(
λ, {λj }

)|Ψ0〉 = A21
(
λ, {λj }

)|Ψ0〉 = 0,

(28)F ∗(λ, {λj }
)|Ψ0〉 = 0,

in virtue of definitions (4), (16), (18) and (20).
Concerning the remaining operators Bα(λ, {λj }), B∗

α(λ, {λj }) and F(λ, {λj }), they shall be
regarded as creation fields with respect to the state |Ψ0〉. Moreover, properties (26) and (28)
imply that the pseudovacuum state |Ψ0〉 is one of the eigenvectors of the double-row transfer
matrix. Following the standard procedure of the algebraic Bethe ansatz the next task is to look
for other transfer matrix eigenvectors as linear combinations of products of creation fields acting
on the pseudovacuum state |Ψ0〉. Such construction depends dramatically on the structure of the
S-matrix considered and since the main structure of (4) resembles that of the Hubbard model,
one can expect that this construction will be similar to that presented in [39]. Considering that
there are no significant changes from the construction devised in [39] we shall restrict ourselves
to present only the final expression for the transfer matrix eigenvalues. In terms of the variables
x±, it turns out that the eigenvalues Λ(λ, {λj }) are given by

Λ
(
λ, {λj }

) = x−(x+ + x−)[1 + (x+)2]
2(x+)2(1 + x+x−)

N∏
j=1

x+

x−
(x− + x−

j )(x− − x+
j )

(x+ − x−
j )(x+ + x+

j )

×
m0∏
k=1

x−

x+
[(x+)2 − (z−

k )2]
[(x−)2 − (z−

k )2]

−
[
x+ + x−

2x+

]2[ x− + 1
x− + i

g

x− + 1
x− + i

2g

]

×
N∏

j=1

x+

x−
(x− + x+

j )(x− − x−
j )

(x+ + x+
j )(x+ − x−

j )

m0∏
k=1

x−

x+

[
(x+)2 − (z−

k )2

(x−)2 − (z−
k )2

]

×
n0∏
l=1

(λ̃l + x− + 1
x− − i

2g
)

(λ̃l − x− − 1
x− − i

2g
)

(λ̃l − x− − 1
x− + i

2g
)

(λ̃l + x− + 1
x− + i

2g
)

−
[
x+ + x−

2x+

]2[ x− + 1
x−

x− + 1
x− + i

2g

] N∏
j=1

x+

x−
(x− + x+

j )(x− − x−
j )

(x+ + x+
j )(x+ − x−

j )

×
m0∏
k=1

x−

x+

[
(x+)2 − (z−

k )2

(x−)2 − (z−
k )2

]

×
(x− + 1

x− + z−
k + 1

z−
k

)

(x− + 1
x− + z−

k + 1
z−
k

+ i
g
)

(x− + 1
x− − z−

k − 1
z−
k

)

(x− + 1
x− − z−

k − 1
z−
k

+ i
g
)

×
n0∏ (x− + 1

x− − λ̃l + 3i
2g

)

(x− + 1
− − λ̃l + i )

(x− + 1
x− + λ̃l + 3i

2g
)

(x− + 1
− + λ̃l + i )
l=1 x 2g x 2g



W. Galleas / Nuclear Physics B 820 [FS] (2009) 664–681 673
+ (x+ + x−)[1 + (x−)2]
2x+(1 + x+x−)

×
N∏

j=1

x−
j

x+
j

(x+x−
j − 1)(x+ − x+

j )(x− + x+
j )(x+x+

j + 1)

(x−x−
j − 1)(x+ − x−

j )(x+ + x+
j )(x+x−

j + 1)

(29)×
m0∏
k=1

x+

x−
[1 − (x−z−

k )2]
[1 − (x+z−

k )2]
provided that the set of variables {z±

1 , . . . , z±
m0

} and {λ̃1, . . . , λ̃n0} satisfy the following system of
Bethe ansatz equations,3

N∏
j=1

(z−
k + x−

j )

(z−
k − x−

j )

(z−
k − x+

j )

(z−
k + x+

j )
Θ

(
z±
k

)

(30)=
n0∏

j=1

(z−
k + 1

z−
k

− λ̃j − i
2g

)

