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1. Introduction

As emphasized by Gross and Sloan [, superstring scattering amplitudes are useful
to derive the low energy effective action of its massless modes. For example, it allows one
to obtain stringy corrections to the Yang-Mills and Einstein-Hilbert actions [B].

Up to the year 2000 these computations were done using either the Ramond-Neveu-
Schwarz (RNS) ] or Green-Schwarz (GS) [l formulation in ten-dimensional flat back-
ground. In the open (closed) superstring, the tree and one-loop four-gluon (four-graviton)
amplitudes lead to an infinite series of higher derivative corrections starting with the
well-known tgF"* (tgtgR?) interaction terms [B][f]. After several years of efforts, the cor-
responding corrections were finally computed at the two-loop level in a series of papers
by D’Hoker and Phong (see [j] and references therein), starting with terms of the form
tgD?F4 (tgtg DAR?).

The results above were obtained for the bosonic amplitudes in the NS and NS-NS
sectors. While the fermionic four-point amplitudes involving strings in the R sector are
known at tree- and one-loop levels, the two-loop computations using the gauge slice in-
dependent methods of [[d] are still lacking in the RNS formalism. The problems involving
fermionic amplitudes present a major complication to the supersymmetric completion to
string effective actions and the analysis of higher-order derivative corrections for RR gauge
fields (see e.g. [[]).

This state of affairs, however, started to change with the proposal of the pure spinor
formalism [§]. It does not suffer from the inherent difficulties of the RNS and GS for-
mulations responsible for the status quo concerning two-loop fermionic amplitudes. It
accomplishes that by having manifest space-time supersymmetry together with a Lorentz
invariant BRST quantization procedureﬁ.

It was soon realized that tree-level amplitudes computed using this new formalism
were equivalent to RNS results [[(J]. When the multiloop prescription came into existence
four years later, it was readily used to obtain a non-renormalization theoreml] regarding
the R* term in the effective action [[[4] and the two-loop massless four-point amplitude [5]

of the type IIB superstring. The two-loop kinematic factor derived in [[[f] was expressed as

3 The usefulness of the PS formalism is of course not restricted to amplitude calculations, see
e.g. the review [{].

4 This theorem was later extended in [[LT] (see also [[[Z]) and used by Green, Russo and Vanhove
03] to argue that N = 8 SUGRA is finite up to 8 loops.
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an integral over pure spinor superspace [[§] and was subsequently shown [[7] to agree with
the two-loop RNS computations of D’Hoker and Phong [f]. Furthermore, explicit bosonic
computations also proved the PS/RNS equivalence at one loop [[§] and were followed by
calculations involving fermionic external states in [[[9].

In 2008, several manipulations in pure spinor superspace were used to prove that the
massless four-point amplitudes at tree-level and at one and two loops are all related to
each other [P0], being proportional (up to Mandelstam invariants) to the same tree-level
kinematic factor. With the identities of [B0], the knowledge of all bosonic and fermionic
four-point scattering amplitudes up to two loops was obtained altogether simply by pos-
sessing the complete tree-level result.

By the end of 2005, Berkovits proposed an extension of the pure spinor formalism
by introducing non-minimal variables, which resulted in a simplified expression for the
b-ghost [B1]. In this non-minimal formalism, the b-ghost is one of the generators of a
¢ = 3 N = 2 topological algebra, and it is “simpler” than the corresponding b-ghost of
the minimal formalism, albeit still “complicated” due to its composite nature, with poles
in 1/(A)N). It was already argued in [RI] that multiloop amplitudes computed using the
new topological methods should be equivalent to the results computed in the minimal
formalism, and that was verified by some explicit amplitude computations in []H

With the non-minimal pure spinor framework being simpler than its version of five
years earlier and having a prescription which is in principle valid to all-loop orders [24],
a renewed computation of superstring scattering amplitudes is a task worth pursuing and
holds the potential to increase our understanding of stringy corrections to low-energy
effective actions (see e.g. the treatment of tree-level four-point amplitudes in [23]).

From the inner perspective of the non-minimal pure spinor formalism, the straightfor-
ward way with which the expressions for the massless four-point amplitudes were obtained
(up to two loops) is related to the fact that in these cases only the zero modes of the b-ghost
played a role. This allowed the amplitudes in pure spinor superspace to be determined
essentially by powerful symmetry arguments [[4][L5]R2].

The motivation which started this paper was to test the abilities of the pure spinor
formalism in a situation where not only the b-ghost zero-modes would (in principle) con-

tribute. In view of the complicated nature of the b-ghost, that motivation was deemed to

® There exists now a formal proof of NMPS/PS equivalence by Hoogeveen and Skenderis [23).



be another non-trivial test whose result was worth knowing. At the same time, the knowl-
edge about higher-point amplitudes involving fermionic external states would benefit in
case of a successful outcome. As we will show, the (non-minimal) pure spinor formaulismE
withstands the test and leads to a simple answer in pure spinor superspace.

This paper is organized as follows. In section 2 we recall the prescription of the PS
formalism for the computation of the open superstring one-loop amplitude. We propose
simplified expressions for the pure spinor integration measures and the normalization factor
N (y) to facilitate explicit computations, allowing one to identify a shortcut which can be
taken to integrate out the w,,w® and s variables. In section 3 we prove the vanishing of
the contributions coming from the non zero-modes of the b-ghosts and obtain the kinematic
factor of this five-point amplitude as a (rather large) expression in pure spinor superspace,
relegating the detailed calculations to Appendix B. We then prove its gauge invariance
by showing that the gauge variation is a total derivative which vanishes by the cancelled
propagator argument. In section 4 we simplify the answer of section 3 by using further
pure spinor manipulations to the point of being able to identify a simple form for the

massless five-point kinematic factor,
5
K5 = Z Lljn(zl, Zj) + Z Kijn(zi7 Zj)
=2 2<i<j<5
where
Lis = _< [(AAl)(k;l L A%) 4+ A;(MPWQ)} (MmW‘:’)(M"W?’)ﬁ‘IQ

K5 = —<()\A1) [()rymWQ)(kQ L A®) - (Avm7T5W5>ffs] (M”Wg)fﬁm> —(2+5)

1
4
and similarly for other choices of labels. The above two expressions can be understood as

coming from the OPE computation of the natural generalization
(AAH "W (MWW FL, U?) (1.1)

of the massless four-point kinematic factor (AAY)(Ay™mW2)(Ay"W3)FL ).

6 In the this paper we will simply refer to the non-minimal pure spinor formalism as “pure

spinor formalism” (PS).



In section 5 we calculate the (bosonic) component expansion of the “kinematic fac-
tor” ([.1]) and show that it agrees, up to total derivative terms, with previous (bosonicﬁ)
five-point results [E§[29][BJ][BI]. We also compute some two- and four-fermion terms.

In Appendix A we reviewd the covariant (i.e. without relying on a U(5) decomposition
as in [P9]) proof of equivalence between the minimal and non-minimal one-loop massless
four-point amplitude, as similar manipulations will be used again in the five-point kine-
matic factor computation of Appendix B. In Appendix C — for completeness — we show
how to covariantly compute expressions of the form (A*\#°) and in Appendix D we present
the technicalities needed when computing component expansions of pure spinor superspace
expressions. In particular, the kinematic reduction algorithms of [[J] are expanded to deal
with the structures appearing at five-points. They are well-suited for implementations
using a computer algebra system such as FORM [B3][B4] and/or Mathematica (using Ulf
Gran’s GAMMA package [BY)).

2. The scattering amplitude prescription

The non-minimal pure spinor formalism prescription for the massless five-point open

superstring amplitude at one-loop is given by [2]]

5
A=Y / dt<N(y) ( / dzwu(w)b(w)>vl(0) I1 / dzIUI(zI)>. (2.1)
top 1=2
Here V1(z) = A*Al (z,0) denotes the unintegrated vertex operator and
1
U(z) =00%Aq(x,0) + Ay (2, 0)II™ + dy W (2,0) + ENmnfm”(a:, 6) (2.2)

the integrated vertex operator, p(w) is the Beltrami differential with conformal weight
(1,—1) and the sum is over the three Riemann surfaces which describe the one-loop in-
teraction of open strings: the planar and non-planar cylinders and the Mobius strip. The
b-ghost b(w) is a composite field whose expression reads [R1,

2™ (A d) — Nonp (Ay™00) — J(X08) — (A5?6)

b=s"O\, + —
4(AN)

(2.3)

7 We also acknowledge the existence of fermionic results obtained by Lin et al. [R6] using the
methods of Atick and Sen [27], but we have not tried to bring their results to a form which could
be readily compared to the fermionic results obtained from () As the pure spinor formalism
is manifestly supersymmetric, we are guaranteed that once the bosonic amplitudes are verified to
be correct then so are the fermionic ones.

