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Abstract. We have recently presented an investigation in full geneshdtivity of the
dynamics and gravitational-wave emission from binary reustars which inspiral and merge,
producing a black hole surrounded by a torls [1]. We hereudsdn more detail the
convergence properties of the results presentedlin [1] iangiarticular, the deterioration of
the convergence rate at the merger and during the survithkeaherged object, when strong
shocks are formed and turbulence develops. We also showpliyaically reasonable and
numerically convergent results obtained at low-resolusioffer however from large truncation
errors and hence are of little physical use. We summarizdingdings in an‘error budget”,
which includes the different sources of possible inacaesawe have investigated and provides
a first quantitative assessment of the precision in the rindeaf compact fluid binaries.

PACS numbers: 04.30.Db, 04.70.Bw, 95.30.Lz, 97.60.Jd

1. Introduction

The study of the final stages of the evolution of binary systesna cornerstone of any
theory of gravity and a long-standing problem in GeneralaRaty. Important issues in
relativistic astrophysics still awaiting clarificationych as the mechanism responsible for
gamma-ray bursts (GRBs), may be unveiled through a bet@erstanding of the complex
physics accompanying the inspiral and merger of two newstars. Furthermore, the study
of the events that lead from a binary system of neutron stara black hole, possibly
surrounded by a hot and high-density disc, will provide thevijational waveforms and the
energetics of one of the most important sources of grawitatiradiation. While analytical
techniques are very successful in describing binary systeghich are widely separated and
thus moving at comparatively small velocities and in slowlrying gravitational fields,
numerical simulations represent possibly the only toohiestigate the dynamics when the
two compact objects are performing the final few orbits ofrtegolution and the dynamics
are in a fully nonlinear regime.

Considerable progress has been achieved in the past few ipedlie modelling in full
general relativity of compact-objects binaries (se€ 23,6/ 78 9, 10] for the most recent
work from the different groups), and we have recently presa systematic investigation of
the dynamics and gravitational-wave emission from binaytron stars which inspiral and
merge, producing a black hole surrounded by a tdrlus [1] éfemepaper |). The purpose of
this paper is to consider in more detail the results preséntigaper | and assess critically their
accuracy, their convergence properties and highlight iffiewties that can be encountered
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when simulating the turbulent motions that develop aftentierger and that characterize the
subsequent evolution of the merged object up to the collapadlack hole.

The plan of the paper is as follows. After a brief introduntio Sectioi 2 to our code and
to the binary models we simulated, we give in Secfiibn 3 a vewitthe general dynamics of
the inspiral and merger of equal-mass neutron star binasiestior % is instead dedicated to
the discussion of the accuracy of our simulations when peréd with different resolutions,
while Section’b assesses the influence that purely numerspaicts have on the physical
results and presents them in a comgaoior budget”. Finally, our summary and conclusions
are collected in Sectidd 6.

2. Mathematical and Numerical Setup

All the details on the mathematical and numerical setup dsedroducing the results
presented here are discussed in depthin[[11, 1]. In whaiviisll we limit ourselves to a
brief overview.

2.1. Einstein and Hydrodynamics equations

The evolution of the spacetime was obtained usingGbat i e code, a three-dimensional
finite-differencing code providing a solution of a confolnti@celess formulation of the
Einstein equations [11]. The general-relativistic equadi were instead solved using the
Whi sky code presented in [12, 113,114], which adopts a flux-consee/fdrmulation of the
equations as presented [n [15] and high-resolution shapkdcing schemes. Thahi sky
code implements several reconstruction methods, suchtaVariation-Diminishing (TVD)
methods, Essentially-Non-Oscillatory (ENO) methods| [B6ld the Piecewise Parabolic
Method (PPM)[[17]. Also, a variety of approximate Riemanivers can be used, starting
from the Harten-Lax-van Leer-Einfeldt (HLLE) solver [18)ver to the Roe solver [19]
and the Marquina flux formuld [20] (see [12,113] for a more dethdiscussion). All the
results reported hereafter have been computed using theuitarflux formula and a PPM
reconstruction. We stress again (as already dorie in[1{24§}he use of high-order methods
and high-resolution igssentialto be able to draw robust conclusions on the inspiral and
merger. Lower-order methods in the reconstruction and Eselution may yield convergent
and apparently reasonable results which however contanga kruncation error. Specific
examples of this type of problem are presented in Appendix gaper | and in Figure 4
of [21].