(z−
k + 1

z−
k

− λ̃j + i
2g

)

(z−
k + 1

z−
k

+ λ̃j − i
2g

)

(z−
k + 1

z−
k

+ λ̃j + i
2g

)
, k = 1, . . . ,m0,

m0∏
j=1

(λ̃k − z−
j − 1

z−
j

+ i
2g

)

(λ̃k − z−
j − 1

z−
j

− i
2g

)

(λ̃k + z−
j + 1

z−
j

+ i
2g

)

(λ̃k + z−
j + 1

z−
j

− i
2g

)

(31)=
n0∏

j=1
j �=k

(λ̃k − λ̃j + i
g
)

(λ̃k − λ̃j − i
g
)

(λ̃k + λ̃j + i
g
)

(λ̃k + λ̃j − i
g
)
, k = 1, . . . , n0.

The function Θ(z±) is given by4

(32)Θ
(
z±) = 2z+z−(z+ + 1

z+ − i
2g

)

(z+ + z−)(z+z− + 1)
,

which contains contribution from the boundaries.
As discussed in [42,43] the eigenvalues of the double-row transfer matrix are an important

constituent of the momenta quantization rule for particles on the half line with boundaries. In the
next section we shall make use of these eigenvalues to derive asymptotic Bethe ansatz equations
describing the spectrum of open strings attached to maximal giant gravitons.

5. Asymptotic Bethe ansatz equations

In Ref. [13] the authors generalized the formalism of magnon scattering in the planar limit
of the AdS/CFT correspondence to include the presence of boundaries. In particular, the au-
thors investigated the open boundary conditions associated to open strings in AdS5 ×S5 attached
to D3-branes also known as maximal giant gravitons. In this sense, the scattering of a particle
with the boundaries is described by the so-called boundary S-matrices or reflection matrices,

3 The author thanks R. Nepomechie for pointing out sign typos in Eq. (31) of a previous version.
4 As observed in [41], the function Θ(z±) simplifies to unity due to constraint (5).
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and compatibility between the boundary scattering and the bulk integrability demands the re-
flection matrices to satisfy reflection equations (11), (12). From the perspective of the AdS5 × S5

string theory, the scattering amplitudes of the world-sheet excitations are described by a S-matrix
invariant relative to the centrally extended su(2|2) ⊗ su(2|2) superalgebra [23,24]. The corre-
sponding S-matrix is fully constrained by this symmetry algebra, up to an overall multiplicative
scalar factor, and it is explicitly given by

(33)Ŝ(λ1, λ2) = S0(λ1, λ2)
2 S(λ1, λ2) ⊗ S(λ1, λ2),

where each term S(λ1, λ2) is one copy of the centrally extended su(2|2) S-matrix given in
Section 2. The overall scalar factor S0(λ1, λ2) has been investigated by many authors, see for
instance [44], but here we would like to proceed without making any assumption concerning its
explicit form.

According to Hofman and Maldacena [13], the Y = 0 giant graviton brane is described by a
su(1|2) ⊗ su(1|2) theory. More precisely, the reflection matrices characterizing such boundaries
are formed by two copies of the su(1|2) reflection matrix

(34)K±(λ) = [
k±

0 (λ)
]2

K±(λ) ⊗ K±(λ),

where each term K±(λ) consist of the reflection matrix described in Section 3. For integrable
systems on the half line with open boundaries the reflection equation determines the possible K-
matrices preserving integrability up to an overall multiplicative scalar factor k±

0 (λ). If we restrict
our discussion only to open spin chains associated to the reflection matrix, the phase factors
k±

0 (λ) are not of relevance. However, the complete determination of the boundary S-matrix for
the physical excitations of the integrable theory requires the determination of this scalar factor
which contains the data about possible boundary bound states. The computation of the boundary
phase factors k±

0 (λ) was recently addressed in Ref. [45] but in what follows we shall not assume
any particular form for them.