8 This covariant proof was first obtained in [BJ).
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+(X7m”pr)(dvmnpd+ 24Npmnlly) — (rY™ 1) Mmd) Ny (17™"P1) Mipgr™) Nonn N9
192(AN)2 16(AN\)3 128(AN)* '

The factor N (y) is needed to regularize the integration over the non-compact domain of

the pure spinors, and we will use

N = exp [— (AX) — (rf) — (ww) + (sd)] =exp({Q, x}) for x = —(N0) — (ws)  (2.4)

This regularization is different from the one presented in [R1]] because our choice of x is not
gauge invariant. However, as it is still valid that A (y) = 1 4+ Q€ for some €, the integral
will be independent of the choice for x.

The evaluation of (R.1]) will give rise to an expression of the form
A= / [dN][dN][dr][dw] [dw][ds](d"°d)d O N f (r, 6),

where the non-zero modes have already been integrated out through their OPEs. The zero

modes are to be integrated with the following measuresﬂz

[dA] = (AX) 7 (e16 - @ N )y oss (™)™ (™) (0P (i) ™4 (2.5)
[dA] = (AX) " (ex6 - A X) 2 (Ay™) oy (A" e (9P )y (Yoamp D (2.6)
[dr] = €ayarimrons (A7) (V") (AP ypins O .o (2.7)
[dw] = (AY™) s A" e (M) 5 (Y ) s €771 PPy, - - duwyy, (2.8)
[da] = (Ay™)™ (Ay™)™ (A7) (Ynp) ™™ €y msan..an AW T (2.9)
[ds] = (AX) 2™ )iy (A" )iea (AP ) s (V) ams €710 05 .05 (2.10)

Note that the measure (2.§) is gauge invariant under dw, = (AM"™)a, due to
(dXYD) 15, (AY™) e (M) ko (AYP) ks (Ymmp)wars]) = 0, because there is no vector representa-
tion in the decomposition of A\466.

Apart from an overall coefficient which is not determined, one can use a shortcut to
perform the integrations over [dw], [dw] and [ds]. At one loop there are eleven zero modes

of 5%, which can only@ come from ten factors of the term (s(°d(®) in the regulator N.

9 They are written slightly differently from the original expressions of BT (see e.g. [BY))
10 The term $%ON\q of the b-ghost does not contribute because there is no w® in the external

vertices to kill the non zero-modes of Iq.



Therefore the remaining five d, zero modes must come from the b-ghost and the external

vertices. By ghost number conservation we obtain
[ di®didu dmdsfe D OD OGO A 77, 0) = (0F) g £ (10

where ()\3)[,.61@%3 kars) 18 some tensor with five antisymmetric free indices containing three

pure spinors. The unique such tensor is proportional to (AVim )k, (AVn) ks (AVp) s (Y7

)K/4K/5'

One can thus see that the net effect of evaluating the pure spinor measures [dw], [dw], [ds]

and d'%d is to replace the five d(ao) zero-modes from the b-ghost and external vertices by

d9)d0)dQ)d0)d) — (M) (Avn)na (A1) s (V™) gies- (2.11)

3. The massless five-point amplitude computation
3.1. Zero mode saturation and OPEs

The five d,, zero modes from the b-ghost and the external vertices appearing in (B.11])

can be obtained by four distinct ways. Each one of them will imply a different “kinematic

factor”,
I = %< o ™ (20 5 )()\’)’ d(O))()\Al)(d(O)W2)(d(O)W3>(d(O)W4)(d(0)W5>>
~ 16 mm"pr 2 d )N (z0) AN (O W) (dOW ) (@O W) @O W) )
I — 9i< X mnpr (o)vm"pc?(ZO))(AAl)(d(O)WQ)(d(O)W?’)(d(O)W4)(d(O)W5)>
la= 192 < O‘(’y)\ﬂ;:;pT) (d(o)’)’mnpd(o))()\Al)(d(O)WQ)(d(O)W?))(d(O)WzL)

) 1
x (APTIY + (dW°) + 5J\f”mf;?m)> + eyel(2345), (3.1)

where we have written d, (z) = d&o)w(z) +dga(2), with w(z) being the holomorphic one-form
and dg)) the 16 zero modes of d,. In the expressions above one has to integrate out the
conformal weight one variables through their OPEs and use the measures (.5) — (B.10)
to deal with the remaining zero modes, but we have omitted them as it is clear from the
context that they are thereﬂ.

1 We also don’t write the integration over the vertex positions in most of our formulae to avoid
cluttering. One should note that the expressions we call “kinematic factors” also depend on the

coordinates z; of the vertices, so that is a slight abuse of terminology.
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As discussed in [Bg], if the scalar propagator is f(z,w) = (X(z,Z)X (w,w)) then
the OPE of a (1,0)-system with the zero modes projected out is given by —0, f(z,w).
Furthermore one can show that up to terms which drop out of correlation functions [B7]
the function f(z,w) in the torus is given in terms of the prime form E(z,w) by

(Im(z — w))?

f(z,w) = —In(|E(z,w)|*) + 27 o

, (3.2)

whereas for the cylinder and Mobius strip it is obtained through proper identifications
under involutions [B7]. We also define the n(z, w) function by

(d(2)0(w)) = —(I1(2) X (w, ) = —% (2, w) = n(z,w), (3.3)

and the explicit expansions of both E(z,w) and n(z,w) in terms of Jacobi theta functions
will not be needed here but they can be deduced from the formulae in [Bg].

3.2. The vanishing of b-ghost OPFEs

We begin by noticing that after the OPEs are computed in 1, Is and I3 the result is

actually a total derivative in w,

5

5
Il + IQ + I3 X /dszKojn(w,zj) exp [Z(l{;l . k:j)f(zi,zj)}
j=2 1<j
5

5
x /d%u% [Z Ko; f(w, zj) exp [Z(kl : kj)f(zi,zj)ﬂ , (3.4)
Jj=2 i<j

for some kinematic factors Ky, where w and z; are the positions of the b-ghost and the
external vertices, respectively. In (B-4) we used (B-3) and reinstated the integral over w
because it will be needed to prove that it vanishes for the topologies considered in (R.1]). At
this point it is instructive to see what one would obtain if the Riemann surface in (8.4) were
the torus instead of, say, the cylinder. In this case the integration in (B.4) clearly vanishes
because there can’t be any contribution from non-trivial cycles, as the function f(w, 2;) is
doubly periodic over the torus. Now to see the vanishing of (B-4]) for the cylinder one has
to notice@ that the b-ghost in | d?w b(w) is already implicitly defined via the “doubling
trick” to live in the double of the cylinder, which is the torus. So if the cylinder is the
region [B7]

0 <Re(w) <m, w~w-+2mit,

12 CRM would like to thank Nathan Berkovits for discussions on this point.
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then both b(w) and b(w) are defined only in this region. The doubling trick in this case,
however, consists in trading b(w) and b(w) by an augmented b(w) defined also in the

reflected region —m < Re(w) < 0, through the following identification
b(w) = b(@), —m<Re(w)<0, w =-w.

Now the integral of (B-4) over this “doubled cylinder” results in two contributions over

the boundaries at Re(w) = 4w, which cancel each other out because of the periodicity
flw, z) = flw + 2w, z5).

3.3. The kinematic factor in pure spinor superspace

As shown above, there are no contributions from I, ..., I3 and therefore the five-point
kinematic factor is obtained entirely from I4. This will be done by computing the OPEs
between the conformal weight-one variables and using (R.11]) to deal with the remaining five
d,, zero-modes. Considering first the OPEs which do not involve the (fixed) position of the

unintegrated vertex we restrict our attention to the terms proportional to e.g., 7(z2, 25),

<%(dym”pd)()\Al)(dWQ)(dWS)(dW4)(A2Hq + (ciW5))> +(2<5)

= 1(z5, 22) Lsa + 122, 25) Las = 1(22, 25) Kas

where, upon restoring the suppressed notation,

Koy = [ a0 arle 00 T [ 041 3 W) 0 W) (W 7,

. kg(AAl)(MWWQ)(M"W?’)(MPW‘*)Ag] (25 5). (3.5)

To arrive at (B.5) one uses (B.1T) and notes that 7(22,25) = —n(2s5,22). Finally from
ree ") = —D_ e ("% one can replace 7, by D, in (B.§). So we have expressed the one-
loop kinematic factor computation in terms of a tree-level pure spinor superspace integral,
which is amenable to various simplifications through the use of pure spinor identities. As
will become clear during the computations, the presence of A, in the superspace inte-
gral (B-f) will not play an important role: Using sufficiently many pure spinor superspace
manipulations, they can always be seen to appear as factors of (A\) in the terms which

contribute to the kinematic factorE

13 As a consequence — once we prove that the the Ao A pair appear contracted as (AX) — we

essentially ignore their presence in our formulae, as they will only affect the overall coefficient.
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The task is now to compute

N5 = (M D) (VAN 2, (0™ W) 0 T3 W) ) (3.6)
(R D) [( - AW A ™) 0" W) (AP )]) = (2 5).