The system of hydrodynamics equations is closed by an equafistate (EOS) and,
as discussed in detall inl[1], the choice of the EOS plays aduorental role in the post-
merger dynamics and significantly influences the survivaétiagainst gravitational collapse,
of the hyper-massive neutron star (HMNS) likely producedttoy merger. It is therefore
important that special attention is paid to use EOSs thailaysically realistic, as done in[22]
within a conformally description of the fields and a simptifteeatment of the hydrodynamics.
Because we are here mostly concerned with assessing thef slee truncation error rather
than with a realistic description of the neutron-star nmratte have employed the commonly
used “ideal-fluid” EOS, in which the pressusas expressed as = pe(I" — 1), wherep is
the rest-mass densityjs the specific internal energy amds the adiabatic exponent. While
simple, such EOS provides a reasonable approximation areckpext that the use of realistic
EOSs would not change the main results of this work.
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2.2. Adaptive Mesh Refinements

Both the Einstein and the hydrodynamics equations are dalging the vertex-centered
adaptive mesh-refinement (AMR) approach provided byGdepet driver [23]. Our rather
basic form of AMR consists in centering the highest-resoiutevel around the peak in the
rest-mass density of each star and in moving the “boxes” doatk the position of this
maximum as the stars orbit. The boxes are merged when thelapve

The results presented below refer to simulations perforatéioree different resolutions
and for each of them we have us@tevels of mesh refinement. More specifically, the finest
refinement level has been chosen to have resolution of efther 0.1875 My = 277m
(hereafter “low” resolution), ofi = 0.1500 M, = 222 m (hereafter “medium” resolution),
or of h = 0.1200 M = 177m (hereafter “high” resolution). It may be useful to point
out that although the simulation at high-resolution stretcthe computational resources
available to us, it is effectively less expensive (both innmey and computing time) than
an equivalent simulation carried out for binary black haésesolutions that aré0 times
larger but on fine grids that are much smallef. the high-resolution in[[11]). Using the
medium resolution as a reference, the grid structure is taththe side of the finest grids
is 15 M = 22.15km, while a single grid resolution covers the region betweerstadce
r = 150 Mg = 221.5km andr = 250 Mg = 369.2km from the center of the domain.
The latter region is the one in which our gravitational-waxéraction is carried out, with
a resolution ofh = 4.8 M, = 7.088km (as a comparison, the gravitational wavelength is
~ 100 km and thus reasonably well-resolved on this grid). In addite set of refined but
fixed grids is set up at the center of the computational domaias to capture the details of
the Kelvin-Helmholtz instability ¢f. paper 1). For all the simulations reported here we have
used a reflection-symmetry condition across the- 0 plane and ar-symmetry condition
across the: = 0 plane.

An important difference with respect to paper I, where thedtrgrid was covering only
the central region of each neutron star, is that here eachsstmmpletely covered by the
finest grid. Although this choice is computationally morgoemrsive, it allows us to reach
convergent results already with resolutiong> 0.19 Mg, which are therefore smaller than
those discussed in paper | (where we have used what is helngtineesolution).

The timestep on each grid is set by the Courant conditiorrésged in terms of the speed
of light) and so by the spatial grid resolution for that levible typical Courant coefficient
is set to be).35. The time evolution is carried out usingh-order—accurate Runge-Kutta
integration algorithm. Boundary data for finer grids arecakdted with spatial prolongation
operators employingrd-order polynomials and with prolongation in time empfoy2nd-
order polynomials. The latter allows a significant memoryirsg, requiring only three
timelevels to be stored, with little loss of accuracy dudmlong dynamical timescale relative
to the typical grid timestep. See Sectldn 5 for a discussiotthe changes caused by the
different interpolation order.

2.3. Initial data

As initial data we use the general relativistic binaries duwed by Taniguchi and
Gourgoulhon[[24] with the multidomain spectral-method eddr ene [25]. The initial
solutions for the binaries are obtained assuming a quesHar orbit, an irrotational velocity
field, and a conformally-flat spatial metric. The matter isdmited using a polytropic EOS
p = Kp" with K = 123.6 andI’ = 2.

