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1. Introduction

As emphasized by Gross and Sloan [1], superstring scattering amplitudes are useful

to derive the low energy effective action of its massless modes. For example, it allows one

to obtain stringy corrections to the Yang-Mills and Einstein-Hilbert actions [2].

Up to the year 2000 these computations were done using either the Ramond-Neveu-

Schwarz (RNS) [3] or Green-Schwarz (GS) [4] formulation in ten-dimensional flat back-

ground. In the open (closed) superstring, the tree and one-loop four-gluon (four-graviton)

amplitudes lead to an infinite series of higher derivative corrections starting with the

well-known t8F
4 (t8t8R

4) interaction terms [2][5]. After several years of efforts, the cor-

responding corrections were finally computed at the two-loop level in a series of papers

by D’Hoker and Phong (see [6] and references therein), starting with terms of the form

t8D
2F 4 (t8t8D

4R4).

The results above were obtained for the bosonic amplitudes in the NS and NS-NS

sectors. While the fermionic four-point amplitudes involving strings in the R sector are

known at tree- and one-loop levels, the two-loop computations using the gauge slice in-

dependent methods of [6] are still lacking in the RNS formalism. The problems involving

fermionic amplitudes present a major complication to the supersymmetric completion to

string effective actions and the analysis of higher-order derivative corrections for RR gauge

fields (see e.g. [7]).

This state of affairs, however, started to change with the proposal of the pure spinor

formalism [8]. It does not suffer from the inherent difficulties of the RNS and GS for-

mulations responsible for the status quo concerning two-loop fermionic amplitudes. It

accomplishes that by having manifest space-time supersymmetry together with a Lorentz

invariant BRST quantization procedure3.

It was soon realized that tree-level amplitudes computed using this new formalism

were equivalent to RNS results [10]. When the multiloop prescription came into existence

four years later, it was readily used to obtain a non-renormalization theorem4 regarding

the R4 term in the effective action [14] and the two-loop massless four-point amplitude [15]

of the type IIB superstring. The two-loop kinematic factor derived in [15] was expressed as

3 The usefulness of the PS formalism is of course not restricted to amplitude calculations, see

e.g. the review [9].
4 This theorem was later extended in [11] (see also [12]) and used by Green, Russo and Vanhove

[13] to argue that N = 8 SUGRA is finite up to 8 loops.
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an integral over pure spinor superspace [16] and was subsequently shown [17] to agree with

the two-loop RNS computations of D’Hoker and Phong [6]. Furthermore, explicit bosonic

computations also proved the PS/RNS equivalence at one loop [18] and were followed by

calculations involving fermionic external states in [19].

In 2008, several manipulations in pure spinor superspace were used to prove that the

massless four-point amplitudes at tree-level and at one and two loops are all related to

each other [20], being proportional (up to Mandelstam invariants) to the same tree-level

kinematic factor. With the identities of [20], the knowledge of all bosonic and fermionic

four-point scattering amplitudes up to two loops was obtained altogether simply by pos-

sessing the complete tree-level result.

By the end of 2005, Berkovits proposed an extension of the pure spinor formalism

by introducing non-minimal variables, which resulted in a simplified expression for the

b-ghost [21]. In this non-minimal formalism, the b-ghost is one of the generators of a

ĉ = 3 N = 2 topological algebra, and it is “simpler” than the corresponding b-ghost of

the minimal formalism, albeit still “complicated” due to its composite nature, with poles

in 1/(λλ). It was already argued in [21] that multiloop amplitudes computed using the

new topological methods should be equivalent to the results computed in the minimal

formalism, and that was verified by some explicit amplitude computations in [22]5.

With the non-minimal pure spinor framework being simpler than its version of five

years earlier and having a prescription which is in principle valid to all-loop orders [24],

a renewed computation of superstring scattering amplitudes is a task worth pursuing and

holds the potential to increase our understanding of stringy corrections to low-energy

effective actions (see e.g. the treatment of tree-level four-point amplitudes in [25]).

From the inner perspective of the non-minimal pure spinor formalism, the straightfor-

ward way with which the expressions for the massless four-point amplitudes were obtained

(up to two loops) is related to the fact that in these cases only the zero modes of the b-ghost

played a rôle. This allowed the amplitudes in pure spinor superspace to be determined

essentially by powerful symmetry arguments [14][15][22].

The motivation which started this paper was to test the abilities of the pure spinor

formalism in a situation where not only the b-ghost zero-modes would (in principle) con-

tribute. In view of the complicated nature of the b-ghost, that motivation was deemed to

5 There exists now a formal proof of NMPS/PS equivalence by Hoogeveen and Skenderis [23].
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be another non-trivial test whose result was worth knowing. At the same time, the knowl-

edge about higher-point amplitudes involving fermionic external states would benefit in

case of a successful outcome. As we will show, the (non-minimal) pure spinor formalism6

withstands the test and leads to a simple answer in pure spinor superspace.

This paper is organized as follows. In section 2 we recall the prescription of the PS

formalism for the computation of the open superstring one-loop amplitude. We propose

simplified expressions for the pure spinor integration measures and the normalization factor

N (y) to facilitate explicit computations, allowing one to identify a shortcut which can be

taken to integrate out the wα, wα and sα variables. In section 3 we prove the vanishing of

the contributions coming from the non zero-modes of the b-ghosts and obtain the kinematic

factor of this five-point amplitude as a (rather large) expression in pure spinor superspace,

relegating the detailed calculations to Appendix B. We then prove its gauge invariance

by showing that the gauge variation is a total derivative which vanishes by the cancelled

propagator argument. In section 4 we simplify the answer of section 3 by using further

pure spinor manipulations to the point of being able to identify a simple form for the

massless five-point kinematic factor,

K5 =

5
∑

j=2

L1jη(z1, zj) +
∑

2≤i<j≤5

Kijη(zi, zj)

where

L12 = −
〈[

(λA1)(k1 · A2) + A1
p(λγpW 2)

]

(λγmW 5)(λγnW 3)F4
mn

〉

K25 = −
〈

(λA1)
[

(λγmW 2)(k2 · A5) −
1

4
(λγmγrsW 5)F2

rs

]

(λγnW 3)F4
mn

〉

− (2 ↔ 5)

and similarly for other choices of labels. The above two expressions can be understood as

coming from the OPE computation of the natural generalization

〈

(λA1)(λγmW 2)(λγnW 3)F4
mn U5

〉

(1.1)

of the massless four-point kinematic factor 〈(λA1)(λγmW 2)(λγnW 3)F4
mn〉.

6 In the this paper we will simply refer to the non-minimal pure spinor formalism as “pure

spinor formalism” (PS).
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In section 5 we calculate the (bosonic) component expansion of the “kinematic fac-

tor” (1.1) and show that it agrees, up to total derivative terms, with previous (bosonic7)

five-point results [28][29][30][31]. We also compute some two- and four-fermion terms.

In Appendix A we review8 the covariant (i.e. without relying on a U(5) decomposition

as in [22]) proof of equivalence between the minimal and non-minimal one-loop massless

four-point amplitude, as similar manipulations will be used again in the five-point kine-

matic factor computation of Appendix B. In Appendix C – for completeness – we show

how to covariantly compute expressions of the form 〈λ4λθ5〉 and in Appendix D we present

the technicalities needed when computing component expansions of pure spinor superspace

expressions. In particular, the kinematic reduction algorithms of [19] are expanded to deal

with the structures appearing at five-points. They are well-suited for implementations

using a computer algebra system such as FORM [33][34] and/or Mathematica (using Ulf

Gran’s GAMMA package [35]).

2. The scattering amplitude prescription

The non-minimal pure spinor formalism prescription for the massless five-point open

superstring amplitude at one-loop is given by [21]

A =
∑

top

∫

dt
〈

N (y)
(

∫

d2wµ(w)b(w)
)

V 1(0)
5

∏

I=2

∫

dzIU
I(zI)

〉

. (2.1)

Here V 1(z) = λαA1
α(x, θ) denotes the unintegrated vertex operator and

U(z) = ∂θαAα(x, θ) + Am(x, θ)Πm + dαWα(x, θ) +
1

2
NmnF

mn(x, θ) (2.2)

the integrated vertex operator, µ(w) is the Beltrami differential with conformal weight

(1,−1) and the sum is over the three Riemann surfaces which describe the one-loop in-

teraction of open strings: the planar and non-planar cylinders and the Möbius strip. The

b-ghost b(w) is a composite field whose expression reads [21],

b = sα∂λα +
2Πm(λγmd) − Nmn(λγmn∂θ) − J(λ∂θ) − (λ∂2θ)

4(λλ)
(2.3)

7 We also acknowledge the existence of fermionic results obtained by Lin et al. [26] using the

methods of Atick and Sen [27], but we have not tried to bring their results to a form which could

be readily compared to the fermionic results obtained from (1.1). As the pure spinor formalism

is manifestly supersymmetric, we are guaranteed that once the bosonic amplitudes are verified to

be correct then so are the fermionic ones.
8 This covariant proof was first obtained in [32].
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+
(λγmnpr)(dγmnpd + 24NmnΠp)

192(λλ)2
−

(rγmnpr)(λγmd)Nnp

16(λλ)3
+

(rγmnpr)(λγpqrr)NmnN qr

128(λλ)4
.

The factor N (y) is needed to regularize the integration over the non-compact domain of

the pure spinors, and we will use

N = exp
[

− (λλ) − (rθ) − (ww) + (sd)
]

= exp({Q, χ}) for χ = −(λθ) − (ws) (2.4)

This regularization is different from the one presented in [21] because our choice of χ is not

gauge invariant. However, as it is still valid that N (y) = 1 + QΩ for some Ω, the integral

will be independent of the choice for χ.

The evaluation of (2.1) will give rise to an expression of the form

A =

∫

[dλ][dλ][dr][dw][dw][ds](d16d)d16θN f(r, θ),

where the non-zero modes have already been integrated out through their OPEs. The zero

modes are to be integrated with the following measures9:

[dλ] = (λλ)−3(ǫ16 · d
11λ)κ1...κ5

(λγm)κ1(λγn)κ2(λγp)κ3(γmnp)
κ4κ5 (2.5)

[dλ] = (λλ)−3(ǫ16 · d
11λ)κ1...κ5(λγm)κ1

(λγn)κ2
(λγp)κ3

(γmnp)κ4κ5
(2.6)

[dr] = ǫα1...α11κ1...κ5
(λγm)κ1(λγn)κ2(λγp)κ3γκ4κ5

mnp ∂α1

r . . .∂α11

r (2.7)

[dw] = (λγm)κ1
(λγn)κ2

(λγp)κ3
(γmnp)κ4κ5

ǫκ1...κ5ρ1...ρ11dwρ1
. . .dwρ11

(2.8)

[dw] = (λγm)κ1(λγn)κ2(λγp)κ3(γmnp)
κ4κ5 ǫκ1...κ5α1...α11

dwα1 . . .dwα11 (2.9)

[ds] = (λλ)−3(λγm)κ1
(λγn)κ2

(λγp)κ3
(γmnp)κ4κ5

ǫκ1...κ5ρ1...ρ11∂s
ρ1

. . .∂s
ρ11

(2.10)

Note that the measure (2.8) is gauge invariant under δwα = (λγm)αΩm due to

(dλγq)[δ1
(λγm)κ1

(λγn)κ2
(λγp)κ3

(γmnp)κ4κ5] = 0, because there is no vector representa-

tion in the decomposition of λ4θ6.

