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The scaled Bingham distribution.

• We then estimated the parameters of one scaled 
Bingham distribution for each of the fODF maxima, 
assuming they represent separate fiber bundles. 
This was done via linear least squares fit using the 
peak neighborhood, while fitting the direction of the 
Bingham distribution with an orientation matrix [7,8].

• From this fit we directly estimated peak length, peak 
direction and peak spread. To compute the peak volume 
we integrated the scaled Bingham distribution over the 
unit sphere, estimating the number of fibers contained 
within the peak. Afterward we computed the quotient 
of the number of fibers for largest peak and the number 
of fibers within the three largest peaks. This was then 
used as measure for the structural complexity.
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Results

In Diffusion MRI (dMRI), spherical deconvolution [1] is 
used to model regions with complex micro-structure. The 
method produces a fiber orientation density function 
(fODF), which is represented using spherical harmonics 
coefficients. These parameters are usually difficult to 
interpret directly in terms of physical properties. Often 
the fODF can be viewed as superposition of multiple 
peaks, each associated to an approximately collinear 
fiber bundle. By parameterizing each of these fODF peaks 
using a scaled Bingham distribution we were able to 
characterize the underlying fiber bundles and capture 
their second-order statistics. In addition, the integral 
of the fODF over the unit sphere corresponds to the 
total number of fibers contained in a single voxel. By 
integrating each of the scaled Bingham distributions we 
estimated the relative number of fibers corresponding 
to each bundle. For example, comparing this integral 
for the first two largest peaks yields a measure for the 
complexity of the underlying micro-structure.

The Bingham distribution can closely approximate the peaks of the fODF. 
This enables the separation of the fODF into compartments representing the 
underlying fiber structure, as well as deriving measures directly related to 
microanatomy from the fitted distribution, which therefore are easily interpretable. 
The two concentration parameters characterize the peak anisotropy and provide 
a measure for the fiber spread. As an example figure 2 shows an approximation 
of the structural complexity computed from the ratio of the peak amplitudes 
compared to the tensor FA. The integral over the scaled distribution quantifies the 
relative contribution of the different compartments and is directly described by 
the scaling parameter. The representation of the fiber populations by Bingham 
distributions allows for the representation of measures for each fiber bundle 
separately, thereby describing the influence a single bundle has on the measure.

a) FA

b) AFC

c) ABFC

d) Eccentricity

e) Complexity

This image depicts the FA, 
which has a Range from 0 to 
1. It is sensitive to structural 
changes, however, this leads 
to loss of specificity which 
we tried to increase using 
metrics derived from the 
Bingham fit.

The AFC is relatively 
constant over the whole 
brain. The maximum value 
used in the figure is the 
number of fibers of the 
voxels in the kernel, i.e. 855 
000 fibers.

FA and ABFC seem closely 
connected, as one can 
observe a similar pattern. 
The maximum value is set 
to the 855 000 fibers which 
is the same number as for 
the AFC.

The eccentricity of the 
largest peak gets larger 
the closer one gets to the 
cortex. This indicates the 
fanning of fibers as they 
enter the gray matter.

In this map of the 
complexity one can identify 
areas in which several fiber 
bundles are present.

Metrics
• The apparent fiber count (AFC) is calculated by integrating the fODF over the 

sphere. This is equivalent to the first spherical harmonic coefficient corrected 
for the T2 contrast. It describes the number of fibers contained within a voxel.

• The apparent bundle fiber count (ABFC) is obtained by integrating the fitted 
Bingham distribution over the sphere. It gives the number of fibers contained 
within the bundle approximated by the corresponding Bingham distribution.

• Eccentricity is a measure of ovality of the fitted population. It is estimated from 
the concentration parameters of the Bingham distribution. It is zero in case of 
the profile being a circle and approaches one the more oval the profile gets.

• Structural complexity describes the degree to which the fiber configuration 
within a voxel deviates from a single, approximately collinear (allowing for 
some spread), fiber population. It is zero if a single fiber bundle is present and 
close to one in case of three bundles of about same size being present.

Schema of fitting the Bingham distribution to the fODF. The fODF is shown 
in light grey. The maximum direction its largest peak is visualized as red line. 
The directions of the Bingham distribution (green) are fitted using a small 
neighborhood of the 
maximum direction, 
which is shown in blue. 
The points which are 
used for the calculation 
of the concentration 
parameters are 
those within the area 
outlined in yellow.
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The mapping of the fODF to fiber bundles enables the 
investigation of fiber bundle properties (e.g. FA) along 
each pathway [9]. Left: Spherical deconvolution result 
in spherical harmonic Representation. Right: Bingham 
fit of fODF peaks for one transcallosal tract and a 
representative selection of the cortico-spinal tract 
crossing in a coronal section of the brain.

We addressed the problem of finding a robust 
parameterization of the fODF in order to separately 
characterize the fiber bundles contributing to the fODF, 
as well as deriving measures from this parameterization 
in a way that they are directly linked to the 
micro-architecture. We did this by imposing a Bingham 
distribution based model for the distribution of single 
fiber bundles. Overall our approximation of single-fiber 
peaks using a Bingham function supplies a powerful 
tool for parametric quantification of fiber bundle 
properties. The derived metrics allow for increasing the 
specificity of the FA because of their direct connection 
with the underlying fiber geometry, as well as being 
suited for directly deriving measures for microstructural 
properties.
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• High resolution dMRI scans were acquired on a Siemens• 
3T TIM Trio scanner (1.5mm isotropic, 60 directions, 
b=1000s/mm², 32-channel array head coil, GRAPPA 3, 
AV=3) from a single healthy subject.

• We calculated the signal attenuation by dividing the 
image by the b0 image to remove the T2 influence.

• We then obtained the kernel from voxels containing a 
single parallel fiber population, i.e. voxels of the corpus 
callosum.This kernel was then corrected to represent the 
signal of a single fiber, assuming a fiber density of 380 
000 fibers/mm², i.e. 855 000 fibers/voxel. However the 
approximation of the fODF using spherical harmonics 
introduces a bias, which then has to be corrected to 
ensure the correct number of fibers to be represented in 
the kernel voxels.

• We performed an 8th order spherical harmonic 
approximation of the fODF using constrained spherical 
deconvolution (CSD)[5].