As shown in Appendix B by using the action of the BRST operator
1
Qfmn = Qk[m(Afyn]W% QWQ = Z(Afymn)afmna QAm = (AIYmW) + km<)\A) s
the pure spinor constraint (Ay™\) = 0 and various gamma matrix identities we obtain

(AN Ka5 = —16((AN)AAH) (MW ("W F,, (k2 - A°))
+ 4{(AN)AAHY A"y W)Y (AN W FEFS )
— 12{(AN)AA) (A" W) (M W3 Fy L (K2 - AP))
+ 3{(AN)AAY A" W)Y AN W) FEF )
— 12{(AN)AAHY MW" W) (M WHFZ,, (K - AP))
— 24k5, (AN AAY) " W2) (™ ]W4><W5vnw2>>
— 12(AN) AAH MW I F2LFR)
+2(k - E7) (A Al)(AA5)(Msz)(M”W“)WmnW?’»
+2(F - V) (O AA%) (M W) (" W) (Al WP))
= 2(K* - k) (O AA) M W) (MW ) (A%, W) = (2 5 5) (3.7)

As mentioned before, the pure spinor A, appears only in overall factors of (A)\) except
for one term — which will turn out to be part of a total derivative, as also shown in
Appendix B. However (B.7) is not a “simple” expression by any standard, and it would
be desirable to seek for cancellations of terms by manipulations in pure spinor superspace.

This will be done after we prove the gauge invariance of the amplitude.

3.4. Gauge invariance

The one-loop scattering amplitude prescription in the non-minimal pure spinor for-
malism [21]] uses one non-integrated vertex operator and therefore is not manifestly gauge
invariant. Nevertheless gauge invariance can be proved after the integration over the ver-

tex operator positions is performed, as one can easily verify from the prescription. One
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can also see this explicitly for the kinematic factor (B.7) as follows. From the five-point
amplitude prescription of (B.1]) it follows that under the gauge variation of §A!, = D, Q1

6A = /dt</\//(b-u) Ql/UQ/U3/U4/B(>\A5)> + cycl(2345) = 0. (3.8)

In the above we “integrated the BRST charge by parts”, used the identity QU® = 9(\A)
[B] and the fact that the contribution from {Q, b} = T vanishes identically due to the lack
of d, zero modes [P7]. Furthermore, the vanishing of (B.§) is justified by the cancelled
propagator argument. Using O(AA®) = 90%0,(AA>) + TI™k3, (AA5) one gets the terms

proportional to n(z2, 2s5),
(K- k) (M Ymnp D) [X- AAZ) My W2) " W) (P H)] ) — (2 = 5) =~ 0 (3.9)

where we used (R.11]). The ~ sign is to remember that the expression vanishes after
integration over the positions (we omitted the integral signs to avoid cluttering). Similar

manipulations to the ones of appendix A lead to

(Mmnp D) [QTAA%) M W) (MW" W) (AP H)])
= ((Mmnp D) [AA) Q] (MW (A" W2 (AP W)
+ 12(AN) (Q(AA%) [\ W) (MW" W) Fy,, + cyel(234)]) (3.10)
and
(Mmnp D) [AA7)Q ] (W) (A" W) (AP W)
= 4(AN) (' ALY A" W) (M WHFS L)
+2((QN) (M W) My W [(AA®) Ayimn W) — (AN) (A1 W) )
+ 2 (AN (AA®) (MW (M " WY (W3, D)QY) (3.11)

From (B.9), (B-10) and (B.1T)) it follows that 6.4 = n(z2, 25)0 Ka5 ~ 0, where

(A6 K a5 = +16(k* - K°)(Q' (AA®) (M W) (MW" WHFS )
+12(k% - KO (QN(AA®) (MW 2) (M W) T )
+12(k% - K°) (Y (AAP) (MY W) (M WHFLL)
+2(k - E°)((QQY) (ALY ) M W) (A" W) Aymn W)
+2(K - B2 ) (AAY) (MW (" W) (W, D)QY) (3.12)
—2(k* - E°){((QQY) (M W) (M " W) (A%7nW?)) — (2 = 5).
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Now it remains to be shown that (B.12) is identical to the gauge variation of (B.7). To see

this one uses
(QQY MW (M "WHFS, (K - A))

= Q' W)W ROV + (R R)AA)]), (3.13)

and
(@Y™ W) ("W FEFS,) — (2 = 5)

—4k2( QY N WY MW (M WA TS, ) — (2 < 5), (3.14)
where the explicit antisymmetry in [25] is important, otherwise there would be extra terms.
Furthermore,

—kn ((QQH) MW MW (WP, W)

i (2 W) QW [ W2 FL = O WP FR )
and finally
—((QY MW MW F F )
= HQ MW Ay >[<MtW2>k3nf2t - <Avtw5>kfn£§t]> (3.15)

From the above results one obtains the gauge variation of (B.1). It reads
(A6 K 25 =+ 16(k - k%) (Q'(AA) (MY W) (M WHFS )
+12(k* - k%) (Q* (ALY (MW (N W) Fo)
+ 12(k% - k°) <Ql AAE’)(AymW?’) M WHFZ D

+2(k* - k%) ((QQY) (AA) A" W) (MW (M W)
+ 2(k? - k°) </\A5 (MW (AW (W3, D)) (3.16)
—2(k% - E°) ((QQY M" W) (M W) (AP W3)) — (2 = 5)

and it is equal to (B.13), as was expected. To get (B.16) from (B.7) we also used that

k(N O W) QWA O W FLL) + 2k, (8 QW O W 9 W) FTL) = 0,

(3.17)
= k2 A? — k2 A2 and noting the vanishing of the factor
containing k2 k2 due to the antisymmetry over [mn]. Therefore the second term of (B.17)

which can be proved by writing F2

nt —
is equal to

—2(Q (MW MW M WO KAL) = =k (Q (M W) (MW (MW L),
which cancels the first.
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4. Simplifying the answer

As one can see from (B.7) the kinematic factor is a bit awkward and it would be
desirable to simplify it using pure spinor superspace identities. This is accomplished in
Appendix B, where among other things we identified and dropped total derivative terms
in (B-7), which simplifies to

Koy = —40( (") [ (0™ 72) (2-4%) = O™y W) F2, | 0" I2) (2 o 5). (4.1)

One should note the absence of A, in the rhs of ([£]), which is a remarkable fact
in view of (B.§). That makes of ({.1) a truly tree-level pure spinor superspace integral,
which is readily evaluated using the measure ((Ay"0)(Ay"0)(AYP0)(07mnpf)) = 1 and the
method described in the appendix of [P (see also other methods in [[J]). The gauge
transformation of (f£1]) under §AL = D,Q! is simply

(AN K5 = 40(k? - KO (QEAAP) DMy W) (MW FL ) — (2 < 5), (4.2)

where we used (MY SW9)kZ2(A\ysW?) = 2k2(My™W?2)(\y"W?®) [B0]. Furthermore one
can observe that ([.1]) is the result of computing the z5 — 22 OPE in

40 (AAY A0y WY (XYW F, U (4.3)

with the restriction that the pure spinors in (Ay™W?) and (AMy™W?3) have no non-zero
modes, but (AA!) has. These \* non zero-modes can be understood by noticing that
except for the pure spinor appearing in the non-integrated vertex — which comes from the
amplitude prescription — the others are the zero-modes of A* which appear in the measures
(BH) — (BI7). Having found ([.3), the generalization to the scattering of closed strings
almost suggests itself and could be used to check the (tgtg & e1ge19) R* sign issue (see e.g.
B).