Apart from an overall coefficient which is not determined, one can use a shortcut to

perform the integrations over [dw], [dw] and [ds]. At one loop there are eleven zero modes

of sα, which can only10 come from ten factors of the term (s(0)d(0)) in the regulator N .

9 They are written slightly differently from the original expressions of [21] (see e.g. [32])
10 The term sα∂λα of the b-ghost does not contribute because there is no wα in the external

vertices to kill the non zero-modes of ∂λα.
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Therefore the remaining five dα zero modes must come from the b-ghost and the external

vertices. By ghost number conservation we obtain
∫

d16d[dw][dw][ds]e−(ww)+(sd)−(λλ)−(rθ)d(0)
κ1

. . .d(0)
κ5

fκ1...κ5(r, θ) = (λ3)[κ1...κ5]f
κ1...κ5(r, θ)

where (λ3)[κ1κ2κ3κ4κ5] is some tensor with five antisymmetric free indices containing three

pure spinors. The unique such tensor is proportional to (λγm)κ1
(λγn)κ2

(λγp)κ3
(γmnp)κ4κ5

.

One can thus see that the net effect of evaluating the pure spinor measures [dw], [dw], [ds]

and d16d is to replace the five d
(0)
α zero-modes from the b-ghost and external vertices by

d(0)
κ1

d(0)
κ2

d(0)
κ3

d(0)
κ4

d(0)
κ5

−→ (λγm)κ1
(λγn)κ2

(λγp)κ3
(γmnp)κ4κ5

. (2.11)

3. The massless five-point amplitude computation

3.1. Zero mode saturation and OPEs

The five dα zero modes from the b-ghost and the external vertices appearing in (2.11)

can be obtained by four distinct ways. Each one of them will imply a different “kinematic

factor”,

I1 =
1

2

〈Πm(z0)

(λλ)
(λγmd(0))(λA1)(d(0)W 2)(d(0)W 3)(d(0)W 4)(d(0)W 5)

〉

I2 = −
1

16

〈 (rγmnpr)

(λλ)3
(λγmd(0))Nnp(z0)(λA1)(d(0)W 2)(d(0)W 3)(d(0)W 4)(d(0)W 5)

〉

I3 =
1

96

〈 (λγmnpr)

(λλ)2
(d(0)γmnpd̂(z0))(λA1)(d(0)W 2)(d(0)W 3)(d(0)W 4)(d(0)W 5)

〉

I4 =
1

192

〈 (λγmnpr)

(λλ)2
(d(0)γmnpd(0))(λA1)(d(0)W 2)(d(0)W 3)(d(0)W 4)

×
(

A5
qΠ

q + (d̂W 5) +
1

2
NmnF5

mn

)

〉

+ cycl(2345), (3.1)

where we have written dα(z) = d
(0)
α ω(z)+d̂α(z), with ω(z) being the holomorphic one-form

and d
(0)
α the 16 zero modes of dα. In the expressions above one has to integrate out the

conformal weight one variables through their OPEs and use the measures (2.5) – (2.10)

to deal with the remaining zero modes, but we have omitted them as it is clear from the

context that they are there11.

11 We also don’t write the integration over the vertex positions in most of our formulae to avoid

cluttering. One should note that the expressions we call “kinematic factors” also depend on the

coordinates zj of the vertices, so that is a slight abuse of terminology.
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As discussed in [36], if the scalar propagator is f(z, w) = 〈X(z, z)X(w, w)〉 then

the OPE of a (1, 0)-system with the zero modes projected out is given by −∂zf(z, w).

Furthermore one can show that up to terms which drop out of correlation functions [37]

the function f(z, w) in the torus is given in terms of the prime form E(z, w) by

f(z, w) = − ln(|E(z, w)|2) + 2π
(Im(z − w))2

Imτ
, (3.2)

whereas for the cylinder and Möbius strip it is obtained through proper identifications

under involutions [37]. We also define the η(z, w) function by

〈d̂(z)θ(w)〉 = −〈Π(z)X(w, w)〉 = −
∂

∂z
f(z, w) ≡ η(z, w), (3.3)

and the explicit expansions of both E(z, w) and η(z, w) in terms of Jacobi theta functions

will not be needed here but they can be deduced from the formulae in [38].

3.2. The vanishing of b-ghost OPEs

We begin by noticing that after the OPEs are computed in I1, I2 and I3 the result is

actually a total derivative in w,

I1 + I2 + I3 ∝

∫

d2w
5

∑

j=2

K0jη(w, zj) exp
[

5
∑

i<j

(ki · kj)f(zi, zj)
]

∝

∫

d2w
∂

∂w

[

5
∑

j=2

K0jf(w, zj) exp
[

5
∑

i<j

(ki · kj)f(zi, zj)
]

]

, (3.4)

for some kinematic factors K0j, where w and zj are the positions of the b-ghost and the

external vertices, respectively. In (3.4) we used (3.3) and reinstated the integral over w

because it will be needed to prove that it vanishes for the topologies considered in (2.1). At

this point it is instructive to see what one would obtain if the Riemann surface in (3.4) were

the torus instead of, say, the cylinder. In this case the integration in (3.4) clearly vanishes

because there can’t be any contribution from non-trivial cycles, as the function f(w, zj) is

doubly periodic over the torus. Now to see the vanishing of (3.4) for the cylinder one has

to notice12 that the b-ghost in
∫

d2w b(w) is already implicitly defined via the “doubling

trick” to live in the double of the cylinder, which is the torus. So if the cylinder is the

region [37]

0 ≤ Re(w) ≤ π, w ∼ w + 2πit,

12 CRM would like to thank Nathan Berkovits for discussions on this point.
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then both b(w) and b̃(w) are defined only in this region. The doubling trick in this case,

however, consists in trading b(w) and b̃(w) by an augmented b(w) defined also in the

reflected region −π ≤ Re(w) ≤ 0, through the following identification

b(w) = b̃(w′), −π ≤ Re(w) ≤ 0, w′ = −w.

Now the integral of (3.4) over this “doubled cylinder” results in two contributions over

the boundaries at Re(w) = ±π, which cancel each other out because of the periodicity

f(w, zj) = f(w + 2π, zj).

3.3. The kinematic factor in pure spinor superspace

As shown above, there are no contributions from I1, . . ., I3 and therefore the five-point

kinematic factor is obtained entirely from I4. This will be done by computing the OPEs

between the conformal weight-one variables and using (2.11) to deal with the remaining five

dα zero-modes. Considering first the OPEs which do not involve the (fixed) position of the

unintegrated vertex we restrict our attention to the terms proportional to e.g., η(z2, z5),

〈(λγmnpr)

(λλ)2
(dγmnpd)(λA1)(dW 2)(dW 3)(dW 4)(A5

qΠ
q + (d̂W 5))

〉

+ (2 ↔ 5)

= η(z5, z2)L52 + η(z2, z5)L25 ≡ η(z2, z5)K25

where, upon restoring the suppressed notation,

K25 =

∫

[dλ][dλ][dr]e−(λλ)−(rθ) (λγmnpr)

(λλ)2

[1

4
(λA1)(λγmγrsW 5)(λγnW 3)(λγpW 4)F2

rs

− k2
q(λA1)(λγmW 2)(λγnW 3)(λγpW 4)A5

q

]

− (2 ↔ 5) . (3.5)

To arrive at (3.5) one uses (2.11) and notes that η(z2, z5) = −η(z5, z2). Finally from

rαǫ−(rθ) = −Dαǫ−(rθ) one can replace rα by Dα in (3.5). So we have expressed the one-

loop kinematic factor computation in terms of a tree-level pure spinor superspace integral,

which is amenable to various simplifications through the use of pure spinor identities. As

will become clear during the computations, the presence of λα in the superspace inte-

gral (3.5) will not play an important role: Using sufficiently many pure spinor superspace

manipulations, they can always be seen to appear as factors of (λλ) in the terms which

contribute to the kinematic factor13

13 As a consequence – once we prove that the the λαλβ pair appear contracted as (λλ) – we

essentially ignore their presence in our formulae, as they will only affect the overall coefficient.
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The task is now to compute

(λλ)2K25 =
1

4

〈

(λγmnpD)
[

(λA1)F2
rs(λγmγrsW 5)(λγnW 3)(λγpW 4)

]〉

(3.6)

−
〈

(λγmnpD)
[

(k2 · A5)(λA1)(λγmW 2)(λγnW 3)(λγpW 4)
]〉

− (2 ↔ 5) .

As shown in Appendix B by using the action of the BRST operator

QFmn = 2k[m(λγn]W ), QWα =
1

4
(λγmn)αFmn, QAm = (λγmW ) + km(λA) ,

the pure spinor constraint (λγmλ) = 0 and various gamma matrix identities we obtain

(λλ)2K25 = −16
〈

(λλ)(λA1)(λγmW 2)(λγnW 4)F3
mn(k2 · A5)

〉

+ 4
〈

(λλ)(λA1)(λγmγrsW 5)(λγnW 4)F2
rsF

3
mn

〉

− 12
〈

(λλ)(λA1)(λγmW 2)(λγnW 3)F4
mn(k2 · A5)

〉

+ 3
〈

(λλ)(λA1)(λγmγrsW 5)(λγnW 3)F2
rsF

4
mn

〉

− 12
〈

(λλ)(λA1)(λγmW 3)(λγnW 4)F2
mn(k2 · A5)

〉

− 24k2
m

〈

(λλ)(λA1)(λγ[mW 3)(λγn]W 4)(W 5γnW 2)
〉

− 12
〈

(λλ)(λA1)(λγ[mW 3)(λγn]W 4)F2
mtF

5
nt

〉

+ 2(k2 · k5)
〈

(λA1)(λA5)(λγmW 2)(λγnW 4)(λγmnW 3)
〉

+ 2(k2 · k5)
〈

(λλ)(λA5)(λγmW 2)(λγnW 4)(A1γmnW 3)
〉

− 2(k2 · k5)
〈

(λλ)(λA1)(λγmW 2)(λγnW 4)(A5γmnW 3)
〉

− (2 ↔ 5) (3.7)

As mentioned before, the pure spinor λα appears only in overall factors of (λλ) except

for one term – which will turn out to be part of a total derivative, as also shown in

Appendix B. However (3.7) is not a “simple” expression by any standard, and it would

be desirable to seek for cancellations of terms by manipulations in pure spinor superspace.

This will be done after we prove the gauge invariance of the amplitude.