The purpose of this section is to derive the momenta quantization rule for magnons interacting
on a half line through the centrally extended su(2|2)⊗ su(2|2) factorizable S-matrix (33), whose
interaction with the boundaries is mediated by the su(1|2) ⊗ su(1|2) boundary S-matrix (34).
The asymptotic regime of open strings excitations on giant gravitons is described by such bulk
and boundary S-matrices, which can be viewed as a magnon propagating on an inhomogeneous
spin chain that bounces off a wall and changes its momenta from λ to −λ [13]. In order to derive
such quantization rule we shall consider the asymptotic Bethe ansatz framework [46] where
the conservation of the number of particles as well as their asymptotic momenta is justified by
the existence of a complete set of conserved charges. This quantization rule for the asymptotic
momenta of a system with N particles on an interval of length L has been discussed in [42,43],
and similarly to the case with periodic boundary conditions [27], the double-row transfer matrix
eigenvalues are a fundamental constituent. It turns out that the momenta λk are constrained by
the following relation,

(35)e−2iλkL = Λ̂(λ = λk, {λj })
ψ+(λk)ψ−(λk)

,

where Λ̂(λ, {λj }) consist of the eigenvalues of the double row transfer matrix built from (33)
and (34). As pointed out in [42], this quantization rule can be derived with the successive appli-
cation of the Faddeev–Zamolodchikov algebra enjoyed by the S-matrix [25] in association with
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its boundary counterpart [38]. The functions ψ±(λ) arise from the identities

(36)Str1
[

R21(λ,−λ)K+
1 (λ)

] = ψ−(λ)K+
2 (−λ) and Ŝ(λ,λ) = ψ+(λ)P ⊗ P,

and they are given by

ψ−(λ) =
[
k+

0 (λ)S0(λ,−λ)

k+
0 (−λ)

(x+ + x−)[1 + (x+)2]
2x+(1 + x+x−)

]2

,

(37)ψ+(λ) = S0(λ,λ)2.

Here we have also defined the R-matrix R(λ1, λ2) = (P ⊗ P)Ŝ(λ1, λ2).
Due to the tensor product structure of the bulk and boundary S-matrices we can read the

eigenvalues Λ̂(λ, {λj }) directly from the spectrum derived in Section 4. For instance, they are
given by

(38)Λ̂
(
λ, {λj }

) = [
k+

0 (λ)k−
0 (λ)

]2
N∏

j=1

[
S0(λ,λj )S0(λj ,−λ)

]2
Λ

(
λ, {λj }

)
Λ′(λ, {λj }

)
,

where Λ(λ, {λj }) consist of the eigenvalues (29) parameterized by Bethe roots {z±
1,j , λ̃1,j } and

Λ′(λ, {λj }) corresponds to the eigenvalues associated to the second su(2|2) copy given in terms
of Bethe roots {z±

2,j , λ̃2,j }. Now considering the explicit expressions (29), (30), (31) and (38), one
finds the following set of nested Bethe ansatz equations for the asymptotic magnon momenta,

[
x+
k

x−
k

]−2(L+N− m1
2 − m2

2 )

Φ(λk)

=
N∏

j=1
j �=k

[
S0(λk, λj )S0(λj ,−λk)

(x−
k + x−

j )(x−
k − x+

j )

(x+
k − x−

j )(x+
k + x+

j )

]2

(39)×
2∏

α=1

mα∏
l=1

(x+
k − z−

α,l)(x
+
k + z−

α,l)

(x−
k − z−

α,l)(x
−
k + z−

α,l)
,

N∏
j=1

(z−
α,k + x−

j )

(z−
α,k − x−

j )

(z−
α,k − x+

j )

(z−
α,k + x+

j )
Θ

(
z±
α,k

)

=
nα∏

j=1

(z−
α,k + 1

z−
α,k

− λ̃α,j − i
2g

)

(z−
α,k + 1

z−
α,k

− λ̃α,j + i
2g

)

(z−
α,k + 1

z−
α,k

+ λ̃α,j − i
2g

)

(z−
α,k + 1

z−
α,k

+ λ̃α,j + i
2g

)
,

(40)α = 1,2, k = 1, . . . ,mα,

mα∏
j=1

(λ̃α,k − z−
α,j − 1

z−
α,j

+ i
2g

)

(λ̃α,k − z−
α,j − 1

z−
α,j

− i
2g

)

(λ̃α,k + z−
α,j + 1

z−
α,j

+ i
2g

)