In paper I, a number of different initial-data configurasdar neutron-star binaries were
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used in order to illustrate the variety of possible behardoblere, however, the measure of the
truncation error is more easily done when considering dsicgnfiguration and in particular
one that, although representative, also reduces the camgmal costs. As a result, we have
chosen a model with a rather high mass so that a black holensefbsoon after the merger.
More specifically, our fiducial binary has the following cheteristics: a proper separation
between the centers of the stdys\/, ,,, = 12.6 = 60.3 km (this corresponds to a coordinate
distance of~ 45km); a baryon mass of each staf, = 1.78 M; a total ADM mass
M, = 3.23 M; an initial angular momentuni = 10.13 M2 = 8.92 x 10*° gcm?/s;

an initial orbital angular velocitf2o = 9.39 x 10~2 = 1.9rad/ms = 302 Hz; a ratio of the
polar to the equatorial coordinate radius of eachsar, = 0.945.

A note of caution should be made. While our choice for a rathassive binary does
have the advantage of allowing, within a total timescale-of1 ms, for the analysis oboth
the inspiral (over more than three orbits) and of the merngeaalso leads to a very rapid
collapse to a black hole once the HMNS has been produ@dafter only~ 1ms). This is
simply because despite the high temperature and degrefiarkdiial rotation, the HMNS is
so massive to be well beyond the instability threshold ferdbllapse to a black hole. As a
result, this choice inevitably prevents us from determgrfiow different choices of grids or
resolutions influence the survival time of the HMNS when ivésy close to the instability
threshold. This is clearly a limitation of the present agmto which will be overcome once
larger computational facilities become available.

3. Review of the dynamics of the merger

In paper | we have described in detail the dynamics of theenaltiring the inspiral, the
merger, the transition to the collapse, the collapse, aed the black-hole ringdown, for
binaries with different initial masses, initial distancerd (idealized) EOSs. In what follows,
we briefly summarize those results.

A first notable result of paper | is that of having clearly simavat for any given mass,
the survival time of the HMNS depends on the EOS. More spediifiove have shown that
the polytropic and isentropic EQ8= K p", for which therefore no shock heating is possible,
leads either to th@eromptformation of a rapidly rotating black hole surrounded by aste
torus in the higher-mass case, or, in the lower-mass caseHtNS, which develops a bar,
emits large amounts of gravitational radiation and evdhijteaperiences aelayedcollapse
to black hole. We have also shown that, for both initial maste ideal-fluid EOS inevitably
leads to a further delay in the collapse to black hole as dtrekthe larger pressure support
provided by the temperature increase due to shocks. Indkisthe temperature in the formed
HMNS can reach values as high #8'' — 10'2 K, so that the subsequent dynamics and
especially the time of the collapse can be reduced if coatieghanisms, such as the direct-
URCA process, take place.

With the exception of the low-mass ideal-fluid binary, wha#&INS is expected to
collapse to black hole on a timescale which is computatlgmélallenging {.e., ~ 110 ms),
all the binaries considered lead to the formation of a mtablack hole surrounded by a
rapidly rotating torus. The masses and dimensions of thedegrend on the EOS, but are
generically larger than those reported in previous inddpahstudies, with masses up to
~ 0.07Mg. Confirming what was reported in [26], we have found that theant of angular
momentum lost during the inspiral phase can influence thes wiathe torus for binaries that
have the same EOS. In particular, the binaries that losealegalar momentum during the
inspiral, namely the comparativelgw-massbinaries, are expected to have comparatively
high-masdori. In addition, we have also considered the comparisdnirtdries of the same
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mass but with different initial coordinate separatiar.(45 and60 km) and found that there
is an excellent agreement in the inspiral phase (as expdaiadthe lowest-order post-
Newtonian approximations), but also small differencesatrnerger and in the subsequent
evolution, most likely due to small differences in the iaitilata.

Besides the study of the large-scale dynamics of the tworoewtars, in paper | we
have also investigated the small-scale hydrodynamicseofrterger and the possibility that
dynamical instabilities develop. In this way, we have pded the first quantitative description
of the onset and development of the Kelvin-Helmholtz inditgbwhich takes place during
the first stages of the merger phase, when the outer layene atars come into contact and
a shear interface forms. The instability curls the intexffmrming a series of vortices which
we were able to resolve accurately using the higher resmisifprovided by AMR techniques.
This instability, which could have important consequenoeise generation of large magnetic
fields even from small initial ones, has been recently dised$n [21].