Motivated by the simplicity of ([.J), we now investigate whether this single correlator
can reproduce the other contributions to the amplitude as well. Using (-J) and the
identities of [R0] one can easily compute the OPEs involving the position of the unintegrated

vertex. For example, the computation as z5 — 27 leads to
Lys = —40 < [(AAl)(k:l LAP) + AL PI) (mmw2)<ww3)f;‘;m> (4.4)
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whose gauge transformation under §AL = D,Q! can be easily checked to be
§Ly15 = +40 (k' - k°) (' (AA®) (M W) (MWW F ) - (4.5)

With these explicit results for the OPEs involving the position z; we can obtain an ex-
pression for the full kinematic factor whose gauge invariance is easily checked. To do this

we use that

Lian(1.5) = ~Ls s [ - K002, + (- K2)n(3.5) + (K - °)n(4. 5]

(similarly for L;;) which follows from the vanishing of [ L15(0/0z5)exp > (k" - k7) f (i, 25)
using the canceled propagator argument. This allows one to express terms proportional to

n(z1, #;) as a linear combination of 7(z;, z;), where i, j # 1. Doing this one obtains

K5 = Z |:Kij - Llj% + Lu%]n(zi, ;) (4.6)
2<i<j<5

whose gauge invariance is easily shown by using ([.2), (.§) and the analogous expressions
for the other factors of Kj;; and L;;. For completeness we also write down the result for

the L5 kinematic factor which follows from the analogous@ and equally long computation

leading to (B.7),

(AX)?L1s = —16(AXN) (AAD) (M W) (A" W F L (k- A%))
M) ) (R - A7)
M) O T 2 () A))
( Foin APW?))
(MW (A" W) (APW))
( Fom(APW?))

(
(A

+200) (k' - £ (AAT) 2™ W2) (" W) (Al W)
=200 (k- B ) (AA) (M W) (X" W) (A% WP)) (4.7)

14 The actual details are different because it involves a different set of OPEs to be computed,

which also includes the contribution from %N M n.
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We have checked that the component expansion of ([.§) does not change if we use the
simplified expressions (1)) and ([E4) or the longer versions given by (B-1) and (f.71) (and
their analogous expressions for other labels). That provides a consistency check that the
total derivative terms were correctly identified.

We conclude that the complete five-point amplitude is given by

5

A= Z/ % 11_[2 / dz'Ks(z1, - ., Z5)<H ek X (20 (4.8)

top =1

where — as alluded to in the introduction — the kinematic factor is

5
Ks(21,...,25) = ZLljn(Zlazj> + Z Kijn(zi, z;)
=2

2<i<j<5

and has the explicit form

Lo = —40 ([(AAD (K 42) + AL 007w )| ™ W) (" 2 7, )
(4.9)
Koy = —40 ((0A) (™) (k2 - 4%) — L0 W2)FZ) (" W2) ) — (2 5)

and analogously for the other labels. Furthermore, as mentioned above, these kinematic
expressions can be obtained from (f-J), which encapsulates all the information about the

kinematic structures appearing at five-points.

5. Bosonic and fermionic component expansions
5.1. Matching with RNS, GS and Lee & Siegel

The superspace results of the previous section summarize the computation using the
pure spinor formalism. The simplicity of (.J) is strong evidence of its correctness, but
it must nevertheless be compared with previous results [26]|[29][BU][B]] obtained with the
RNS and GS formalisms and the “ghost pyramid” approach by Lee and Siegel (LS) [B§].

The most straightforward comparison turned out to be with the five-graviton am-
plitude calculation by Richards [BY], thanks to the clarity of the results presented there.
The open-string parts of that closed-string calculation are clearly identified and take the
form of a kinematic factor A,s (see eq. (3.20) of [2Y]). Even though the tensors A4;; from
Richards and our expressions for K;; (and similarly L;) are not exactly the same (they

differ by (k' - k7) terms) one can check that the gauge invariant expression () does not
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change when K;; is substituted by A;;. The conclusion is that the difference is due to total
derivative terms, as they are automatically eliminated in ([l.§). The pure spinor formalism
is thus equivalent to the (bosonic) GS result of [R9], and being a supersymmetric formalism
we are guaranteed that the scattering amplitudes involving fermionic external states are
also the correct ones.

The comparison with the (bosonic) kinematic factor computed by Lee and Siegel [2§
is also done by discarding total derivative terms. One can easily see the need for that by
noticing that their result features a manifestly gauge invariant integrand (see e.g. their
equation (5.5.1)), whereas ours is gauge invariant only after integration over the vertex
positions. Therefore one should expect a matching only after total derivative terms are
properly taken into account. Doing that carefully, we obtain agreement with LS.

More precisely, we first checked that the pole terms of our expressions agree exactly
with the pole terms of equations (5.5.1) and (5.5.2) in [2§]. This is expected because they
are not affected by total derivative ambiguities. We compared the non-pole terms which
are proportional to 7(z2, 25), and they are completely accounted for by adding a total
derivative term in superspace. To see this explicitly one can add a specially crafted total

derivative term to ([]]) as follows:
(AN) K25 = Los — Lsa

= —40 (AAY MW (M WHFS (K2 A%)) 410 ((AAY) (MY ™S WO (MW FZFS
+20(k* - k%) (ALY (A" W) (MY WH Ay WP)) — (2 < 5). (5.1)

The last line is a total derivative in z5: it comes from
+20 (MY W2) (MY W) (Al W?) D(AA®))

as can be seen using O(AA%) = 909, (AA5) + II™k2 (AA®). By explicit computation one
can then show that the five gluon component expansion of (b)) is given by the simple

expression

1 mnpqrstu 1 2 3 4 5
KQ =+ %t P anFpaFrsFtqua

1
tmanTStu [(k )Fl F2 F3 F4 (k; )Fl F5 F3 F4 ] (52)

1152 8 mn~ pqg- Ts mn" pqg- rs

which is the same answer one gets from evaluating the traces in [B§]. We therefore conclude

the equivalence of the PS and LS results.
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Adopting the “Schoonschip” notation by writing objects contracted into tg directly on

the tensor rather than using dummy indices, we now rewrite (5.9) in terms of polarizations,
1 2 2 5y,17.1_.31.3 _41.4 5 2 5y,17.1,.31.3 4.4
Kg)g:_ (k2'65)t§ (k“+k°)e k™ e’k ek —(k5'€2)t§ (k“+k°)e k e’k ek

72

o (62 i 65> t§2k5elk163k364k4 o (k2 i k5> t§26561k163k364k4 ) (5?))

This is, up to an overall coefficient, the same expression as Richards’ Ass — therefore
also confirming the equivalence between the LS and the light-cone GS calculations. It is
reassuring to see that everything matches.

Furthermore one can exploit the superfield nature of the pure spinor result (p.1) to
obtain the component expansion involving fermionic fields. For example, the by fobsby f5

expansion of (p-]]) is given by

L vnpgrstu
K225{3b = %tS parst (krzn + k%)(XzfynXE))Fg}qu?nglu (54>

All the other fermionic component expansions are also easily obtained. However we should
note that although (b.3) and (p.4)) happen to be gauge invariant, that is not true for other
combination of external particles, and one really needs to use ([.6) to get explicitly gauge

invariant results using (p.1]).

5.2. A different superspace expression for the kinematic factor K;;

It is interesting to note that the very same total derivative term chosen in (f.1) allows
us to rewrite Kox a

1
5 ((DYmnpA") | (W) (K2 A) = £ (™ W) F2 O W) (W) )= (2  5) (5.5)
To see this one can use the same kind of manipulations shown in Appendix B to obtain
(DYmnp A MW (0" W2 (MPW ) (K - A®)) — (2 = 5) =

—8((AAN MW (M W TR, (K- AP)) +4KZ (M W) (W) (" W) (A WP))

+4(K* - k) (ALY (A" W) (A" W) (A WP)) = (2 < B) (5.6)

15 Some results in this direction were derived in [BF], where it was shown that the four-point
kinematic factor can be rewritten as ((DymnpA) (A" W)(AM"W)(AYPW)).
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and
((DYmnp A Y M W2 D" WH (MPy W) FE) = (2 5) =

= =8 ((AAY Y™ W) (MW FL Fn)
+16k2 (A W) (MY W) (M W (A WP)) — (2 < 5). (5.7)
Combining (f.6) and (5.7) we get

5 {(DYmnp A" ) (MY W) (MY W) (MPWH) (K - A°))

—Z ((DArmnp AY) Ay W) Ay W) (AyPA ™) F2) — (2 5 5) =
= —40 (AAHY " W) (M WHFL, (K- A%)) +10 (AAY) (A" W) ("W F2FRL)
F20(R - %) (A7) ™ W 2) (" W) (A1 W) — (2 5 5),

which is equal to (b.1), as we wanted to show.