3.4. Gauge invariance

The one-loop scattering amplitude prescription in the non-minimal pure spinor for-

malism [21] uses one non-integrated vertex operator and therefore is not manifestly gauge

invariant. Nevertheless gauge invariance can be proved after the integration over the ver-

tex operator positions is performed, as one can easily verify from the prescription. One
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can also see this explicitly for the kinematic factor (3.7) as follows. From the five-point

amplitude prescription of (2.1) it follows that under the gauge variation of δA1
α = DαΩ1,

δA =

∫

dt
〈

N

∫

(b · µ)Ω1

∫

U2

∫

U3

∫

U4

∫

∂(λA5)
〉

+ cycl(2345) = 0. (3.8)

In the above we “integrated the BRST charge by parts”, used the identity QU5 = ∂(λA5)

[8] and the fact that the contribution from {Q, b} = T vanishes identically due to the lack

of dα zero modes [22]. Furthermore, the vanishing of (3.8) is justified by the cancelled

propagator argument. Using ∂(λA5) = ∂θα∂α(λA5) + Πmk5
m(λA5) one gets the terms

proportional to η(z2, z5),

(k2 · k5)
〈

(λγmnpD)
[

Ω1(λA5)(λγmW 2)(λγnW 3)(λγpW 4)
]〉

− (2 ↔ 5) ≃ 0 (3.9)

where we used (2.11). The ≃ sign is to remember that the expression vanishes after

integration over the positions (we omitted the integral signs to avoid cluttering). Similar

manipulations to the ones of appendix A lead to

〈

(λγmnpD)
[

Ω1(λA5)(λγmW 2)(λγnW 3)(λγpW 4)
]〉

=
〈

(λγmnpD)
[

(λA5)Ω1
]

(λγmW 2)(λγnW 3)(λγpW 4)
〉

+ 12(λλ)
〈

Ω1(λA5)
[

(λγmW 2)(λγnW 3)F4
mn + cycl(234)

]〉

(3.10)

and
〈

(λγmnpD)
[

(λA5)Ω1
]

(λγmW 2)(λγnW 3)(λγpW 4)
〉

= 4(λλ)
〈

Ω1(λA5)(λγmW 2)(λγnW 4)F3
mn

〉

+ 2
〈

(QΩ1)(λγmW 2)(λγnW 4)
[

(λA5)(λγmnW 3) − (λλ)(A5γmnW 3)
]〉

+ 2
〈

(λλ)(λA5)(λγmW 2)(λγnW 4)(W 3γmnD)Ω1
〉

. (3.11)

From (3.9), (3.10) and (3.11) it follows that δA = η(z2, z5)δK25 ≃ 0, where

(λλ)δK25 = +16(k2 · k5)
〈

Ω1(λA5)(λγmW 2)(λγnW 4)F3
mn

〉

+ 12(k2 · k5)
〈

Ω1(λA5)(λγmW 2)(λγnW 3)F4
mn

〉

+ 12(k2 · k5)
〈

Ω1(λA5)(λγmW 3)(λγnW 4)F2
mn

〉

+ 2(k2 · k5)
〈

(QΩ1)(λA5)(λγmW 2)(λγnW 4)(λγmnW 3)
〉

+ 2(k2 · k5)
〈

(λA5)(λγmW 2)(λγnW 4)(W 3γmnD)Ω1
〉

(3.12)

− 2(k2 · k5)
〈

(QΩ1)(λγmW 2)(λγnW 4)(A5γmnW 3)
〉

− (2 ↔ 5).
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Now it remains to be shown that (3.12) is identical to the gauge variation of (3.7). To see

this one uses
〈

(QΩ1)(λγmW 2)(λγnW 4)F3
mn(k2 · A5)

〉

= −
〈

Ω1(λγmW 2)(λγnW 4)F3
mn

[

k2
r(λγrW 5) + (k2 · k5)(λA5)

]〉

, (3.13)

and
〈

(QΩ1)(λγmγrsW 5)(λγnW 4)F2
rsF

3
mn

〉

− (2 ↔ 5)

= −4k2
r

〈

Ω1(λγrW 5)(λγmW 4)(λγnW 2)F3
mn

〉

− (2 ↔ 5), (3.14)

where the explicit antisymmetry in [25] is important, otherwise there would be extra terms.

Furthermore,

−k2
m

〈

(QΩ1)(λγ[mW 3)(λγn]W 4)(W 5γnW 2)
〉

= −k2
m

〈

Ω1(λγ[mW 3)(λγn]W 4)
[

(λγtW 2)F5
nt − (λγtW 5)F2

nt

]〉

and finally

−
〈

(QΩ1)(λγ[mW 3)(λγn]W 4)F2
mtF

5
nt

〉

= +
〈

Ω1(λγ[mW 3)(λγn]W 4)
[

(λγtW 2)k2
mF5

nt − (λγtW 5)k5
mF2

nt

]〉

(3.15)

From the above results one obtains the gauge variation of (3.7). It reads

(λλ)δK25 = + 16(k2 · k5)
〈

Ω1(λA5)(λγmW 2)(λγnW 4)F3
mn

〉

+ 12(k2 · k5)
〈

Ω1(λA5)(λγmW 2)(λγnW 3)F4
mn

〉

+ 12(k2 · k5)
〈

Ω1(λA5)(λγmW 3)(λγnW 4)F2
mn

〉

+ 2(k2 · k5)
〈

(QΩ1)(λA5)(λγmW 2)(λγnW 4)(λγmnW 3)
〉

+ 2(k2 · k5)
〈

(λA5)(λγmW 2)(λγnW 4)(W 3γmnD)Ω1
〉

(3.16)

− 2(k2 · k5)
〈

(QΩ1)(λγmW 2)(λγnW 4)(A5γmnW 3)
〉

− (2 ↔ 5)

and it is equal to (3.12), as was expected. To get (3.16) from (3.7) we also used that

k2
r

〈

Ω1(λγrW 5)(λγmW 3)(λγnW 4)F2
mn

〉

+ 2k2
m

〈

Ω1(λγ[mW 3)(λγn]W 4)(λγtW 5)F2
nt

〉

= 0,

(3.17)

which can be proved by writing F2
nt = k2

nA2
t −k2

t A2
n and noting the vanishing of the factor

containing k2
mk2

n due to the antisymmetry over [mn]. Therefore the second term of (3.17)

is equal to

−2
〈

Ω1(λγ[mW 3)(λγn]W 4)(λγtW 5)k2
mk2

t A2
n

〉

= −k2
t

〈

Ω1(λγtW 5)(λγmW 3)(λγnW 4)F2
mn

〉

,

which cancels the first.
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4. Simplifying the answer

As one can see from (3.7) the kinematic factor is a bit awkward and it would be

desirable to simplify it using pure spinor superspace identities. This is accomplished in

Appendix B, where among other things we identified and dropped total derivative terms

in (3.7), which simplifies to

K25 = −40
〈

(λA1)
[

(λγmW 2)(k2·A5)−
1

4
(λγmγrsW 5)F2

rs

]

(λγnW 3)F4
mn

〉

−(2 ↔ 5). (4.1)

One should note the absence of λα in the rhs of (4.1), which is a remarkable fact

in view of (3.5). That makes of (4.1) a truly tree-level pure spinor superspace integral,

which is readily evaluated using the measure 〈(λγmθ)(λγnθ)(λγpθ)(θγmnpθ)〉 = 1 and the

method described in the appendix of [22] (see also other methods in [19]). The gauge

transformation of (4.1) under δA1
α = DαΩ1 is simply

(λλ)δK25 = 40(k2 · k5)〈Ω1(λA5)(λγmW 2)(λγnW 3)F4
mn〉 − (2 ↔ 5), (4.2)

where we used (λγmγrsW 5)k2
r(λγsW

2) = 2k2
r(λγmW 2)(λγrW 5) [20]. Furthermore one

can observe that (4.1) is the result of computing the z5 → z2 OPE in

40
〈

(λA1)(λ0γmW 2)(λ0γnW 3)F4
mnU5

〉

(4.3)

with the restriction that the pure spinors in (λγmW 2) and (λγnW 3) have no non-zero

modes, but (λA1) has. These λα non zero-modes can be understood by noticing that

except for the pure spinor appearing in the non-integrated vertex – which comes from the

amplitude prescription – the others are the zero-modes of λα which appear in the measures

(2.5) – (2.10). Having found (4.3), the generalization to the scattering of closed strings

almost suggests itself and could be used to check the (t8t8 ± ǫ10ǫ10)R
4 sign issue (see e.g.

[29]).

Motivated by the simplicity of (4.3), we now investigate whether this single correlator

can reproduce the other contributions to the amplitude as well. Using (4.3) and the

identities of [20] one can easily compute the OPEs involving the position of the unintegrated

vertex. For example, the computation as z5 → z1 leads to

L15 = −40
〈[

(λA1)(k1 · A5) + A1
p(λγpW 5)

]

(λγmW 2)(λγnW 3)F4
mn

〉

(4.4)
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whose gauge transformation under δA1
α = DαΩ1 can be easily checked to be

δL15 = +40 (k1 · k5)
〈

Ω1(λA5)(λγmW 2)(λγnW 3)F4
mn

〉

. (4.5)

With these explicit results for the OPEs involving the position z1 we can obtain an ex-

pression for the full kinematic factor whose gauge invariance is easily checked. To do this

we use that

L15η(1, 5) = −L15
1

(k1 · k5)

[

(k2 · k5)η(2, 5) + (k3 · k5)η(3, 5) + (k4 · k5)η(4, 5)
]

(similarly for L1j) which follows from the vanishing of
∫

L15(∂/∂z5) exp
∑

(ki · kj)f(zi, zj)

using the canceled propagator argument. This allows one to express terms proportional to

η(z1, zj) as a linear combination of η(zi, zj), where i, j 6= 1. Doing this one obtains

K5 =
∑

2≤i<j≤5

[

Kij − L1j
(ki · kj)

(k1 · kj)
+ L1i

(ki · kj)

(k1 · ki)

]

η(zi, zj) (4.6)

whose gauge invariance is easily shown by using (4.2), (4.5) and the analogous expressions

for the other factors of Kij and L1j . For completeness we also write down the result for

the L15 kinematic factor which follows from the analogous14 and equally long computation

leading to (3.7),

(λλ)2L15 = −16(λλ)〈(λA1)(λγmW 2)(λγnW 4)F3
mn(k1 · A5)〉

− 12(λλ)〈(λA1)(λγmW 2)(λγnW 3)F4
mn(k1 · A5)〉

− 12(λλ)〈(λA1)(λγmW 3)(λγnW 4)F2
mn(k1 · A5)〉

− 16(λλ)〈A1
p(λγmW 2)(λγnW 4)F3

mn(λγpW 5)〉

− 12(λλ)〈A1
p(λγmW 2)(λγnW 3)F4

mn(λγpW 5)〉

− 12(λλ)〈A1
p(λγmW 3)(λγnW 4)F2

mn(λγpW 5)〉

+ 2(k1 · k5)〈(λA1)(λA5)(λγmW 2)(λγnW 4)(λγmnW 3)〉

+ 2(λλ)(k1 · k5)〈(λA5)(λγmW 2)(λγnW 4)(A1γmnW 3)〉

− 2(λλ)(k2 · k5)〈(λA1)(λγmW 2)(λγnW 4)(A5γmnW 3)〉 . (4.7)

14 The actual details are different because it involves a different set of OPEs to be computed,

which also includes the contribution from 1

2
NmnFmn.
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We have checked that the component expansion of (4.6) does not change if we use the

simplified expressions (4.1) and (4.4) or the longer versions given by (3.7) and (4.7) (and

their analogous expressions for other labels). That provides a consistency check that the

total derivative terms were correctly identified.