Special attention in paper | was also dedicated to the aisa{the waveforms produced
and to their properties for the different configurations. phrticular, we have found that
the largest loss rates of energy and angular momentum viataffanal radiation develop
at the time of the collapse to black hole and during the firages of the subsequent
ringdown. Nevertheless, the configurations which emit #rgdst amounts of energy and
angular momentum are those with lower masses, since theyotoaflapse promptly to
a black hole. Instead, they produce a violently oscillatitigNS, which emits copious
gravitational radiation, while rearranging its angulasmentum distribution, until the onset
of the collapse to black hole. We have also found that, afjhotne gravitational-wave
emission from neutron-star binaries has spectral distdbs with large powers at high
frequenciesi(e., 2, 1kHz), a signal-to-noise ratio as large &san be estimated for a source
at 10 Mpc using the sensitivity of currently operating interferonetletectors.

4. Accuracy of the results

Having reviewed the general dynamics of the inspiral andgererwe next assess the
truncation error of the results. As a first representativeasuee of the accuracy of our
simulations, we report in the left panel of Figure 1 the etiolu of the Lo-norm of the
Hamiltonian-constraint violationi.p., equation (10) in paper 1] for simulations at high
resolution (dashed line), at medium resolution (solid)liaed at low resolution (long-dashed
line). Although the resolutions are rather similar (thetio is just0.8), they are high enough
to stretch the supercomputer facilities we have access tothé&rmore, as we will discuss
below, they are only marginally sufficient to provide corgeant results and resolutions lower
thanh ~ 0.19 M would lead to results that are only consislkml'he curves relative to
the high and low resolutions have been scaled by a suitabterfaompensating for the
different truncation error. The vertical lines are relatio the high-resolution run and indicate
respectively the time of the merget..,. (dotted line) and the time when an apparent horizon
is first foundt, ,, (dot-dashed line). Taking thB,-norm of the same constraint as a measure
of the average truncation error, Figlile 1 shows that thisiigily < 10-% and that it grows
rapidly to < 10~% at the time of the merger and later when the black hole is fdrnfes a
comparison, thé .-norm of the violation of the Hamiltonian constraint growsrh ~ 103

1 We recall that a numerical solution is said todmsistentf the truncation error associated todt, , tends to zero
in the limit of infinite resolutionj.e.,|e.| = 0 for h — 0. A numerical solution is said to lmnvergenat the order
pifand only if |e.| = khP for h — 0, wherex is a positive constant andis thechosertruncation order. Clearly,
while a convergent solution is also consistent, the oppdsihot necessarily true.
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initially to ~ 10~2 just outside the apparent horizon; much larger violatioes, L., ~ 1,
are present inside the apparent horizon and are typicakséthalculationscf. [27]).

Once the black hole has essentially stopped ringing, thiatidm does not increase
further. The convergence rate measured before the mekgey,itvolving~ 3 orbits is
therefore~ 1.8 as shown by the good overlap between the mid-resolution tedetscaled
high/low-resolution curves. We note that: althouigithe Ccat i e code useslth-order
spatial differential operatord,) the time update is made with4th-order accurate Runge-
Kutta integration scheme, ariidl) the PPM reconstruction scheme3isi-order (at most), a
convergence rate ot 1.8 is not at all surprising and is indeed the same measured with
PPM in much simpler configurations, such as in the evolutfdsaated starsjﬂ@ This is
simply due to the fact that the truncation error of HRSC sa®ia not uniform across the
computational domain and can drop to lower orders at lodaémea or across shocks.

After the merger, the convergence rate drops-td.2 and this deterioration may be
due to at least two different reasons and is probably due ti. bBirstly, we note that the
merger is accompanied by very large and extended shockssntgntioned above, a general
property of HRSC methods is to become oh$f-order accurate at discontinuities. Secondly,
the merger leads to the development of a Kelvin-Helmholszaibility with the consequent
generation of a turbulent regime (see the discussion ind@ekit E of paper I). Under these
conditions, the whole notion of convergence needs to bsitediand a possible approach in
these cases is the one presented in [28]. Note also that tivergence order increases again
after the formation of the black hole, when only a small antmfrmatter is present in the
form of an orbiting torus. Such flows do not have large-schateks, are much smoother and
hence lead to convergence rates that are agadir8. Clearly, tests at even higher resolutions
should be performed to determine the precise cause of theadisipn in the convergence
order, but it is unlikely these will be feasible with the peas computational resources. As
a final remark, it is worth reporting that a behaviour simtiarthe one discussed here has
been found[[29] also in the independent AMR c@RCRA [4] (based on similar numerical
methods).