(λ̃α,k + z−
α,j + 1

z−
α,j

− i
2g

)

(41)=
nα∏

j=1
j �=k

(λ̃α,k − λ̃α,j + i
g
)

(λ̃α,k − λ̃α,j − i
g
)

(λ̃α,k + λ̃α,j + i
g
)

(λ̃α,k + λ̃α,j − i
g
)
, α = 1,2, k = 1, . . . , nα.
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The function Θ(z±) is determined by Eq. (32) while Φ(λ) is given by

(42)Φ(λ) =
[(

x+

x−

)2 1

k+
0 (−λ)k−

0 (λ)

]2

,

which contains dependence on the boundary phase factors. As it occurs in the periodic case [27],
Eq. (39) suggests that L′ = L + N − m1

2 − m2
2 should play the role of effective scale encod-

ing the angular momenta of the AdS5 × S5 theory in the light-cone gauge [47]. Concerning the
dependence of the function Φ(λ) with the boundary phase factors k±

0 (λ), we close this sec-
tion remarking that according to the crossing relation analysis of [45] and the strong coupling
study performed in [13], the boundary phase factors depend explicitly on the bulk phase factor
S0(λ,−λ), which is in qualitative agreement with the analysis performed in [48] for long range
open spin chains.

6. Spin chain Hamiltonian

Nowadays it is well known that integrable spin chains with open boundaries can be obtained
in the first order expansion of Sklyanin’s double-row transfer matrix [22]. However, the standard
derivation of such spin chains considers homogeneous transfer matrices whose bulk S-matrix and
reflection matrices exhibit certain properties. In order to derive such spin chain Hamiltonians it
is usually evoked the regularity of the formers,

S12(λ0, λ0) ∼ P12,

(43)K−(λ0) ∼ I,

at a certain value λ0 of the spectral parameter. We recall here that P stands for the permutation
operator while I denotes the identity matrix.

The reflection matrix considered here does not exhibit such property and this fact makes nec-
essary to generalize the mapping proposed by Sklyanin in [22]. Moreover, in the case considered
here the bulk S-matrix does not depend only on the difference of the spectral parameters and this
feature leads us to choose appropriate values of λ0 in order to obtain suitable spin chain Hamil-
tonians. Here we find that a spin chain Hamiltonian with open boundaries can be obtained from
non-regular reflection matrices by considering the logarithmic derivative of the transfer matrix
at a certain point λ0. Here we shall consider the point λ0 = π where the S-matrix satisfy the
following property:

(44)S12(π,π) = S21(π,−π) = −P12.

The property (44) allows us to show that the double-row transfer matrix (8) with inhomogeneities
λj = λ0 = π is given by

(45)T
(
π, {π}) = StrA

[
K+

A(π)
]
K−

1 (π),

and that the derivative of the transfer matrix at the point λ = π can be written as

dT
(
λ, {π})
dλ

∣∣∣∣
λ=π

= −
N−1∑
j=2

StrA
[
K+

A(π)
]
hj,j+1K

−
1 (π) −

N−1∑
j=2

StrA
[
K+

A(π)
]
h̄j,j+1K

−
1 (π)

+ StrA
[
K ′+

A (π)
]
K−

1 (π) − StrA
[
K+

A(π)hN,A
]
K−

1 (π)
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− StrA
[
K+

A(π)
]
h1,2K

−
1 (π) + StrA

[
K+

A(π)
]
K ′−

1 (π)

(46)− StrA
[
K+

A(π)
]
K−

1 (π)h̄1,2 − StrA
[
K+

A(π)h̄N,A
]
K−

1 (π).

In expression (46) the terms K ′±(π) denote the first derivative of the reflection matrices at the
point λ = π , i.e. K ′±(π) = dK±(λ)

dλ
|λ=π , while the two site Hamiltonians hi,j and h̄i,j are defined

as

(47)hi,j = Pij

dSij (λ,π)

dλ

∣∣∣∣
λ=π

and h̄i,j = Pij

dSij (π,−λ)

dλ

∣∣∣∣
λ=π

.

It is also important to emphasize here that we have only used the permutator algebra in order to
obtain relations (45) and (46).