We conclude that the complete five-point amplitude is given by

A =
∑

top

∫

dt

t

5
∏

I=2

∫

dzIK5(z1, . . ., z5)〈
5

∏

i=1

eiki·X(zi,zi)〉 (4.8)

where – as alluded to in the introduction – the kinematic factor is

K5(z1, . . ., z5) =

5
∑

j=2

L1jη(z1, zj) +
∑

2≤i<j≤5

Kijη(zi, zj)

and has the explicit form

L12 = −40
〈[

(λA1)(k1 · A2) + A1
p(λγpW 2)

]

(λγmW 5)(λγnW 3)F4
mn

〉

K25 = −40
〈

(λA1)
[

(λγmW 2)(k2 · A5) −
1

4
(λγmγrsW 5)F2

rs

]

(λγnW 3)F4
mn

〉

− (2 ↔ 5)
(4.9)

and analogously for the other labels. Furthermore, as mentioned above, these kinematic

expressions can be obtained from (4.3), which encapsulates all the information about the

kinematic structures appearing at five-points.

5. Bosonic and fermionic component expansions

5.1. Matching with RNS, GS and Lee & Siegel

The superspace results of the previous section summarize the computation using the

pure spinor formalism. The simplicity of (4.9) is strong evidence of its correctness, but

it must nevertheless be compared with previous results [26][29][30][31] obtained with the

RNS and GS formalisms and the “ghost pyramid” approach by Lee and Siegel (LS) [28].

The most straightforward comparison turned out to be with the five-graviton am-

plitude calculation by Richards [29], thanks to the clarity of the results presented there.

The open-string parts of that closed-string calculation are clearly identified and take the

form of a kinematic factor Ars (see eq. (3.20) of [29]). Even though the tensors Aij from

Richards and our expressions for Kij (and similarly L1j) are not exactly the same (they

differ by (ki · kj) terms) one can check that the gauge invariant expression (4.6) does not
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change when Kij is substituted by Aij . The conclusion is that the difference is due to total

derivative terms, as they are automatically eliminated in (4.6). The pure spinor formalism

is thus equivalent to the (bosonic) GS result of [29], and being a supersymmetric formalism

we are guaranteed that the scattering amplitudes involving fermionic external states are

also the correct ones.

The comparison with the (bosonic) kinematic factor computed by Lee and Siegel [28]

is also done by discarding total derivative terms. One can easily see the need for that by

noticing that their result features a manifestly gauge invariant integrand (see e.g. their

equation (5.5.1)), whereas ours is gauge invariant only after integration over the vertex

positions. Therefore one should expect a matching only after total derivative terms are

properly taken into account. Doing that carefully, we obtain agreement with LS.

More precisely, we first checked that the pole terms of our expressions agree exactly

with the pole terms of equations (5.5.1) and (5.5.2) in [28]. This is expected because they

are not affected by total derivative ambiguities. We compared the non-pole terms which

are proportional to η(z2, z5), and they are completely accounted for by adding a total

derivative term in superspace. To see this explicitly one can add a specially crafted total

derivative term to (4.1) as follows:

(λλ)K25 = L25 − L52

= −40
〈

(λA1)(λγmW 2)(λγnW 4)F3
mn(k2 ·A5)

〉

+10
〈

(λA1)(λγmγrsW 5)(λγnW 4)F2
rsF

3
mn

〉

+20(k2 · k5)
〈

(λA5)(λγmW 2)(λγnW 4)(A1γmnW 3)
〉

− (2 ↔ 5). (5.1)

The last line is a total derivative in z5: it comes from

+20
〈

(λγmW 2)(λγnW 4)(A1γmnW 3) ∂(λA5)
〉

as can be seen using ∂(λA5) = ∂θα∂α(λA5) + Πmk5
m(λA5). By explicit computation one

can then show that the five gluon component expansion of (5.1) is given by the simple

expression

K5b
25 = +

1

576
tmnpqrstu
8 F 1

mnF 2
paF 3

rsF
4
tuF 5

qa

+
1

1152
tmnpqrstu
8

[

(k2 · e5)F 1
mnF 2

pqF
3
rsF

4
tu − (k5 · e2)F 1

mnF 5
pqF

3
rsF

4
tu

]

(5.2)

which is the same answer one gets from evaluating the traces in [28]. We therefore conclude

the equivalence of the PS and LS results.
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Adopting the “Schoonschip” notation by writing objects contracted into t8 directly on

the tensor rather than using dummy indices, we now rewrite (5.2) in terms of polarizations,

K5b
25 =

1

72

[

(k2 · e5) t
e2(k2+k5)e1k1e3k3e4k4

8 − (k5 · e2) t
e5(k2+k5)e1k1e3k3e4k4

8

− (e2 · e5) tk
2k5e1k1e3k3e4k4

8 − (k2 · k5) te
2e5e1k1e3k3e4k4

8

]

. (5.3)

This is, up to an overall coefficient, the same expression as Richards’ A25 – therefore

also confirming the equivalence between the LS and the light-cone GS calculations. It is

reassuring to see that everything matches.

Furthermore one can exploit the superfield nature of the pure spinor result (5.1) to

obtain the component expansion involving fermionic fields. For example, the b1f2b3b4f5

expansion of (5.1) is given by

K2f3b
25 =

1

576
tmnpqrstu
8 (k2

m + k5
m)(χ2γnχ5)F 1

pqF
3
rsF

4
tu. (5.4)

All the other fermionic component expansions are also easily obtained. However we should

note that although (5.2) and (5.4) happen to be gauge invariant, that is not true for other

combination of external particles, and one really needs to use (4.6) to get explicitly gauge

invariant results using (5.1).

5.2. A different superspace expression for the kinematic factor Kij

It is interesting to note that the very same total derivative term chosen in (5.1) allows

us to rewrite K25 as15

5
〈

(DγmnpA
1)

[

(λγmW 2)(k2·A5)−
1

4
(λγmγrsW 5)F2

rs

]

(λγnW 3)(λγpW 4)
〉

−(2 ↔ 5) (5.5)

To see this one can use the same kind of manipulations shown in Appendix B to obtain

〈

(DγmnpA
1)(λγmW 2)(λγnW 3)(λγpW 4)(k2 · A5)

〉

− (2 ↔ 5) =

−8
〈

(λA1)(λγmW 2)(λγnW 4)F3
mn(k2·A5)

〉

+4k2
r

〈

(λγrW 5) (λγmW 2)(λγnW 4)(A1γmnW 3)
〉

+4(k2 · k5)
〈

(λA5)(λγmW 2)(λγnW 4)(A1γmnW 3)
〉

− (2 ↔ 5) (5.6)

15 Some results in this direction were derived in [32], where it was shown that the four-point

kinematic factor can be rewritten as 〈(DγmnpA)(λγmW )(λγnW )(λγpW )〉.
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and
〈

(DγmnpA
1)(λγmW 3)(λγnW 4)(λγpγrsW 5)F2

rs

〉

− (2 ↔ 5) =

= −8
〈

(λA1)(λγmγrsW 5)(λγnW 4)F2
rsF

3
mn

〉

+16k2
r

〈

(λγrW 5)(λγmW 2)(λγnW 4)(A1γmnW 3)
〉

− (2 ↔ 5). (5.7)

Combining (5.6) and (5.7) we get

5
〈

(DγmnpA
1)(λγmW 2)(λγnW 3)(λγpW 4)(k2 · A5)

〉

−
5

4

〈

(DγmnpA
1)(λγmW 3)(λγnW 4)(λγpγrsW 5)F2

rs

〉

− (2 ↔ 5) =

= −40
〈

(λA1)(λγmW 2)(λγnW 4)F3
mn(k2 ·A5)

〉

+10
〈

(λA1)(λγmγrsW 5)(λγnW 4)F2
rsF

3
mn

〉

+20(k2 · k5)
〈

(λA5)(λγmW 2)(λγnW 4)(A1γmnW 3)
〉

− (2 ↔ 5),

which is equal to (5.1), as we wanted to show.

Therefore we have just shown that up to total derivative terms (5.5) is an equivalent

answer for the massless five-point kinematic factor at one-loop, which is equal to the result

obtained by Lee & Siegel in [28].

We can also add total derivative terms to L1j , for example

L12 = −40
[〈

[

(λA1)(k1 · A2) + A1
p(λγpW 2)

]

(λγmW 5)(λγnW 3)F4
mn

〉

+20(k1 · k2)
〈

(λA2)(λγmW 5)(λγnW 3)(A1γmnW 4)
〉

(5.8)

and one can easily see that these total derivative terms cancel each other out in (4.6). The

bosonic components of (5.8) can again be conveniently written as

L5b
12 =

1

72

[

(k1 · e2) t
e1(k1+k2)e3k3e4k4e5k5

8 − (k2 · e1) t
e2(k1+k2)e3k3e4k4e5k5

8

− (e1 · e2) tk
1k2e3k3e4k4e5k5

8 − (k1 · k2) te
1e2e3k3e4k4e5k5

8

]

, (5.9)

which is the same as Richards’ kinematic factor A12.

The expression (5.9) also appears in the analysis of the low-energy limit as equa-

tion (4.14) of [39] (see also detailed computations in [40]). There it was shown that

L12/(k1 · k2) is the “s-channel” part of the two possible field theory diagrams: when mul-

tiplied by 1/(k1 ·k2), the first three terms in (5.9) correspond to a Yang-Mills three-vertex
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connected by a propagator to the one-loop16 t8F
4 vertex, and the last term is matched by

the non-linear five-point expansion of the one-loop t8F
4 vertex.

The correct factorization of massless poles is also evident in the two-fermion compo-

nent expression (5.4) and can easily be checked in the bosonic result (5.2). The same is true

for the four-fermion terms, where one can for example show that up to terms proportional

to k2 · k5,

K4f1b
52 = −

i

144

[

(k25 · k4)(χ4/e
1(/k

1
+ /k

4
)/e

25χ3) + (k1 · k4)(χ4/e
25(/k

25
+ /k

4
)/e

1χ3)
]

which is the form of the four-point one-loop kinematic factor as displayed in [27], with

k25 = k2 + k5 and e25
a = (χ2γaχ

5). We have performed this consistency check for all six

inequivalent assignment of zero, two or four fermions to the five external states.