The right panel of FigurEl1 shows instead the evolution ofrtieximum of the rest-
mass density when normalized to its initial value and whiers;larity we have reported only
the medium and high-resolution results (these will be tHeremce resolutions hereafter).
Clearly, the two lines show a behaviour which is extrematyilsir during the inspiral phase,
with only very small differences appearing at the time of therger and after the collapse.
These differences are caused mostly by the slight differénthe time of the merger, which
is ~ 1.7% smaller in the case of the lower-resolution simulation amictvis probably due
to the slightly different initial data and losses of angutesmentum. Note that we have here
used a technique, first reportedfin[27], where we do not exagy part of the computational
domain, but we rather rely on suitable singularity-avoidsiicing conditions and on the
addition of a small amount of numerical dissipation to aubiat small inaccuracies influence
the portion of the spacetime exterior to the apparent hariz8ince we do not reserve a
special treatment to the matter collapsing inside the agydrorizon, the matter variables
and their spatial gradients become very large. These asmmahly well-handled by the
HRSC schemes, but only up until all the matter is confined tevadrid cells; at that point,
the conservation properties of our methods are grosslstetched and the matter is simply
dissipated. Because of these inaccuracies inside the exgaorizon, the evolution of the

§ In the case of isolated stars (or before the merger for biegsyems) the convergence order is lower than third
because of the presence of local maxima at the stellar centtdecause small shocks take place in the vicinity of
the stellar surface (see the discussion in Sect. 11l Clof foJtunately these errors are small enough not to degrade
the global convergence order to first order only.
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Figure 1. Left panel: Evolution of the La-norm of the Hamiltonian-constraint violation for
simulations at high resolution (dashed line), at mediunoltg®n (solid line) and at low
resolution (long-dashed line). Note that the high- and tegelution curves are rescaled by
1.49, which corresponds to a convergence raté.8f The vertical lines indicate the time of
mergertmerger for the high-resolution run (dot-dashed line) and the tinteewan apparent
horizon is first found . ,; (solid line). Right panel: Evolution of the maximum of the rest-
mass density normalized at the initial value and for the kg medium resolutions. Note
that the horizontal lines mark the part of the evolution witenrest-mass density is unreliable
after the formation of the apparent horizon; when the matiside the apparent horizon has
been dissipated, the maximum of the rest-mass densitytistttze torus (see text for details).
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Figure 2. Left panel: Evolution of the error in the conservation of the rest magsfor the
medium and high resolutions. Note that the fluctuationa/inafter the merger are due to the
small amount of matter that ends up in buffer zones betweenréfinements levelsRight
panel: Evolution of the normalized ADM mass as measured on the neaigrid; until when
significant amounts of gravitational radiation leave thenetical grid {.e., up until about9
ms), the differences between the two resolutions measarertor in computingy/ , 1, -

maximum of the rest-mass density is unreliable after then&ion of the apparent horizon
and up until the rest-mass inside the apparent horizon famieenegligible. This is shown
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with constant horizontal lines in the right panel of FiglkeNbte that when the matter inside
the apparent horizon has been dissipaied,for ¢t > 10 ms, the maximum of the rest-mass
density is located outside the apparent horizon and thugsepts the maximum rest-mass
density of the torus.