With the above considerations the spin chain Hamiltonian defined as H = d lnT (λ,{π})
dλ

|λ=π =
T (π, {π})−1 dT (λ,{π})

dλ
|λ=π turns out to be given by

H = −
N−1∑
j=1

hj,j+1 −
N−1∑
j=1

h̄j,j+1 − (
K−

1 (π)
)−1[

h1,2,K
−
1 (π)

] + (
K−

1 (π)
)−1

K ′−
1 (π)

(48)− StrA[K+
A(π)hN,A]

StrA[K+
A(π)] − StrA[K+

A(π)h̄N,A]
StrA[K+

A(π)] + StrA[K ′+
A (π)]

StrA[K+
A(π)] .

At this point it is worthwhile to make some comments concerning the Hamiltonian H. In the
case considered here the bulk terms satisfy hi,j = h̄i,j but the derivation of (48) does not rely
on this property. In contrast to the standard Hamiltonians derived from regular solutions of the
reflection equation, the main feature of Hamiltonian (48) is the residual interaction between the
bulk term h1,2 and the boundary element K−

1 (π). We remark here that integrable spin chains with
interactions between the bulk term h1,2 and boundary terms acting in the site 1 had appeared
previously in the context of gauge theories describing the one-loop anomalous dimensions of
giant gravitons in the SO(6) sector of the N = 4 super-Yang–Mills [10]. Although the terms
appearing in [10] do not seem to be equivalent to the ones in (48), it would be interesting to
investigate if such kind of spin chain with open boundaries can arise from non-regular solutions
of the reflection equations or more general realizations of the reflection algebras. With respect to
the cases where the reflection matrix is regular, it is straightforward to see that Hamiltonian (48)
reduces to the standard form originally derived in [22].

7. Concluding remarks

This work is mainly concerned with the derivation of the Bethe ansatz equations for particles
interacting through a S-matrix invariant with respect to the centrally extended su(2|2) Lie super-
algebra, whose interactions with the boundaries belong to a smaller symmetry algebra, namely
the superalgebra su(1|2).

The su(1|2) reflection matrices are derived from a quantum group like approach introduced
in [36], which provides a more solid ground for the method used by Hofman and Maldacena [13].
The associated double-row inhomogeneous transfer matrix was diagonalized by means of the
algebraic Bethe ansatz which allowed us to derive the quantization rule on the half line for the
asymptotic momenta of magnons interacting through the su(2|2)⊗su(2|2) S-matrix and reflected
by a rigid wall described by a su(1|2) ⊗ su(1|2) boundary S-matrix. These asymptotic Bethe
ansatz equations may be of importance for the study of the spectrum of open strings in AdS5 ×S5

background attached to the called Y = 0 giant graviton brane in the thermodynamic limit.



678 W. Galleas / Nuclear Physics B 820 [FS] (2009) 664–681
Here we have considered only the reflection matrix associated to the Y = 0 giant graviton
brane. However, the Z = 0 case described by a su(2|2) ⊗ su(2|2) reflection matrix was also
studied in Ref. [13] and it would be interesting to investigate if it can be approached in the same
fashion, as well as their q-deformed cases presented in [49].

Although the centrally extended su(2|2) S-matrix is equivalent to Shastry’s R-matrix, the
integrable boundaries considered here are different from the ones previously obtained for the one-
dimensional Hubbard model [29,31]. From the perspective of the centrally extended su(2|2) Lie
superalgebra, these differences could be understood as follows. The energy ε and the momenta
λ are elements of the algebra and they are given in terms of the variables x± by

(49)ε = ig

2

(
x− − 1

x− − x+ + 1

x+

)
, eiλ = x+

x− .

The reflection mapping considered here, x± → −x∓, corresponds to (ε, λ) → (ε,−λ) while
the reflection mapping adopted in [29,31] is x± → − 1

x∓ due to the specific parameterization
employed. The latter corresponds to (ε, λ) → (−ε,λ) which could be thought as a particle being
converted in an anti-particle when it hits the boundaries. Although the momenta λ is not inverted
in that case, we would like to remark that reflection matrices describing the reflection of a particle
with the boundary which comes back as an anti-particle have been considered previously in the
literature [50].