The results above suggest that there are no one-loop F 5 terms in the one-loop effective

action (as one could expect from the results of [29][41]), but we leave the detailed analysis

of these matters for the future.
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Appendix A. Covariant evaluation of the four-point kinematic factor

In [22] the NMPS kinematic factor of the massless four-point amplitude was shown to be

K4 =
〈

(λγmnpD)
[

(λA1)(λγmW 2)(λγnW 3)(λγpW 4)
]

〉

and a proof of equivalence with the minimal pure spinor formalism was presented. That

proof however relied on a U(5) decomposition of variables and ignored the overall coefficient

relating the two versions. A covariant proof [32] which overcomes these details will now

be presented.

Using the SYM equations of motions and the pure spinor constraint it is straightfor-

ward to show that

(λγmnpD)
[

(λA1)(λγmW 2)(λγnW 3)(λγpW 4)
]

=
[

(λγmnpD)(λA1)
]

(λγmW 2)(λγnW 3)(λγpW 4)

+12(λλ)(λA1)
[

(λγmW 4)(λγnW 2)F3
mn+(λγmW 2)(λγnW 3)F4

mn+(λγmW 3)(λγnW 4)F2
mn

]

(A.1)

Using ηmnγm
α(βγn

γδ) = 0 and that the factor of
[

(λγmnpD)(λA1)
]

can be substituted by
[

(λγmγnγpD)(λA1)
]

due to the pure spinor constraint we arrive at the following identity

〈[

(λγmnpD)(λA1)
]

(λγmW 2)(λγnW 3)(λγpW 4)
〉

=
〈

(λγmγnW 3)
[

(λγnγpD)(λA1)
]

(λγmW 2)(λγpW 4)
〉

+
〈

(λγmγnλ)(W 3γnγp)
σ
[

Dσ(λA1)
]

(λγmW 2)(λγpW 4)
〉

. (A.2)

Using γnγp = −γpγ
n + 2δn

p and the equation of motion Q(λA) = 0 the first term of (A.2)

vanishes, while the second becomes

〈

(λγmγnλ)(W 3γnγp)
σ
[

Dσ(λA1)
]

(λγmW 2)(λγpW 4)
〉

= −2(λλ)
〈

(W 3γmγp)
σ
[

(λD)A1
σ

]

(λγmW 2)(λγpW 4)
〉

= +4(λλ)
〈

(λA1)(λγmW 2)(λγnW 4)F3
mn

〉

,

where we used DαAβ +DβAα = γm
αβAm and integrated the BRST-charge by parts. There-

fore

K4 =
〈

(λγmnpD)
[

(λA1)(λγmW 2)(λγnW 3)(λγpW 4)
]

〉
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= +16(λλ)
〈

(λA1)(λγmW 4)(λγnW 2)F3
mn

〉

+12(λλ)
〈

(λA1)(λγmW 2)(λγnW 3)F4
mn

〉

+ 12(λλ)
〈

(λA1)(λγmW 3)(λγnW 4)F2
mn

〉

.

Furthermore, as was shown in [20], all three correlators above are symmetric in (234), and

we obtain

K4 = +40(λλ)
〈

(λA1)(λγmW 2)(λγnW 3)F4
mn

〉

, (A.3)

which is the covariant proof of equivalence we were looking for.

Appendix B. The computation of the kinematic factor K52

To prove that (3.5) is equal to (3.7) first one uses the SYM equations of motion and

the pure spinor constraint to obtain,

〈

(λγmnpD)
[

(λA1)F2
rs(λγmγrsW 5)(λγnW 3)(λγpW 4)

]〉

=
〈

(λγmnpD)
[

(λA1)F2
rs

]

(λγmγrsW 5)(λγnW 3)(λγpW 4)
〉

−48(λλ)
〈

(λA1)(λγ[mW 3)(λγn]W 4)F2
muF

5
nu

〉

+12(λλ)
〈

(λA1)(λγmγrsW 5)F2
rs

[

(λγnW 4)F3
mn + (λγnW 3)F4

mn

]〉

+4
〈

(λγrsλ)(λA1)(λγmW 3)(λγnW 4)
[

F2
rsF

5
mn + F5

rsF
2
mn

]〉

−16
〈

(λγtuλ)(λA1)(λγ[mW 3)(λγn]W 4)F2
mtF

5
nu

〉

.

The last two lines vanish after antisymmetrization over [25], therefore we obtain

〈

(λγmnpD)
[

(λA1)F2
rs(λγmγrsW 5)(λγnW 3)(λγpW 4)

]〉

− (2 ↔ 5)

=
〈

(λγmnpD)
[

(λA1)F2
rs

]

(λγmγrsW 5)(λγnW 3)(λγpW 4)
〉

+12(λλ)
〈

(λA1)(λγmγrsW 5)F2
rs

[

(λγnW 4)F3
mn + (λγnW 3)F4

mn

]〉

−48(λλ)
〈

(λA1)(λγ[mW 3)(λγn]W 4)F2
muF

5
nu

〉

− (2 ↔ 5). (B.1)

The first line of (B.1) can be rewritten using γn
α(β(γn)γδ) = 0, {γm, γn} = 2ηmn and

(λγm)α(λγm)β = 0,

(λγmnpD)
[

(λA1)F2
rs

]

(λγmγrsW 5)(λγnW 3)(λγpW 4)

= (λγnγpD)
[

(λA1)F2
rs

]

(λγmγnW 3)(λγmγrsW 5)(λγpW 4)
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+(λγmγnλ)(W 3γnγpD)
[

(λA1)F2
rs

]

(λγmγrsW 5)(λγpW
4)

= −8k2
r

〈

(λA1)(λγmW 2)(λγrW 5)(λγmnW 3)(λγnW 4)
〉

+2(λλ)(W 3γmnD)
[

(λA1)F2
rs

]

(λγmγrsW 5)(λγnW 4), (B.2)

where we used the equation of motion (λD)(λA1) = 0 and a few gamma matrix identities

to get

2
〈

(λD)
[

(λA1)F2
rs

]

(λγmγnW 3)(λγmγrsW 5)(λγnW 4)
〉

= −8k2
r

〈

(λA1)(λγmW 2)(λγrW 5)(λγmnW 3)(λγnW 4)
〉

Furthermore, the last term of (B.2) can be rewritten using Dα(λA1) = −(λD)A1 +

(λγq)αAq together with the equations of motion of the SYM superfields,

2(λλ)(W 3γmγpD)
[

(λA1)F2
rs

]

(λγmγrsW 5)(λγpW 4) (B.3)

= −2(λλ)(W 3γmγp)
α(QA1

α)F2
rs(λγmγrsW 5)(λγpW 4)

+2(λλ)A1
q(W

3γmγpγqλ)F2
rs(λγmγrsW 5)(λγpW 4)

+4k2
r(λλ)(λA1)(λγmγrsW 5)(λγpW 4)(W 3γmγpγsW 2).

The second line is zero due to the pure spinor condition. Integrating the BRST-charge by

parts (B.3) becomes

= −
1

2
(λλ)

〈

(λγtuγmγpA1)F 3
tuF 2

rs(λγmγrsW 5)(λγpW 4)
〉

(B.4)

+
1

2
(λλ)

〈

(W 3γmγpA
1)(λγmrstuλ)(λγpW 4)F2

rsF
5
tu

〉

(B.5)

+8k2
r(λλ)

〈

(W 3γmγpA
1)(λγmW 2)(λγrW 5)(λγpW 4)

〉

+4k2
r(λλ)

〈

(λA1)(λγmγrsW 5)(λγpW 4)(W 3γmγpγsW 2)
〉

.

The term (B.4) is equal to 4(λλ)(λA1)(λγmγrsW 5)(λγnW 4)F2
rsF

3
mn, while (B.5) vanishes

after antisymmetrization in [25]. Therefore, putting all of the above together we get

〈

(λγmnpD)
[

(λA1)F2
rs(λγmγrsW 5)(λγnW 3)(λγpW 4)

]〉

− (2 ↔ 5) =

−8k2
r

〈

(λA1)(λγrW 5)(λγmW 2)(λγnW 4)(λγmnW 3)
〉

−8k2
r(λλ)

〈

(λγrW 5)(λγmW 2)(λγnW 4)(A1γmnW 3)
〉
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+4k2
r(λλ)

〈

(λA1)(λγmγrsW 5)(λγnW 4)(W 2γsγmnW 3)
〉

−48(λλ)
〈

(λA1)(λγ[mW 3)(λγn]W 4)F2
muF

5
nu

〉

+12(λλ)
〈

(λA1)(λγmγrsW 5)(λγnW 3)F2
rsF

4
mn

〉

+16(λλ)
〈

(λA1)(λγmγrsW 5)(λγnW 4)F2
rsF

3
mn

〉

− (2 ↔ 5). (B.6)

From (A.1) we can also infer that,

(λγmnpD)
[

(λA1)(k2 · A5)(λγmW 2)(λγnW 3)(λγpW 4)
]

=

(λγmnpD)
[

(λA1)(k2 · A5)
]

(λγmW 2)(λγnW 3)(λγpW 4)

+12(λλ)(λA1)(k2 · A5)
[

(λγmW 4)(λγnW 2)F3
mn + (λγmW 2)(λγnW 3)F4

mn

+(λγmW 3)(λγnW 4)F2
mn

]

and repeating similar steps used to prove (B.2) one gets

(λγmnpD)
[

(λA1)(k2 · A5)
]

(λγmW 2)(λγnW 3)(λγpW 4) =

= −2k2
r(λA1)(λγrW 5)(λγmW 2)(λγnW 4)(λγmnW 3)

−2(k2 · k5)(λA1)(λA5)(λγmnW 3)(λγmW 2)(λγnW 4)

+2(λλ)(W 3γmnD)
[

(λA1)(k2 · A5)
]

(λγmW 2)(λγnW 4) (B.7)

and after several manipulations,

2(λλ)(W 3γmnD)
[

(λA1)(k2 · A5)
]

(λγmW 2)(λγnW 4)

= +4(λλ)(λA1)(λγmW 2)(λγnW 4)F3
mn(k2 · A5)

+2(λλ)k2
r(λγmW 2)(λγnW 4)

[

(λA1)(W 5γrγmnW 3) − (λγrW 5)(A1γmnW 3)
]

+2(λλ)(k2 · k5)(λγmW 2)(λγnW 4)
[

(λA1)(A5γmnW 3) − (λA5)(A1γmnW 3)
]

And therefore,

(λγmnpD)
[

(λA1)(k2 · A5)(λγmW 2)(λγnW 3)(λγpW 4)
]

− (2 ↔ 5) =

= +2(λλ)k2
r(λA1)(λγmW 2)(λγnW 4)(W 5γrγmnW 3)

+2k2
r(λγrW 5)(λγmW 2)(λγnW 4)

[

(λA1)(λγmnW 3) − (λλ)(A1γmnW 3)
]
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+12(λλ)(λA1)(k2 · A5)
[

(λγmW 2)(λγnW 3)F4
mn + (λγmW 3)(λγnW 4)F2

mn

]

+16(λλ)(λA1)(λγmW 2)(λγnW 4)F3
mn(k2 · A5) − 2(k2 · k5)L12345 − (2 ↔ 5), (B.8)

where we defined

L12345 = (λA1)(λA5)(λγmW 2)(λγnW 4)(λγmnW 3)

+(λλ)(λA5)(λγmW 2)(λγnW 4)(A1γmnW 3) − (λλ)(λA1)(λγmW 2)(λγnW 4)(A5γmnW 3).