Therefore we have just shown that up to total derivative terms (B.5) is an equivalent
answer for the massless five-point kinematic factor at one-loop, which is equal to the result
obtained by Lee & Siegel in [2§].

We can also add total derivative terms to Ly;, for example
Lia = ~40[([(AAD) (" - 42) + AL 0P W2) | (W) 9" W) F,)

+20(k" - k%) ((AA) M WO (A" W) (A Y W) (5.8)

and one can easily see that these total derivative terms cancel each other out in (£.4). The
bosonic components of (5.§) can again be conveniently written as
1 1 3 4;4.5.5 2 3 4,4 515
b k' 4+k2)eP kP et ke k K k)P kP et ktek
L?zzﬁ[(k )8( ) (kz )8( :
. (el .62>tl§1k2e3k3e4k4e5k5 . (k: kz)tg e2el3k3etkteS kS ’ (5.9)
which is the same as Richards’ kinematic factor A;s.

The expression (B.9) also appears in the analysis of the low-energy limit as equa-
tion (4.14) of [B9] (see also detailed computations in [A(Q]). There it was shown that
Lio/(k* - k?) is the “s-channel” part of the two possible field theory diagrams: when mul-
tiplied by 1/(k!-k?), the first three terms in (F-9) correspond to a Yang-Mills three-vertex
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connected by a propagator to the one—loopE tgF* vertex, and the last term is matched by
the non-linear five-point expansion of the one-loop tgF'* vertex.

The correct factorization of massless poles is also evident in the two-fermion compo-
nent expression (b.4)) and can easily be checked in the bosonic result (5.9). The same is true

for the four-fermion terms, where one can for example show that up to terms proportional

to k2 - k°,

Kaf' = = [ K OCE (' + EDE) + (K R O (6 + D¢
which is the form of the four-point one-loop kinematic factor as displayed in [B7], with
k% = k2 + k5 and €25 = (x%?v.x°). We have performed this consistency check for all six
inequivalent assignment of zero, two or four fermions to the five external states.

The results above suggest that there are no one-loop F° terms in the one-loop effective
action (as one could expect from the results of [29][A]]]), but we leave the detailed analysis

of these matters for the future.
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Appendix A. Covariant evaluation of the four-point kinematic factor

In [27] the NMPS kinematic factor of the massless four-point amplitude was shown to be
Ky = ((Mmnp D) [AAD O W) " W) 0P W )] )

and a proof of equivalence with the minimal pure spinor formalism was presented. That
proof however relied on a U(5) decomposition of variables and ignored the overall coefficient
relating the two versions. A covariant proof [BZ] which overcomes these details will now
be presented.

Using the SYM equations of motions and the pure spinor constraint it is straightfor-

ward to show that
(AmnpD) [AAY) A" W) (A W) (AP W )]

= [MmnpD)AAD] (MY W2) (A" W2) (AP W)

+12000) AAY [N WH (" W) FR A+ ("W (W W) Fr (MW (A W F2

(A.1)
Using mnYa(57ys) = 0 and that the factor of [(AYmnpD)(AAY)] can be substituted by
[(AYm¥nYpD)(AAY)] due to the pure spinor constraint we arrive at the following identity

([ DYAAL] ™ W) " W) (P W)
= (W) | (", DYAAD) | Ay W) (W)

AN W29 )7 | Do (AAY) | "W 2) (P W4)). (A2)

Using y"y, = =)™ + 26} and the equation of motion Q(AA) = 0 the first term of ([A.3)

vanishes, while the second becomes
(R A) (WP5"9)7 [ Do (A1) | ™ W) (A )
= =200 (Wm7)7 [AD)AL] O™ W) (VW)

— 4O (AAH MW\ WHFS Y,

where we used Do Ag+ DA = 73Am and integrated the BRST-charge by parts. There-
fore
Ky = (M D) [AAD) A" W) " W) 0P W )] )
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= +16(AXN) (AA YY" WH (N W) FE )
+12(00) (AN (W) (A" W) F ) + 12000) (AAD (W2 ) ("W F L) -

Furthermore, as was shown in [B(], all three correlators above are symmetric in (234), and

we obtain
Ky = +400N) { AAY (M W) (MW" WA Fo) (A.3)

which is the covariant proof of equivalence we were looking for.

Appendix B. The computation of the kinematic factor Ks,

To prove that (B.§) is equal to (B.7) first one uses the SYM equations of motion and

the pure spinor constraint to obtain,
(AYmnp DY [AANFZ (M W) (M W) (AW H)])
= ((Mmnp D) [AAN FZL] (™ W) A" W) (P WH))
—A8(IN{(AAH MM WY (AW FZ L FB
F12(AN){(AAN) (A W F2 (A" WHFS L+ (MW" WAHT5])
F{(AY N A MW N W [FRFS, + FoF2.])
~16((M N AA) (W) I R L)
The last two lines vanish after antisymmetrization over [25], therefore we obtain
(M D) [AANFL ™ W) (A" W) ("W H)]) = (2 < 5)
= ((Mmnp D) [AAN FZL] (™ W) A" W) (P WH))
12N (AAN) (M W) FL (D" W F + (N WA FLLD
—A8(IN{AAY (MW (MW H FZ L FS ) — (2 < 5). (B.1)

The first line of (B]) can be rewritten using vy 5(1m)ys) = 0, {7™,7"} = 2¢™" and
(M™)a(AMym)s = 0,

(ANmnpD) [AAN FL] (AT AT WB) (A" W) (AP W)
= (MmY* D) [AADFZL] O™y " W2) (A" W2 ) (AP W)
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+Mm "N (WP P DY [(AAN FE] (™ W) (A, W)

= =8k (AAD) (MW (X W) Ay W) (X" WH))

P2 (29, D) [(AADFL] (™™ W) (117, (B.2)
where we used the equation of motion (AD)(AA!) = 0 and a few gamma matrix identities
to get

2((AD) [AANFZL] ™y " W2) (A" W) (A" W)

= =8k (AAD) (MW (X W) Ay W) (X" WH))
Furthermore, the last term of (B:J) can be rewritten using D,(M\A') = —(AD)A! +

(M%) oA, together with the equations of motion of the SYM superfields,
2000) (W35 D) [(AAN FL ] (™ W2) (AP IWH) (B.3)

= —2(AN) (W35 7p)* (QAL) Fr (A" W2 ) (AP W)
+F2(AN) A (W3 Py I FL (A" W2 ) (AP W)
FARZOR)AAD) (™ T2 ) P I (g T2).
The second line is zero due to the pure spinor condition. Integrating the BRST-charge by
parts (B.3) becomes

= LNty AT FR F2 (0™ s W) (W) (B.4)

tu” rs

[\

g (W7, AN O™ ) P W4 P, (B.5)
B2 (W 07,41 O™ T2 O W) (T4 )
HAEZ (AN (AAD (YW ) P W) (WP Py I 2) ).

The term (B-4) is equal to 4(AX)(AAL)( Ay W) (M W) F2, F3

mn?’

while (B.H) vanishes

after antisymmetrization in [25]. Therefore, putting all of the above together we get
(N D) [AADFZ (™ W) (" ) (P )]) — (2 4 5) =
=8k ((AAD) My W) (MW 2) (A" W) (M W)
=8 (AN (M W) M W) (" W) (Al W) )
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+4kT AN ((AAY) My W) A" W (W57 W)
— 48N {(AAH MM W3 (AW FZ FB
+12QAN) ((AAY) (M W) (WY W) FE Frn)
+16(AN) ((AAD) (A" W)Y (AN WHFZFS ) — (2 < 5).
From (J&J)) we can also infer that,
(Mmnp D) [AAT) (B2 - A7) ey W) (A" W) (AP W H)] =
(Mmnp D) [(AAD) (K2 - A)] (AW 2) (A" W2 (AP W)
H120N) (AN (k7 - A°) [ WH (N W) Fy + (W2 (N W) FL,
WM WHF,]
and repeating similar steps used to prove (B:2) one gets
(MimnpD) [AAD) (k2 - A%) | My W) (M W) (P W) =
= =2k, (AA) (W) (A" W2) (A" W) (A W)
—2(k? - k°)(AAD) (AA%) Myinn W2 ) (AW 2) (A" W)
+2(AN) (W33 D) [(AAY) (K2 - A%)| (™ W) (M W)
and after several manipulations,
2000) (W3 D) [(AAY) (K2 - A7) (™ W) (" W)
= +HAN)AA) X" W) (MWL (k- A7)
F2ONEZ MW ("W [AAD) (WO 5mn W) — (A W) (Al W)
F20N) (k% - &) Ay W) (A" W) [(AA) (A9 W) — (AA®) (A5 W)
And therefore,
(Mmap D) [AAY) (K2 - A%) W) (" W?) (P W] — (2 = 5) =
= +2(ANE; AAD (A" W2) " W (WP 3 W)
+2K2(MY WY MY W) (A" W [(AAY) MY W?) — (AN (A3 W)
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F12(AN) (AAN (K - A2 [(M "W (A" W) F + (AW (MW" WHFL,]
F16(AN)AAD MY WY N WHFS (k- AP) — 2(k* - k%) Lioaas — (2 5),  (B.8)
where we defined

L12345 = (/\Al ) (/\AS) ()\")/mW2> (/\"an4) (X"}’mnW?))