A first measure of the conservation properties of our sinatis offered in Figurgl2,
whose left and right panels show respectively the evolutibtihe error in the conservation
of the rest masd/, and of the ADM mass\/, ,,,. Note that thanks to the formulation of
the hydrodynamics equations adopted and to the use of HRS@bdw the baryon mass is
extremely well conserved, with deviations that arel0=6 (~ 10~7 for the high-resolution
simulation) before the merger and are always below0—° (~ 10~%) up to the formation
of the black hole. Note also that at the time of the merger #& grid structure leads to
a certain amount of matter ending up in buffer zones betweerréfinements levels. This
inevitably increases the error in the conservation, whainains anyway extremely good.
This is particularly evident for the high-resolution rumheve the error is intrinsically tiny. As
discussed above, after the apparent horizon is found thy@banass is no longer conserved
up until all the matter inside the apparent horizon has béssipgdited numerically. When this
has happened, the baryon mass is the one contained in tlseatudtus equally well conserved,
although it cannot be shown in the same panel because mudleisma

The ADM mass cannot be conserved when calculated on the-§iiziéenumerical grid
and it is rather expected to decrease as gravitationaltiadi@aves the numerical grid. The
right panel of Figur€l2 shows the evolution of the ADM massheftwo reference resolutions
when normalized to their initial value. Although this qu&nshould not be interpreted as
an error, the difference between the two resolutions givesasure of the truncation error
in computingM, ,,,. Such a difference is- 0.1% for essentially all the simulations and the
large variations at- 9 ms take place when the gravitational radiation produced by tilapse
to black hole leaves the computational domain.

A second and more stringent measure of the overall consemnvatoperties of our
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Figure 3. Left panel:Conservation of energy: The continuous line is the ADM massputed
as an integral over the whole grid; The long-dashed linestiergy carried from gravitational
waves outside the grid; The dashed line is the sum of the twadtamould be conserved. The
numerical violation is at most%. The data refer to the higher-resolution simulatidtight
panel: The same as in the left panel but for the conservation of tgelanmomentum. Also
in this case the violation is at mosf.
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Figure 4. Left panel: r(¥4)22/M waveform for different detectors, displayed versus
retarded time. The data refer to the higher-resolution kitimn. Right panel:r(V4)22 /Mg
waveform as computed for different resolutions.

simulations is presented in Figlide 3 and involves quastitieich are partially radiated during
the simulation. More specifically, the left panel shows thelation of the total mass as
normalized to the initial value and relative to the highelason simulation. Indicated with
different lines are the volume-integrated values of the ABislss (solid line), of the energy
lost to gravitational waves (long-dashed line), and ofithein (dashed line). The last quantity
should be strictly constant and this is the case to a precisie- 0.5% during the inspiral,
but with a secular decreases that brings the total error to b# at the end of the simulation
(cf. dot-dashed line). Similar considerations apply also todheservation of the angular
momentum ¢f. Figure 9 of paper 1). This is shown in the right panel of FigBtewhich
uses the same conventions as the left panel [Higjeis computed with the integral (15) in
paper I]. In this case the radiative losses are much largrao&i15% of the available angular
momentum is lost to gravitational waves) but, as shown irfithee, the overall conservation
is accurate tev 1%.

The accuracy of our gravitational-wave extraction is sumirea in Figurd ¥, where in
the left panel we show the gravitational-wave signal as agegpvia thel = 2, m = 2
component of the Weyl scalar quantily,, i.e., 7(¥4)22/Me, as a function of the retarded
time. The data is that of the high-resolution simulation difterent lines refer to different
extractior2-spheres; the agreementamong the three curves is extrgowdywith the phases
and amplitudes being almost coincident (see also the snsa&t). The right panel of Figuié 4
shows instead(V,)22 /M at the high and medium resolutions, as extracted-at200 M.
As mentioned above, the slightly different initial data dosses of angular momentum will
lead to a slight offset of the waveforms as the inspiral pedegthis is of~ 0.03 ms) and the
data is shown once this offset has been removedafter aligning the maxima df ¥ ,)as|.
Clearly the two waveforms are extremely similar and sméfedences can be seen only when
looking at the total amplitude| W, |22 /Mg (See the inset).