(B.9)

Finally from (B.6) and (B.8) it follows that

K52 =
1

4

〈

(λγmnpD)
[

(λA1)F2
rs(λγmγrsW 5)(λγnW 3)(λγpW 4)

]〉

−
〈

(λγmnpD)
[

(λA1)(k2 · A5)(λγmW 2)(λγnW 3)(λγpW 4)
]〉

= −16(λλ)(λA1)(λγmW 2)(λγnW 4)F3
mn(k2 · A5)

−12(λλ)(λA1)
[

(λγmW 2)(λγnW 3)F4
mn + (λγmW 3)(λγnW 4)F2

mn

]

(k2 · A5)

+3(λλ)(λA1)(λγmγrsW 5)(λγnW 3)F2
rsF

4
mn

+4(λλ)(λA1)(λγmγrsW 5)(λγnW 4)F2
rsF

3
mn,

+24(λλ)k2
r(λA1)(λγ[nW 3)(λγr]W 4)(W 5γnW 2)

−12(λλ)(λA1)(λγ[mW 3)(λγn]W 4)F2
muF

5
nu + 2(k2 · k5)L12345 − (2 ↔ 5), (B.10)

where we used k2
m(γmW 2)α = 0 and k2

r(λγmγrγsW 5)(W 2γsγmnW 3) =

= −k2
r(λγmγrγsγmnW 3)(W 5γsW 2) + k2

r(λγmγrγsW 2)(W 5γsγmnW 3)

to get

−k2
r

〈

(λA1)(λγnW 4)
[

(λγmγrsW 5)(W 2γsγmnW 3) − 2(λγmW 2)(W 5γrγmnW 3)
]〉

= 24k2
r(λA1)(λγ[nW 3)(λγr]W 4)(W 5γnW 2).

Having obtained (B.10) the derivation of (3.7) is now finished, as they are equal.
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B.1. Total derivative terms

We are going to show that (B.9), when multiplied by (k2 · k5), is part of a total

derivative term which vanishes when the whole amplitude is integrated over the position

of the vertices. To see this one notes from (B.7) that those terms come from the evaluation

of

(λγmnpD)
[

(λA1)(k2 · A5)
]

(λγmW 2)(λγnW 3)(λγpW 4) (B.11)

which is also present in the expressions for Kij , where i, j are the same labels as (ki · Aj)

in (B.11). Therefore – omitting everything which is not relevant to this proof – the whole

amplitude will contain the following terms,

+L15342(k
1 ·k2)η(2, 1)+L12543(k

1 ·k3)η(3, 1)+L12354(k
1 ·k4)η(4, 1)+L12345(k

1 ·k5)η(5, 1)

+(k2 · k3)
[

L12543 η(3, 2) + L15342 η(2, 3)
]

+ (k3 · k4)
[

L12354 η(4, 3) + L12543 η(3, 4)
]

+(k2 · k4)
[

L12354 η(4, 2) + L15342 η(2, 4)
]

+ (k4 · k5)
[

L12345 η(5, 4) + L12354 η(4, 5)
]

+(k3 · k5)
[

L12345 η(5, 3)+L12543 η(3, 5)
]

+(k2 · k5)
[

L12345 η(5, 2)+L15342 η(2, 5)
]

. (B.12)

By pairing the above terms in groups of four one can show that they vanish. For example,

consider the terms which contain η(5, j). It is easy to show that they are a total derivative

in the variable z5,

+L12345

[

(k1 · k5)η(5, 1) + (k2 · k5)η(5, 2) + (k3 · k5)η(5, 3) + (k4 · k5)η(5, 4) =

= −
∂

∂z5
exp

[

5
∑

i<j

(ki · kj)f(zi, zj)
]

,

because η(z5, zj) = − ∂
∂z5

f(zj , z5). The same can be shown for the remaining terms of

(B.12), establishing that they will all vanish by the cancelled propagator argument.

As can be easily inspected, the symmetry in the labels (34) is manifest in (3.6) but

not in (B.10). Upon subtraction of the (3 ↔ 4) permutation in (B.10) one arrives at the

following identity

〈

(λA1)
[

4(λγmW 2)(k2 · A5) − (λγmγrsW 5)F2
rs

]

(λγnW 4)F3
mn

〉

− (2 ↔ 5)

=
〈

(λA1)
[

4(λγmW 2)(k2 · A5) − (λγmγrsW 5)F2
rs

]

(λγnW 3)F4
mn

〉

+4(k2 · k5)(λA1)(λA5)(λγmW 2)(W 3γmW 4)
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+2(k2 · k5)(λA1)(λγmW 2)
[

(λγnW 3)(A5γmnW 4) − (λγnW 4)(A5γmnW 3)
]

−2(k2 · k5)(λA5)(λγmW 2)
[

(λγnW 3)(A1γmnW 4) − (λγnW 4)(A1γmnW 3)
]

− (2 ↔ 5),

where all terms which contain an explicit (k2 · k5) factor come from the total derivative

terms as shown in the previous paragraphs17. The above can be rewritten as

〈

(λA1)
[

4(λγmW 2)(k2 · A5) − (λγmγrsW 5)F2
rs

]

(λγnW 4)F3
mn

〉

− (2 ↔ 5)

=
〈

(λA1)
[

4(λγmW 2)(k2 · A5) − (λγmγrsW 5)F2
rs

]

(λγnW 3)F4
mn

〉

−4(k2 · k5)(λA1)(λA5)(λγmW 2)(W 3γmW 4) − (2 ↔ 5) (B.13)

where we used (λγmW 2)
[

(A1γmnW 4)(λγnW 3)−(3 ↔ 4)
]

= 2(λγmW 2)(λA1)(W 3γmW 4).

Furthermore, the relation

Q
[

(W 2γmnpW
3)(λγmnpW 4)

]

= 24(λγmW 2)(λγnW 3)F4
mn

−12(λγmW 2)(λγnW 4)F3
mn − 12(λγmW 4)(λγnW 3)F2

mn

and the fact that correlations of BRST-trivial operators vanish can be used to show

24
〈

(λA1)(λγmW 2)(λγnW 3)F4
mn

∫

U5
〉

=

= 12
〈

(λA1)(λγmW 3)(λγnW 4)F2
mn

∫

U5
〉

+ 12
〈

(λA1)(λγmW 2)(λγnW 4)F3
mn

∫

U5
〉

+
〈

(λA1)(W 2γmnpW
3)(λγmnpW 4)

∫

∂(λA5)
〉

. (B.14)

However care has to be taken when computing the OPEs in (B.14) because of non-

commuting operators. For example, when considering the term appearing in the deriva-

tion of (B.14), namely
〈

(λA1)Q[(W 2γmnpW
3)(λγmnpW 4)]

∫

U5
〉

one can first compute the

OPEs and then “integrate” the BRST charge by parts or the other way around; and these

two operations don’t commute. Using ∂(λA5) = Πmk5
m(λA5) + ∂θα∂α(λA5) and with the

above caveat one can check that the components proportional to η(z2, z5) obey

−24
〈

(λA1)(λγmW 3)(λγnW 4)k2
[m(W 5γn]W

2)
〉

−12
〈

(λA1)(λγmW 3)(λγnW 4)F2
mn(k2 ·A5)

〉

17 We nevertheless keep track of them because they are useful when performing component

expansion checks with the computer.
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−12
〈

(λA1)(λγ[mW 3)(λγn]W 4)F2
mtF

5
nt

= −24
〈

(λA1)(λγmW 2)(λγnW 3)F4
mn(k2 · A5)

〉

+ 6
〈

(λA1)(λγmγrsW 5)(λγnW 3)F2
rsF

4
mn

〉

+12
〈

(λA1)(λγmW 2)(λγnW 4)F3
mn(k2 · A5)

〉

− 3
〈

(λA1)(λγmγrsW 5)(λγnW 4)F2
rsF

3
mn

〉

−(k2 · k5)
〈

(λA1)(λA5)(W 2γmnpW
3)(λγmnpW 4)

〉

− (2 ↔ 5). (B.15)

where the third term in the left-hand side is related to the order in which one chooses to

compute the OPEs to generate η(z2, z5) or to integrate the BRST charge by parts. It is

the result of integrating the BRST charge by parts after computing the OPE dα(z5)θ
β(z2)

as z5 → z2,

−
1

4
(λA1)Q

[

F 2
rs(γ

rsγmnpW
3)α(λγmnpW 4)

]

Wα
5 − (2 ↔ 5)

= −12
〈

(λA1)(λγ[mW 3)(λγn]W 4)F2
mtF

5
ntη(5, 2)− (2 ↔ 5).

Note also that the term with the explicit (k2 · k5) factor also comes from a total derivative

term, and can therefore be dropped in the end18.

Substituting (B.15) in (B.10) and then using (B.13) allows one to obtain the following

expression for K52

(λλ)−1K52 =

−40
〈

(λA1)(λγmW 2)(λγnW 3)F4
mn(k2 · A5)

〉

+ 10
〈

(λA1)(λγmγrsW 5)(λγnW 3)F2
rsF

4
mn

〉

+(k2 ·k5)
[

4
〈

(λA1)(λA5)(λγmW 2)(W 3γmW 4)
〉

−
〈

(λA1)(λA5)(W 2γmnpW
3)(λγmnpW 4)

〉]

+(k2 · k5)L12345 − (2 ↔ 5), (B.16)

which dropping total derivative terms can be expressed simply as

(λλ)−1K52 =

−40
〈

(λA1)(λγmW 2)(λγnW 3)F4
mn(k2 · A5)

〉

+ 10
〈

(λA1)(λγmγrsW 5)(λγnW 3)F2
rsF

4
mn

〉

−(2 ↔ 5), (B.17)

therefore concluding the proof of equation (4.1).

18 We chose to keep it to be able to check (B.15) explicitly by a component expansion compu-

tation with FORM [33][34].
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Appendix C. Integrating λα in pure spinor superspace expressions

In principle one-loop calculations using the PS formalism will involve superspace inte-

grals in which the non-minimal pure spinor λα does not simply occur as a product (λλ), and

one should know how to deal with these expressions. Although in this paper we managed

to isolate this “new” type of correlator to the total derivative terms we will nevertheless

show how to compute them explicitly.

As with the 〈λ3θ5〉 correlators, the result is completely fixed by symmetry. Writing

S± for the spinor irreps of SO(10) and, schematically, P± for pure spinors, we find the

representation content [42]

λǫλ
(αλβλγλδ) : S− ⊗ Sym4S+ = 2 × [00003] ⊕ 1 × [11010]⊕ . . .