HOAXNAA) MW "W (A W) = AN AAD) (MW 2) (X" W) (A7 W),
(B.9)
Finally from (B.g) and (B.§) it follows that

K52 = 2 (Mimnp D) [AANFL (™ W) 0" W) P W) )

-

~(MmnpD) [AAY) (K - A%) W) (MW" W) (AP H)])
= —16(AN)AAY) MW (W W Fp L (k2 - A®)
—1200) AAY [ W2) ("W Fry + (MW MW FL ] (K2 - A7)
3N AAY) (MY W) N WA FE F
HAON) AA) My W) N W FLF s
+24(AN) k2 AAY M) (T (B4 2)
—12000) AAYHY MW 3Y O™ F2 FS 4+ 2(k% - k®)Ligsas — (2 < 5), (B.10)
where we used k2,(y™W?2), = 0 and k2(My™y"ySWO)(W2ySymmW3) =
= k2 YW (W) 4 k(A W) (W oy )
to get

—EZ(AADY MW [(M ™y W) (WP ymn W) — 2009 W) (WY 0 W) )

= 24k2(AAN) ("W My T (WP ).
Having obtained (B.I() the derivation of (B.7) is now finished, as they are equal.
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B.1. Total derivative terms

We are going to show that (B.9), when multiplied by (k? - k°), is part of a total
derivative term which vanishes when the whole amplitude is integrated over the position

of the vertices. To see this one notes from (B.7]) that those terms come from the evaluation
of
(Mimnp D) [(AAT) (K2 - A7) ] ("W 2) (A" W2) (P W) (B.11)

which is also present in the expressions for K;;, where 7, j are the same labels as (k’ - A7)
in (B:I1]). Therefore — omitting everything which is not relevant to this proof — the whole

amplitude will contain the following terms,
+Lissaa (k' - k*)n(2,1) + Ligsas(k' - k*)n(3, 1) 4 Ligssa (k- k*)n(4,1) + Lygsas (k' - k)0 (5, 1)

+(k* - k%) [L12543 (3, 2) + L1s3az (2, 3)] + (K - k*)[L12354 (4, 3) + L1543 (3, 4)]
+(k* - k") [L12354 (4, 2) + L1s3az n(2,4)] + (k* - k°)[L12345 (5, 4) + L1354 n(4,5)]
+(k* - k°) [L12345 (5, 3) + L12543 (3, 5)] + (k* - k) [L12345 1(5, 2) + L1342 (2, 5)]. (B.12)

By pairing the above terms in groups of four one can show that they vanish. For example,
consider the terms which contain 7(5, j). It is easy to show that they are a total derivative

in the variable zs5,

+Lazaas (k' k°)n(5,1) + (k% k°)n(5,2) + (K7 - k°)n(5,3) + (k* - k)0 (5,4) =

5

0 PR
= 5 o[ DK )z %),
1<J
because 7(zs,2;) = —8%5 f(2;,25). The same can be shown for the remaining terms of

(B:13), establishing that they will all vanish by the cancelled propagator argument.

As can be easily inspected, the symmetry in the labels (34) is manifest in (B.G) but
not in (B-I(0). Upon subtraction of the (3 < 4) permutation in (B-I() one arrives at the
following identity

(AAN[AY™W2) (k* - A%) — (MW FL] (" WHFS ) — (2 < 5)
= ((AAN) [AM" W) (k? - A%) = (MW FL] (A" W) Fon)
+4(E? - B2 (AAD (ANAD) My W) (W34, W)
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+2(k% - K ) AAD) ™ W2) [ W) (A9 W) = (M W) (A% W)
=2(k% - E°)(AA%) AW 2) [ W) (A W) — A W) (Al WP)] = (2 5 5),

where all terms which contain an explicit (k2 - k%) factor come from the total derivative

terms as shown in the previous paragraphs@. The above can be rewritten as
(AN A" W) (K - A%) — (M"Y WO FL ) (MW" WHFS) — (2 5)
= (AN A" W2)(R? - A7) = (MW" W) FL ] (WY W2) Fn)
—4(E% - DY ZNAH A My W) (W3, W) — (2 < 5) (B.13)

where we used (M W?2) [(Aly™m W) (A" W3) = (3 > 4)] = 2(AMy"W2)(AAY)(W3ymIWH).

Furthermore, the relation
QLIVA 1y W) M ™PWH)] = 24(\y " W) (M W) 7,
—1200" WA (MWW FL, — 1200 W (0" W) FL,
and the fact that correlations of BRST-trivial operators vanish can be used to show

24((AA ) MW (W) F / Uy =

= 12<(AA1)(WHW3)(M”W‘*)f;n/U5> +12<(AA1)(mmWQ)(M"W‘*)ff;m/U5>

H{AAY) (WY W) (Ay™ P H) /6()\A5)>. (B.14)

However care has to be taken when computing the OPEs in (B.I4) because of non-
commuting operators. For example, when considering the term appearing in the deriva-
tion of (B-I4), namely (AAY)Q[(W2YynpW3)(Ay™™PW*)] [ U®) one can first compute the
OPEs and then “integrate” the BRST charge by parts or the other way around; and these
two operations don’t commute. Using (AA%) = k> (AAP) + 0090, (AA5) and with the

above caveat one can check that the components proportional to 7(z2, z5) obey

—24((AAN (MW WAL, (WP W2)) =12 AAY) (MW (MW" W) F2,, (k2 - A%))

17 We nevertheless keep track of them because they are useful when performing component

expansion checks with the computer.
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—12((AAY) W I FLLF
= —24((AA) (MW (M W) F,, (B2 - A7) + 6((AAD) (™ W) (M W) FL F o)
+12((AANY A" W) (N W FS (K2 - A%)) — 3{(AAY) (AW ) (MW F2,Fa..)
—(k* - k) ((AAD) (AA) (W Yy W) (M PIWH)) — (2 < 5). (B.15)

where the third term in the left-hand side is related to the order in which one chooses to
compute the OPEs to generate 7(z3, 25) or to integrate the BRST charge by parts. It is
the result of integrating the BRST charge by parts after computing the OPE d,(25)0” (22)
as z5 — 2o,

LA (g W)l O] — (2 > 5)
= —12((AAN) ("W (W FR, FIn(5.2) = (2 5).

Note also that the term with the explicit (k? - k°) factor also comes from a total derivative
term, and can therefore be dropped in the end.
Substituting (B.15) in (B.10) and then using (B.13)) allows one to obtain the following

expression for Kso

(M) K5 =
—40{(AAY MW (M WA FE L (K2 - A%)) + 10{(AAY) My WO) MW F2 F2 D
H(k?-E) [4(AA) AAY) My W2 (WP, W) = (AAD) (AAT) (W 24, W) (AP ) )]
+(k? - k°)L1g3a5 — (2 < 5), (B.16)
which dropping total derivative terms can be expressed simply as
(M) ' K5 =
—40((AAY) MY WY (N W) T (K2 - A)) 4+ T0((AAY) (MY ™y W) (A" W) F2 F)
—(2 < 5), (B.17)

therefore concluding the proof of equation ([1]).

18 We chose to keep it to be able to check (B.15) explicitly by a component expansion compu-
tation with FORM [BJ][B4].

26



Appendix C. Integrating )\, in pure spinor superspace expressions

In principle one-loop calculations using the PS formalism will involve superspace inte-
grals in which the non-minimal pure spinor A, does not simply occur as a product (A)), and
one should know how to deal with these expressions. Although in this paper we managed
to isolate this “new” type of correlator to the total derivative terms we will nevertheless
show how to compute them explicitly.