From the point of view of the Quantum Inverse Scattering Method with open boundaries,
the reflection matrix considered here exhibits the peculiar feature of being non-regular. As far
as we know, the derivation of spin chain Hamiltonians with open boundaries associated to such
reflection matrices was not known in the literature. For instance, a variety of regular solutions
of the reflection equation is known for q-deformed Lie algebras and superalgebras [51] and
super-Yangians [52], and we hope the possibility of deriving integrable open spin chains from
non-regular K-matrices presented here to motivate the search for such solutions.
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Appendix A. Spectral equivalences

In this appendix we demonstrate the equivalence of our results for reflection matrices (16),
(17) with results previously presented in the literature [13,32]. We shall make use of gauge trans-
formations in order to show that the associated double-row transfer matrices are related by a
similarity transformation and thus they possess the same spectrum.

In order to establish this spectral equivalence we firstly recall the definition (8) for the double
row-transfer matrix,

T
(
λ, {λj }

) = StrA
[
K+

A(λ)SAN(λ,λN) · · ·SA1(λ,λ1)

(A.1)× K−
A(λ)S1A(λ1,−λ) · · ·SN A(λN,−λ)

]
.
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Next, we proceed by inserting terms E A E −1
A and F A F −1

A in between the elements of double-row
operator (A.1) in the following way,

T
(
λ, {λj }

) = StrA
[
K+

A(λ)EA E −1
A SAN(λ,λN)E A E −1

A · · · E A E −1
A SA1(λ,λ1)E A E −1

A
× K−

A(λ)F A F −1
A S1A(λ1,−λ)F A F −1

A · · · F A F −1
A SN A(λN,−λ)F A F −1

A
]
,

(A.2)

which can be more conveniently rearranged as

T
(
λ, {λj }

) = StrA
[(

F −1
A K+

A(λ)EA
)(

E −1
A SAN(λ,λN)E A

) · · · (E −1
A SA1(λ,λ1)E A

)
× (

E −1
A K+

A(λ)F A
)(

F −1
A S1A(λ1,−λ)F A

) · · · (F −1
A SN A(λN,−λ)F A

)]
.

(A.3)

Considering a similarity transformation in the quantum space generated by

(A.4)U =
N⊗

j=1

Ej

under the assumption that Ej = Ej (λj ), EA = EA(λ) and F A = EA(−λ), we are left with a
transformed transfer matrix T̃ (λ, {λj }) = U −1T (λ, {λj })U given by

T̃
(
λ, {λj }

) = StrA
[
K̃+

A(λ)S̃AN(λ,λN) · · · S̃A1(λ,λ1)

(A.5)× K̃−
A(λ)S̃1A(λ1,−λ) · · · S̃N A(λN,−λ)

]
,

where we have defined the elements

S̃Aj (λ,λj ) = E −1
A (λ)E −1

j (λj )SAj (λ,λj )E A(λ)Ej (λj ),

K̃+
A(λ) = E −1

A (−λ)K+
A(λ)EA(λ),

(A.6)K̃−
A(λ) = E −1

A (λ)K−
A(λ)EA(−λ).

One can verifies that the set of transformations described by relations (A.6) preserves both the
Yang–Baxter relation (1) and reflection equations (11) and (12). Furthermore, by choosing

(A.7)EA(λ) =
⎛
⎜⎝

ei λ
4 0 0 0

0 1 0 0
0 0 1 0
0 0 0 ei λ

4

⎞
⎟⎠

one finds

(A.8)K̃−
A(λ) =

⎛
⎜⎝

−e−iλ 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎠

and K̃+
A(λ) = K̃−

A(−λ), which are precisely the reflection matrices described by Hofman and
Maldacena in [13].
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On the other hand, by setting

(A.9)EA(λ) =
⎛
⎜⎝

0 e−i λ
4 0 0

0 0 0 1
0 0 1 0

ei 3
4 λ 0 0 0

⎞
⎟⎠

we are left with the transformed reflection matrices

(A.10)K̃−
A(λ) =

⎛
⎜⎝

e−iλ 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎠

and K̃+
A(λ) = K̃−

A(−λ) which coincides with the results of [32].
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