P− ⊗ Sym4P+ = 1 × [00003] ⊕ . . .

θ[δ1 . . . θδ5] : Alt5S+ = 1 × [00030] ⊕ 1 × [11010] ,

so that there is only one invariant combination of λλ3 and θ5. We will now make use of

this uniqueness and construct a spinorial formula relating it to the 〈λ3θ5〉 case, where

〈

λαλβλγθδ1 · · · θδ5

〉

≡ T
αβγ,δ1...δ5

= N−1
[

(γm)αδ1(γn)βδ2(γp)γδ3(γmnp)
δ4δ5

]

(αβγ)[δ1...δ5]
,

with N a normalization constant. The simplest ansatz is to write 〈λλ3θ5〉 = δ×T , suitably

symmetrized. However, this time the pure spinor property is essential to the uniqueness

argument and we will need to be careful to subtract gamma traces. This can be done by

applying the projection operator

Pαβγδ
ρστω =

1

2772

[

δ(α
ρ δβ

σδγ
τ γδδ)

ω −
1

4
δ
(α
(ρ δβ

σγa
τω)γ

γδ)
a +

1

160
γa
(ρσγ(αβ

a γb
τω)γ

γδ)
b

]

, (C.1)

which is symmetric and gamma-traceless in both sets of indices and satisfies PP = P. We

conclude that
〈

λǫλ
α1 · · ·λα4θδ1 · · · θδ5

〉

= c × Pα1...α4

γ1...γ4

[

δγ4

ǫ T
γ1γ2γ3,δi

]

for some constant c. Substituting (C.1) and using that T is gamma-traceless, we get

〈

λǫλ
αiθδi

〉

=
c

2772

[

δ(α1

ǫ T
α2α3α4),δi

−
1

8
δ
(α1

(γ1

δα2

γ2
(γm)γ3)ǫ(γm)α3α4)T

γi,δi

]

(C.2)

The normalization is not important for our amplitude calculation, as all our expressions

contain one λ and four λs. We will set

〈

(λλ)(λγmθ)(λγnθ)(λγpθ)(θγmnpθ)
〉

= 1 , (C.3)

27



which is satisfied for c = 672. Equation (C.2) can be interpreted in form of a practical

prescription by re-writing it as

〈

λǫλ
αiθδi

〉

=
2

33
(λλ)

[

{

δα1

ǫ

〈

λα2λα3λα4θδi
〉

+ · · ·
}

−
1

12

{

γα1α2

m

〈

λα3λα4(λγm)ǫθ
δi

〉

+ · · ·
}

]

(C.4)

where the two curly brackets contain four and twelve terms respectively, corresponding to

the choice of α indices on δα
ǫ and on γ

αiαj

m . We can think of the first group of terms as

coming from eliminating the λ and one of the λs, contracting their indices. In the second

group, a pair of λαiλαj has been replaced by γ
αiαj

m and λǫ by (λγm)ǫ. We have thus

reduced everything to the well-known 〈λ3θ5〉 correlators.

For example, applying this procedure to the eighth term in (3.7), we obtain (inside

correlators):

(λA1)(λA5)(λγmW 2)(λγnW 4)(λγmnW 3) =
2

33

[

{

−(A1γmnW 3)(λA5)(λγmW 2)(λγnW 4) + (λA1)(A5γmnW 3))(λγmW 2)(λγnW 4)

− (λA1)(λA5)(W 2γmγmnW 3))(λγnW 4) + (λA1)(λA5)(λγmW 2)(W 4γnγmnW 3)
}

−
1

12

{(

(A1γaA5)(λγmW 2)(λγnW 4) − (A1γaγmW 2)(λA5)(λγnW 4)

+ (A1γaγnW 4)(λA5)(λγmW 2) + (λA1)(A5γaγmW 2)(λγnW 4) (C.5)

− (λA1)(A5γnW 4)(λγmW 2) + (λA1)(λA5)(W 2γmγaW 4)
)

(λγaγmnW 3)
}]

.

To check the consistency of (C.5) one can use the identity

〈

(λA1)(λA5)(λγmW 2)
[

(λγnW 4)(λγmnW 3) − (3 ↔ 4)
]〉

= 2
〈

(λλ)(λA1)(λA5)(λγmW 2)(W 3γmW 4)
〉

(C.6)

and compute each term of the lhs of (C.6) using the corresponding result of (C.5) and

compare it against the direct computation of the rhs using the standard 〈λ3θ5〉 correlators.

We did this and obtained agreement.

Alternatively, we can follow the methods of [17] and derive tensorial formulae by

constructing a symmetry-based ansatz and using pure spinor identities to relate it to the

normalization condition (C.3). Proceeding in this fashion, we find

〈

(λγabλ)(λγcθ)(λγdθ)(λγeθ)(θγrstθ)
〉

=
1

140

[

δab
cr δde

st

]

[cde][rst]
(C.7)
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〈

(λγabλ)(λγcdeθ)(λγfθ)(λγgθ)(θγrstθ)
〉

=
1

4620

[

δfg
ab δrst

cde + 2 δast
cdeδ

g
b δf

r − 20 δfst
cdeδ

g
b δa

r

+ 23 δabt
cdeδ

fg
rs + 24 δaft

cdeδbg
rs + δfgt

cdeδab
rs

]

[ab][cde][fg][rst]
−

1

25200
ǫabcdefgrst (C.8)

〈

(λγabλ)(λγcdeθ)(λγfghθ)(λγiθ)(θγrstθ)
〉

=
1

3850

[

36 δcde
abrδ

fgh
ist − 8 δcde

air δfgh
bst + 4 δcde

farδ
gh
st δi

b − 2 δcde
faiδ

gh
st δr

b − 12 δcde
farδ

gh
is δt

b

− 46 δcde
fabδ

ghi
rst − 42 δcde

fgaδ
bhi
rst + 2 δcde

fgiδ
abh
rst − 9 δcde

fgrδ
hb
st δi

a

]

[ab][cde][fgh][rst][cde↔fgh]

+
1

4200

(

δ
[r|
[a ǫb]

cdefghi|st] + δ
[r|
[c ǫab

de]
fghi|st] − δ

[r|
[f ǫabcde

gh]
i|st]

)

(C.9)
〈

(λγabcdλ)(λγeθ)(λγfθ)(λγgθ)(θγrstθ)
〉

= −
1

70

[

δabcd
efrsδ

t
g

]

[efg][rst]
+

1

25200
ǫabcdefgrst (C.10)

〈

(λγabcdλ)(λγefgθ)(λγhθ)(λγiθ)(θγrstθ)
〉

=
1

1925

[

23 δefgr
abcd δst

hi − 42 δefhr
abcd δst

gi

− 2 δefrs
abcd δh

g δt
i + δehir

abcdδ
st
fg + 20 δehrs

abcd δit
fg + δerst

abcdδ
hi
fg

]

[abcd][efg][hi][rst]

−
1

4200

(

2 δ
[a
[r ǫbcd]efghi

st] + δ
[e|
[r ǫabcd|fg]hi

st]

)

(C.11)

This approach is useful if one aims at a direct component evaluation without being inter-

ested in equivalent 〈λ3θ5〉 correlators, e.g. when checking superspace manipulations with

a computer.

Appendix D. Component evaluation of pure spinor superspace correlators

While amplitude expressions in pure spinor superspace comprise bosonic and fermionic

parts in the form of superfields, it is often necessary to extract separate components, e.g. to

compare with existing results. Comparisons of component expansions also provide a valu-

able check on superspace manipulations. In this appendix, we summarize some techniques

and intermediate results relevant to the present paper, extending methods published pre-

viously [22][19].

In all but the simplest cases, the evaluation of pure spinor correlators becomes com-

putationally involved, and the help of a computer algebra system seems indispensable.

We therefore emphasize approaches that may be forbidding for a paper-and-pen calcula-

tion, but lend themselves to direct transfer to the computer. The present authors have

employed independent implementations of the algorithms, using FORM and Mathematica

respectively.
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D.1. Superfield expansions

The fermionic expansions of the Yang-Mills superfields satisfy simple recursion rela-

tions, which makes explicit component expressions readily available [43][25]. In addition,

we need the expansion of the antisymmetrised derivative of the spinor gauge superfield,

Dαγαβ
mnpAβ. This object vanishes at order θ0, and the next few orders can be written as

(DγmnpA)(1) = −
4

3
(θγmnpχ)

(DγmnpA)(2) =
1

4
(θγmnp /Fθ) +

1

4
∂rζs(θγrγmnpγ

sθ)

(DγmnpA)(3) = (θγa[mnθ)(θγa∂p]χ) −
1

5
(θγa

[mnθ)(θγp]∂aχ)

(DγmnpA)(4) =
1

96
(θγ[mn

qθ)(θγp]rsθ)∂qFrs −
7

96
(θγ[mn|tθ)(θγrstθ)∂|p]Frs

(D.1)

The first two lines result directly from applying the supercovariant derivative Dα = ∂α +

1
2 (θ/∂)α to the lowest terms in the expansion of Aα, followed by simple gamma algebra.

For the third line, we note that the SO(10) representation content of θ3 and of ∂mχα

predicts two independent three-forms composed of these objects. Indeed, writing θ3 as

a γ-traceless spinor-two-form Θab
α via Θab

α = (θγabcθ)(γcθ)α, which captures the whole

content of θ3 because (θγabcθ)θα = 1
2
(γ[aΘbc])α, we can see that those two independent

three-forms are given by (Θ[mn∂p]χ) and (Θa[mγnp]∂
aχ). The easiest way to obtain their

coefficients is then to go to a gamma matrix representation. Similarly, for the fourth line,

there are two independent three-forms indicated by representation content, and one can use

the Bianchi identity ∂[aFbc] = 0 as well as the spinor product identities (γabθ)α(θγabcθ) = 0,

(θγa
[mnθ)(θγp]qaθ) = 0 and (θγmnpqr

abθ)(θsabθ) = 20(θγ[mnpθ)(θγqr]sθ) to reduce all terms

in (DγmnpA)(4) to the form given on the right-hand side.

D.2. Correlator catalog

The most efficient way to evaluate pure spinor superspace correlators is to compile a

“catalog” of building blocks, as outlined in appendix A of [22]. This is particularly the

case if one completely automates the process that deconstructs an arbitrary correlator into

these blocks, namely by expanding gamma products, sorting of spinor bilinears and, for

fermionic fields, applying Fierz rearrangements. Two different approaches, the automatic
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conversion to traces and the component-based evaluation studied in [19], have turned out

much slower and have not been used here19.