As with the (\36°) correlators, the result is completely fixed by symmetry. Writing
S* for the spinor irreps of SO(10) and, schematically, P* for pure spinors, we find the

representation content [[A2]
AACNENNY 1 6§~ @ Sym? ST = 2 x [00003] @ 1 x [11010] & . ...
P~ @ Sym*P* =1 x [00003] @ ...
1% ... 9% . AltPST =1 x [00030] @ 1 x [11010],

so that there is only one invariant combination of A\ and 6°. We will now make use of

this uniqueness and construct a spinorial formula relating it to the (\30°) case, where

<>\a)\5)\,ye51 o 955> — Taﬁ’y,51...55 _ N—l [(,Vm)aél (,yn)ﬁég (,yp)fyég (’7mnp)6455 ,
(aﬁ’y)[él...ég,]

with N a normalization constant. The simplest ansatz is to write (A\30%) = § x T, suitably
symmetrized. However, this time the pure spinor property is essential to the uniqueness
argument and we will need to be careful to subtract gamma traces. This can be done by
applying the projection operator

1 1 1
abys _ = [slagBsragd) _ Z5lasBaa 70) a . (af b 75)}
Ppaﬂu - 2772 [5p 5057—750.; 45(p 5077’@«1)7(1 + 1607(p0’7a 77@«1)7{) ) (Cl)

which is symmetric and gamma-traceless in both sets of indices and satisfies PP = P. We

conclude that
(RN X240 995) = ¢ x Po:-a [52477172%51‘}

for some constant c. Substituting (C-1) and using that T is gamma-traceless, we get

(o) = |

—apazoy),d; 1 (o S
5775 5(a1T 20:304),0 _5( 15@2(’7m)v3)e(’7m)a3a4)T7 6] (CQ)

€ ] (T

The normalization is not important for our amplitude calculation, as all our expressions

contain one X and four \s. We will set

(N (AY™0) (A" 0) (AP0) (0ymnp) ) = 1, (C.3)
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which is satisfied for ¢ = 672. Equation ([C.2) can be interpreted in form of a practical

prescription by re-writing it as

(KA 05) = )\)\) {00 (o2 x a0 ) o} = fymen (XA (™) 0% ) + -}
(C.4)
where the two curly brackets contain four and twelve terms respectively, corresponding to
the choice of « indices on §* and on 7y, “/. We can think of the first group of terms as
coming from eliminating the X and one of the s, contracting their indices. In the second
group, a pair of A%\ % has been replaced by vn'"’ and A by (M,)e. We have thus
reduced everything to the well-known (A30°) correlators.
For example, applying this procedure to the eighth term in (B.7), we obtain (inside
correlators):
A L) (7)) (o 7%) = — |
[ (AT OAD) T2 ")+ (AAD) (A3 T72)) Oy ) (" T)

— (AN AT (W27 500 W) " W) + (AAD)(AA®) O™ W) (W75, W) §
— (A 4% 00" 00" I) — (A5 () (" W)
(AL W AAT) 0™ I2) + (AAD) (A% 2) (" W) (C.5)
= (AN (AP W O W2) 4 (A AA) (W2 W) ) (a2 } .

To check the consistency of ([C.5) one can use the identity

(AADAAY) O™ T2 [ W) W) — (3 4)])
= 2 (DAY (A% Ay W) (W, W) (C.6)

and compute each term of the lhs of ([C.§) using the corresponding result of ([C.§) and
compare it against the direct computation of the rhs using the standard (\30%) correlators.
We did this and obtained agreement.

Alternatively, we can follow the methods of [[7] and derive tensorial formulae by
constructing a symmetry-based ansatz and using pure spinor identities to relate it to the
normalization condition ([C.3). Proceeding in this fashion, we find

(™ 2) (0) (3 8) (y<0) (69716) ) = [ 52t

140 (C.7)

] [cde][rst]
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_ 1
(O™ N 10) O\ 0) (1 90) (077°10)) = == [ ot + 2 83t of 5] — 20013t p

1
+ 23608519 4 24 5901 6b9 1 67 gtagg] b abedefgrst O
d cde cde [ab][cde][fg] [rst] 25200 ( )

(O™ N) Ay e2e0) (A7 9"0) (Xy'0) (07710))

1 .
= o [36000018" — 8 ool + 4651020 5} — 20520367 — 126525080}
— 46 505070 — 420505,00% + 2050500 — 9 55000100,
fabYrst fg t fg t fgr9st (abledel(f gh][rst][cdecr Fgh]
1 T cde i|s Tl _a i|s | _abcde i|s
+ m(d[[aleb] de f ghi|st] +6[[C|€ bde]fgh| t] _5[[f|€ bed ot | t]) (Cg)
(PN (Ay©0) (AT 0) (A 90) (677°'0))
1 bed t] 1 bede fgrst
=gV R C.10
70[ efrs% | rorrst) T 25200 (C.10)

{0 My T90) (\y"0) (\y'0) (0~70) ) = 191—25 [23 clorsst — 4260 o5t

_9 5efr55h61.€ 5ehir65t 20 6ehrs(5it 6er5t 5hz]
abed Vg% + abcd fg + abedY fg + abed¥ fg [abed] [ f g [Ri] [rst]

1 a bedle 7 el _abe %
~ 300 2 piebediefani ) 4 gleleabedlfalhi ) (C.11)

This approach is useful if one aims at a direct component evaluation without being inter-
ested in equivalent (\36°) correlators, e.g. when checking superspace manipulations with

a computer.

Appendix D. Component evaluation of pure spinor superspace correlators

While amplitude expressions in pure spinor superspace comprise bosonic and fermionic
parts in the form of superfields, it is often necessary to extract separate components, e.g. to
compare with existing results. Comparisons of component expansions also provide a valu-
able check on superspace manipulations. In this appendix, we summarize some techniques
and intermediate results relevant to the present paper, extending methods published pre-
viously [BZ][L9.

In all but the simplest cases, the evaluation of pure spinor correlators becomes com-
putationally involved, and the help of a computer algebra system seems indispensable.
We therefore emphasize approaches that may be forbidding for a paper-and-pen calcula-
tion, but lend themselves to direct transfer to the computer. The present authors have
employed independent implementations of the algorithms, using FORM and Mathematica

respectively.
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D.1. Superfield expansions

The fermionic expansions of the Yang-Mills superfields satisfy simple recursion rela-
tions, which makes explicit component expressions readily available [I3][B5. In addition,
we need the expansion of the antisymmetrised derivative of the spinor gauge superfield,

Da'yg‘ﬁlpAﬁ. This object vanishes at order §°, and the next few orders can be written as

(DY A) ) = =2 (0mnpX)

(D) = 5 O FO) + 30,607 oy 0) o1
(DYmnpA)®) = (07apmn) (07 x) — é(%”[mﬁ)w%@ax) |
(DYmnpA) ™ = %(GV[man)(Ovp]rﬁ)aqFrs - %(97[mn|t9)(9v”t9)3|p1Frs

The first two lines result directly from applying the supercovariant derivative D, = 0, +
%(9(?)(1 to the lowest terms in the expansion of A,, followed by simple gamma algebra.
For the third line, we note that the SO(10) representation content of % and of 9, x“
predicts two independent three-forms composed of these objects. Indeed, writing 63 as
a 7-traceless spinor-two-form ©% via 0% = (6y%0)(v.0),, which captures the whole
content of #3 because (#y*°°0)9~ = %(’y[“@bc])o‘, we can see that those two independent
three-forms are given by (0,0, x) and (Oq[mYnp9°X). The easiest way to obtain their
coefficients is then to go to a gamma matrix representation. Similarly, for the fourth line,
there are two independent three-forms indicated by representation content, and one can use
the Bianchi identity 9y, F,,) = 0 as well as the spinor product identities (yqp0)a (07770) = 0,
(07,70 (6~4P1999) = 0 and (§7™"P9" ,,0)(65°0) = 20(6~41""P9) (0~y17156) to reduce all terms
in (DYmnpA)® to the form given on the right-hand side.

D.2. Correlator catalog

The most efficient way to evaluate pure spinor superspace correlators is to compile a
“catalog” of building blocks, as outlined in appendix A of [P3]. This is particularly the
case if one completely automates the process that deconstructs an arbitrary correlator into
these blocks, namely by expanding gamma products, sorting of spinor bilinears and, for

fermionic fields, applying Fierz rearrangements. Two different approaches, the automatic
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conversion to traces and the component-based evaluation studied in [[9], have turned out
much slower and have not been used hereld.

In principle the three building blocks ((AyPIN)(Ay[13:510)(6~1319)(6~41319)) are sufficient,
but it is more efficient to also allow for the pairings ((Ay0)(Av0)(A\v0)(6~0)), since they
only need to be computed once, making all subsequent computations faster. In addition

to the identities listed in 9] and eq. (2.7) of [I9], we use the following:

<(>\7a1...a5 9)(}\’yblb2b30)()\’76162639)<9’yd1d2d3 9)> —

g (OEts e ) (ORI E — SEEENE ) (D2)
IR R CR R PSR R ricie]
<()\,ya1...a59)(}\,ybl...bg,9)(A700)(67d1d2d30)> _ _% (5311_._._.355 i %eal...aselm%)
x|t 0h, — 20 L0 — dEan] (D:3)
(A --93) (Aybr-50) (g 1202) (9 D1l 9) ) = %(5311_._._?55 n éﬁal‘”%el...%)
S N O A R A R A D R AL B IR L XY

They have been derived using a symmetry-based ansatz, as described in [[7]. A useful
application of the component-based method of [[9] is that it provides a quick way to

compute the coefficients in such an ansatz.

D.3. Kinematic reduction

In the component calculations relevant to this paper, we encounter kinematic factors
that are Lorentz invariant polynomials in the momenta k; as well as the polarization
vectors efL and/or the fermionic spinor wavefunctions x*®. Due to the on-shell identities

S ki= (k") =k"e = }éixi = 0, there are many relations among these polynomials, and

19 Trace evaluations using Mathematica / GAMMA become very slow once the number of
gamma matrices in the trace reaches the mid-twenties. Calculations of traces that take (tens
of) hours with Mathematica typically finish within (tens of) minutes using FORM. Still, FORM
takes several hours to compute an expression like ([C.g) starting from the spinorial formula (C.2).
On the other hand, using the “catalog method”, the correlator evaluation becomes a matter of
seconds. A difference in performance of about an order of magnitude remains in favor of FORM,

due to the handling of antisymmetric tensors and of dummy indices in the GAMMA package.
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we need to be able to systematically reduce them to some sets of independent kinematic
invariants.

As will be shown in the following, such reduction algorithms can be found in the
form of a collection of replacement rules, which can easily be implemented on a computer
algebra system. An alternative method considered in [[[J] was based on evaluating symbolic
expressions on a number of integer-valued solutions to the on-shell identities. As the
number of external fields and therefore the number of independent kinematic structures
increases, this method becomes unpractical and slow. However, the component-based
method is still useful to ensure that the end products of the replacement rules are in fact
linearly independent, that is, that no identities have been missed.

For bosonic expressions, the reduction process is very simple and consists of eliminating
one momentum (say k% — —k* —...— k%) in all k-e and k- k products, plus one additional
product like k* - €5 — —(k! + k% + k3) - €5, and one k - k combination to resolve the
relation %(Zle k)2 = Zf <j k'-k3 = 0. This leaves five independent quadratic momentum
invariants, and three scalar products for every polarization. Note that any terms containing
the ten-index epsilon tensor €1¢ will vanish, since there are only five polarization vectors,
and the five momenta are linearly dependent.

Adding in two fermions only requires a mild generalization, as they can be re-written
into independent antisymmetric tensors (ley[k] x?). Any € terms can be eliminated by

10—kl since the x* are chiral spinors. The only complication arises

dualizing €;97* — Al
from relations due to the Dirac equations %1 X' = %2X2 = 0, but these can be resolved by
replacing

(Xl,yal...anXZ)kil _ —(TL _ 1)k1[a2 (Xl,yag...an]XZ) (D5)

and similarly for k2. This rule, along with the dualization step, allows us to regard the
spinor bilinears as unconstrained antisymmetric tensors from now on. After applying
the bosonic simplification rules and resolving the tensor antisymmetry by sorting into
some order, e.g. kglegz ké37“1“2a3“' — e‘zlk;Q k337a1“2a3“' etc., all remaining structures are
independent. In the five-point amplitude calculation, where we are dealing with terms of
the form kkkky!'x?e3e*e®, we find 476 independent kinematic structures.

With four fermions, we have to think about Fierz transformations which might seem
to lead to relations that are hard to resolve algorithmically. Fortunately, since we are

dealing with distinct spinors, we can completely avoid this issue by rearranging all spinor

products into the same order, for example into (x*y*1x?)(x3>v"x*) bilinears, at the outset
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10—k whenever k > 5, re-write

of the reduction procedure. We then eliminate y*! — €197l
€10€10 — 0, dualize €;0y!®) — ~°], and apply the Dirac equation replacement ([D.5) as well
as the bosonic simplification rules.

The resulting terms will not all be independent, since the duality properties of the
spinor bilinears have not been dealt with, and this is slightly more involved than in the
two-fermion case. For example, the contraction of two self-dual five-forms vanishes, so all
terms containing (x'7***x?)(X*Ya,...as X*) have to be set to zero. We now show how to
resolve this issue for expressions of the form x!'x?x3x*e’kkk as encountered in the five-
point amplitude. The steps described in the last paragraph lead to the following structures:

First, there are 30 possible terms in which the spinors combine into a scalar,

(O™ X 0Mx®) or (Y™ 25X (P Yasazan X)) % (k- k) (e - kY29,

where we have already set to zero the v . v5 products. Next, there are 116 two-tensor

combinations,

((x17m1x2)(x37m2x4) or (le“”?mle)(X3va1azm2x4))

% (kfr{fk}rf(e5'kl/2/3) or k345 (k-k) or € k1/2(k_k)>’

mi Tma mi Tma2

((X17a1m1m2x2>(x37a1x4> or (X17“1“2“3m1m2><2)(X?’%lazasm))

X <k3 kKL (&5 kY23 or k3[4 (k~k;)),

my "ma my Tma

((X17“1x2)(x37a1m1m2><4) or (xlv"”‘mxz)(X3%1a2a3m1m2x4>)

X (k;l k2 (&5 kY23 or k125 (k~k;)).

mi "ma my Tma

Finally, there are 8 four-tensor combinations,

O™ 2o (0™ X) X K Koy o ot 2
O™ ) Oyt < ke e ki, €6

mo " 7Mms My

(Xl,yalmlmgXQ)(X3,ya1m3m4x4)X(k3 k?4 65 k1/2 or ]{73 ]{74 65 k1/2).

m1'Vme “ms3'Vmy m1'Vme “ms'Vmy

These 154 structures are independent, as can be seen by going to components, and it will
turn out that they form a complete kinematic set. There are three more groups of possible
outcomes, but they can be simplified using duality manipulations. The first group contains

a four-tensor of the form e1o(x 7\ ?)(x*v1x*) contracted into kkke®:

Xl — Eml‘”m4a1a2a3b1b2b3 (Xl,yalagagXQ)(X3,yb1b2b3X4) X k.l k,2 k,?) 65

myi "Mz M3 Ty
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and three others with k'k2k*, k'k3k*, or k2k3k*. Upon dualising ey® — 7,

Xy = 3!<X17m1m2m3m4b1b2b3b4x2)(X3'7b1b2b3X4) X k11nlk12ngk1?;13 )
the momenta k' and k? are contracted into the (x!x?) bilinear and the Dirac equation can
be used to reduce y[71 — ~[5] and thereby relate X; to the previous list. The second group

consists of

Y1/2 — (Xl,yalazmlmzmgXQ)(X37ala2m4x4) X k,3 k,4 65 k,l/2

mi "m2 T3 Ty

Yaza = (07" 0) (P Yaras ™" X)) X R K €,

and can be reduced similarly. For example, in the first line, dualization leads to

1dd ds...d 1ddd dy...d
(2—06,7;1,31%3(%7 s 7x2)—557r§17%2%3(x17 4 7m4X2)>(X3’yd1...d7x4) S S

and now at least one momentum is contracted with a bilinear where the Dirac equation

can be used. The third group contains two 7! factors, either as two-tensor

Zmme = (a2 2) (65, isagas X )

contracted into at least one momentum, or as four-tensor
Zmlmg,m3m4 _ ( 1 aj1a2a3mimsa 2)( 3 ms3may 4)
=X X )X Yaiazas X

contracted into three momenta and the polarization e°. Here we note that the only two-
tensor irrep contained in the tensor product of two self-dual five-forms is the symmetric
traceless one, so we must have Zl™1™2] = (. Similarly, the product does not contain a

mamy]

completely antisymmetric four-tensor, and hence Zm172: = 0, which implies

ZM1me,m3Mmy _ ZM1M3,MaMy __ 7M1M4,M2MM3 __ 7M2M3,M 1My + ZM2Ma,MIMms _ 7m3mg,mims
In all cases, the symmetries of Z allow us to shuffle at least one momentum onto a bilinear

where the Dirac equation can be used, relating all terms containing Z tensors to the list

of 154 independent structures. This concludes the simplification of four-fermion terms.
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