In principle the three building blocks 〈(λγ[5]λ)(λγ[1,3,5]θ)(θγ[3]θ)(θγ[3]θ)〉 are sufficient,

but it is more efficient to also allow for the pairings 〈(λγθ)(λγθ)(λγθ)(θγθ)〉, since they

only need to be computed once, making all subsequent computations faster. In addition

to the identities listed in [22] and eq. (2.7) of [19], we use the following:

〈

(λγa1...a5θ)(λγb1b2b3θ)(λγc1c2c3θ)(θγd1d2d3θ)
〉

=

−
3

35

(

δa1...a5

e1...e5
+

1

5!
ǫa1...a5

e1...e5

)[

(δe1e2e3e4e5

b1b2b3c1d1
δd2d3

c2c3
− δe1e2e3e4e5

c1c2c3b1d1
δd2d3

b2b3
) (D.2)

+ δe1e2e3e4e5

b1b2c1c2d1
δd2d3

b3c3
+ (δe1e2e3e4e5

b1b2c1d1d2
δb3d3

c2c3
− δe1e2e3e4e5

c1c2b1d1d2
δc3d3

b2b3
) − δe1e2e3e4e5

b1c1d1d2d3
δb2b3
c2c3

]

[bi][ci][di]

〈

(λγa1...a5θ)(λγb1...b5θ)(λγcθ)(θγd1d2d3θ)
〉

= −
1

7

(

δa1...a5

e1...e5
+

1

5!
ǫa1...a5

e1...e5

)

×
[

δe1e2e3e4e5

b1b2b3b4d1
δd2

b5
δc
d3

− 2δe1e2e3

b1b2b3
(δe4e5

cd1
δd2d3

b4b5
− δe4e5

d2d3
δcd1

b4b5
)
]

[bi][di]
(D.3)

〈

(λγa1...a5θ)(λγb1...b5θ)(λγc1c2c3θ)(θγd1d2d3θ)
〉

=
2

7

(

δa1...a5

e1...e5
+

1

5!
ǫa1...a5

e1...e5

)

×
[

δe1e2e3e4

b1b2b3b4
(δe5

c1
δd1

b5
− δe5

d1
δc1

b5
)δc2c3

d2d3
− 2δe1e2e3

b1b2b3
(δe4e5

c1c2
δd1d2

b4b5
− δe4e5

d1d2
δc1c2

b4b5
)δc3

d3
)
]

[bi][ci][di]
(D.4)

They have been derived using a symmetry-based ansatz, as described in [17]. A useful

application of the component-based method of [19] is that it provides a quick way to

compute the coefficients in such an ansatz.

D.3. Kinematic reduction

In the component calculations relevant to this paper, we encounter kinematic factors

that are Lorentz invariant polynomials in the momenta ki
µ as well as the polarization

vectors ei
µ and/or the fermionic spinor wavefunctions χiα. Due to the on-shell identities

∑

i ki = (ki)2 = ki · ei = /k
i
χi = 0, there are many relations among these polynomials, and

19 Trace evaluations using Mathematica / GAMMA become very slow once the number of

gamma matrices in the trace reaches the mid-twenties. Calculations of traces that take (tens

of) hours with Mathematica typically finish within (tens of) minutes using FORM. Still, FORM

takes several hours to compute an expression like (C.9) starting from the spinorial formula (C.2).

On the other hand, using the “catalog method”, the correlator evaluation becomes a matter of

seconds. A difference in performance of about an order of magnitude remains in favor of FORM,

due to the handling of antisymmetric tensors and of dummy indices in the GAMMA package.
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we need to be able to systematically reduce them to some sets of independent kinematic

invariants.

As will be shown in the following, such reduction algorithms can be found in the

form of a collection of replacement rules, which can easily be implemented on a computer

algebra system. An alternative method considered in [19] was based on evaluating symbolic

expressions on a number of integer-valued solutions to the on-shell identities. As the

number of external fields and therefore the number of independent kinematic structures

increases, this method becomes unpractical and slow. However, the component-based

method is still useful to ensure that the end products of the replacement rules are in fact

linearly independent, that is, that no identities have been missed.

For bosonic expressions, the reduction process is very simple and consists of eliminating

one momentum (say k5 → −k1 −· · ·−k4) in all k ·e and k ·k products, plus one additional

product like k4 · e5 → −(k1 + k2 + k3) · e5, and one k · k combination to resolve the

relation 1
2
(
∑4

i=1 ki)2 =
∑4

i<j ki ·kj = 0. This leaves five independent quadratic momentum

invariants, and three scalar products for every polarization. Note that any terms containing

the ten-index epsilon tensor ǫ10 will vanish, since there are only five polarization vectors,

and the five momenta are linearly dependent.

Adding in two fermions only requires a mild generalization, as they can be re-written

into independent antisymmetric tensors (χ1γ[k]χ2). Any ǫ10 terms can be eliminated by

dualizing ǫ10γ
[k] → γ[10−k], since the χi are chiral spinors. The only complication arises

from relations due to the Dirac equations /k
1
χ1 = /k

2
χ2 = 0, but these can be resolved by

replacing

(χ1γa1...anχ2)k1
a1

→ −(n − 1)k1[a2(χ1γa3...an]χ2) (D.5)

and similarly for k2. This rule, along with the dualization step, allows us to regard the

spinor bilinears as unconstrained antisymmetric tensors from now on. After applying

the bosonic simplification rules and resolving the tensor antisymmetry by sorting into

some order, e.g. k2
a1

e5
a2

k1
a3

γa1a2a3... → e5
a1

k1
a2

k2
a3

γa1a2a3... etc., all remaining structures are

independent. In the five-point amplitude calculation, where we are dealing with terms of

the form kkkkχ1χ2e3e4e5, we find 476 independent kinematic structures.

With four fermions, we have to think about Fierz transformations which might seem

to lead to relations that are hard to resolve algorithmically. Fortunately, since we are

dealing with distinct spinors, we can completely avoid this issue by rearranging all spinor

products into the same order, for example into (χ1γ[k]χ2)(χ3γ[l]χ4) bilinears, at the outset
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of the reduction procedure. We then eliminate γ[k] → ǫ10γ
[10−k] whenever k > 5, re-write

ǫ10ǫ10 → δ, dualize ǫ10γ
[5] → γ[5], and apply the Dirac equation replacement (D.5) as well

as the bosonic simplification rules.

The resulting terms will not all be independent, since the duality properties of the

spinor bilinears have not been dealt with, and this is slightly more involved than in the

two-fermion case. For example, the contraction of two self-dual five-forms vanishes, so all

terms containing (χ1γa1...a5χ2)(χ3γa1...a5
χ4) have to be set to zero. We now show how to

resolve this issue for expressions of the form χ1χ2χ3χ4e5kkk as encountered in the five-

point amplitude. The steps described in the last paragraph lead to the following structures:

First, there are 30 possible terms in which the spinors combine into a scalar,

(

(χ1γa1χ2)(χ3γa1
χ4) or (χ1γa1a2a3χ2)(χ3γa1a2a3

χ4)
)

× (k · k)(e5 · k1/2/3) ,

where we have already set to zero the γ[5] · γ[5] products. Next, there are 116 two-tensor

combinations,

(

(χ1γm1χ2)(χ3γm2χ4) or (χ1γa1a2m1χ2)(χ3γa1a2

m2χ4)
)

×
(

k3/4
m1

k1/2
m2

(e5 · k1/2/3) or k3/4
m1

e5
m2

(k · k) or e5
m1

k1/2
m2

(k · k)
)

,
(

(χ1γa1m1m2χ2)(χ3γa1
χ4) or (χ1γa1a2a3m1m2χ2)(χ3γa1a2a3

χ4)
)

×
(

k3
m1

k4
m2

(e5 · k1/2/3) or k3/4
m1

e5
m2

(k · k)
)

,
(

(χ1γa1χ2)(χ3γa1

m1m2χ4) or (χ1γa1a2a3χ2)(χ3γa1a2a3

m1m2χ4)
)

×
(

k1
m1

k2
m2

(e5 · k1/2/3) or k1/2
m1

e5
m2

(k · k)
)

.

Finally, there are 8 four-tensor combinations,

(χ1γm1m2m3χ2)(χ3γm4χ4) × k3
m1

k4
m2

e5
m3

k1/2
m4

,

(χ1γm1χ2)(χ3γm2m3m4χ4) × k3/4
m1

k1
m2

k2
m3

e5
m4

,

(χ1γa1m1m2χ2)(χ3γa1

m3m4χ4) ×
(

k3
m1

k4
m2

e5
m3

k1/2
m4

or k3
m1

k4
m2

e5
m3

k1/2
m4

)

.

These 154 structures are independent, as can be seen by going to components, and it will

turn out that they form a complete kinematic set. There are three more groups of possible

outcomes, but they can be simplified using duality manipulations. The first group contains

a four-tensor of the form ǫ10(χ
1γ[3]χ2)(χ3γ[3]χ4) contracted into kkke5:

X1 = ǫm1...m4

a1a2a3b1b2b3(χ
1γa1a2a3χ2)(χ3γb1b2b3χ4) × k1

m1
k2

m2
k3

m3
e5
m4
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and three others with k1k2k4, k1k3k4, or k2k3k4. Upon dualising ǫγ3 → γ7,

X1 = 3!(χ1γm1m2m3m4b1b2b3b4χ
2)(χ3γb1b2b3χ4) × k1

m1
k2

m2
k3

m3
,

the momenta k1 and k2 are contracted into the (χ1χ2) bilinear and the Dirac equation can

be used to reduce γ[7] → γ[5] and thereby relate X1 to the previous list. The second group

consists of

Y1/2 = (χ1γa1a2m1m2m3χ2)(χ3γa1a2

m4χ4) × k3
m1

k4
m2

e5
m3

k1/2
m4

Y3/4 = (χ1γa1a2m1χ2)(χ3γa1a2

m2m3m4χ4) × k3/4
m1

k1
m2

k2
m3

e5
m4

and can be reduced similarly. For example, in the first line, dualization leads to

( 1

20
δd1d2m4

m1m2m3
(χ1γd3...d7χ2)−

1

12
δd1d2d3

m1m2m3
(χ1γd4...d7m4χ2)

)

(χ3γd1...d7
χ4)×k3

m1
k4

m2
e5
m3

k1/2
m4

,

and now at least one momentum is contracted with a bilinear where the Dirac equation

can be used. The third group contains two γ[5] factors, either as two-tensor

Zm1m2 = (χ1γa1a2a3a4m1χ2)(χ3γa1a2a3a4

m2χ4)

contracted into at least one momentum, or as four-tensor

Zm1m2,m3m4 = (χ1γa1a2a3m1m2χ2)(χ3γa1a2a3

m3m4χ4)

contracted into three momenta and the polarization e5. Here we note that the only two-

tensor irrep contained in the tensor product of two self-dual five-forms is the symmetric

traceless one, so we must have Z [m1m2] = 0. Similarly, the product does not contain a

completely antisymmetric four-tensor, and hence Z [m1m2,m3m4] = 0, which implies

Zm1m2,m3m4 = Zm1m3,m2m4 − Zm1m4,m2m3 −Zm2m3,m1m4 + Zm2m4,m1m3 − Zm3m4,m1m2 .

In all cases, the symmetries of Z allow us to shuffle at least one momentum onto a bilinear

where the Dirac equation can be used, relating all terms containing Z tensors to the list

of 154 independent structures. This concludes the simplification of four-fermion terms.
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