Finally, in Figureld we present a convergence test forthevaveform as extracted at
r = 200 M, where different lines represent the differences betwieemiaveforms suitably
shifted in time and scaled to compensate for the differemdation errors. As discussed in
detail in [11], the dominant source of error is a de-phasihicivcauses the lower resolution
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Figure 5. Convergence test for(¥4)22 /M waveform as extracted at = 200 M.
Different lines show the residuals between the wavefornmpeded at different resolutions,
suitably shifted in time and scaled to compensate for a agevee rate of .8.

evolutions to “lag” behind the higher resolution. This dela usually rather small and
between~ 2 x 1072 and~ 5 x 10~ 2ms, but it is clearly visible when comparing the total
amplitude of¥, as a function of time. If not properly taken into accountstairor spoils
the convergence tests, making the residuals appear asmoweder convergentf. Figure 2
of [AI])). This is obviously an artifact of the near cancetlatof the lowest-order terms in
the truncation error and it is induced by the small timeai#hces at different resolutions.
We have removed this contamination by shifting the time doate of the low and medium
resolution runs by the time interval needed to produce agnaient of the maxima of the
emitted radiation (details on how to do this are discusseddpendix A of [11]). Once
this correction is made, the rescaled residual errors aparasonably well, indicating a
convergence rate df8; this is most likely due to the fact that the evolutiorzigd-convergent
for most of the time and because the coefficients ofth&(h) truncation error are much
smaller than the correspondingO(h?) one. To the best of our knowledge this is the first time
that such a convergence test is shown on the gravitationadssfaom neutron-star binaries.

5. Variations on the Theme and “Error Budget”

In the previous Sections we have discussed in detail theracgwf our simulations for a
fiducial high-mass binary by analysing how the results ckamith resolution. However, the
resolution is not the only aspect of these simulations whant be modified to yield slightly
different results, although it is unquestionably one ofrti@st important ones. This Section is
therefore dedicated to those purely numerical aspectdwdain be varied and have been seen
to yield (small) changes in the results. This assessmeni®osly computationally very
expensive, but it has allowed us to compile“arror budget” providing a simple reference
on the influence that different sources of inaccuracies bawee physical results.

We build this budget by considering the evolution of the maodwf the waveform
[(Uy)22] (see,e.g.,Figure 20 of paper | or the inset in the right panel of Figuread)l by
singling out two specific times corresponding to the first $amst maximurﬂ; we define

|| When the collapse to black hole is delayed, the HMNS emitelamounts of gravitational radiation, thus leading
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Table 1. “Error-budget”, i.e., variation of physical quantities induced by changes in the
numerical settings. The table reports: the numericalrggtaried, the amount of such a
variation with respect to our standard simulation, and #regntile change of the time of the
mergertmerg., and of that of the collapse,,;. (see text for definitions), with respect to our
standard simulation. At sign indicates whether the time is increaseg 6r decreased—)
with respect to the fiducial medium-resolution run.

Numerical setting varied | variation Atmerg. (%) | Ateon. (%)
resolution x 1.25 (from medium to high) +0.45 +0.37
extent of finest grid x 4 +0.6 +0.6
spatial prolongation order 3rd vs. 5th order +0.2 +0.3
artificial dissip. coeff. x 100 (from 0.1 t0 0.001) +0.1 +0.1
outer-boundary location | x 2 —0.06 +0.1

these two times as the “time of merget,..,., and the “time of collapse™..u.. For the
high-resolution simulation described here, thesetarg, = 8.7ms andtcn. = 9.3ms,
respectively. Note that the merger time defined above shmtltde confused with the time of
the “hydrodynamical merger”, namely the time when the tvedlat cores mergend—merg.,
and which takes place considerably earltgf (merg. = 7.4 ms for the high-resolution case);
we mark this hydrodynamical merger as the time when the maximest-mass density has a
first significant minimumdf. Figures 2 or 8 in[[1]).

The error budget is reported in Tallle 1, whose rows contdiorimtion about the
specific numerical setup which has been varied, the amouin¢afiriation and the differences
in the two times. Note that because the HMNS collapses prignpta black hole, the
differences int..;. reported here are particularly small and should therefer¢aen as
lower limits. Indeed, for less massive HMNSSs, the corresiiog differences can be as
large as~ 10% and increase tg 70% when considering simulations run at low resolution.
The determination of..;;. represents therefore an emblematic example of how phisical
reasonable and numerically convergent results obtaindalatesolution suffer from very
large truncation errors.

The first row in Tabl&ll reports the variations due an incré@atiee resolutioni(e.,from
the medium resolution to the high one) and does not needdiudbmment besides noting
that the results for the subsequent rows refer to mediuwiutsn simulations. The second
row shows the change induced when the extent of the finestgindreased by a factor df
in all the three spatial directions. In this case, a single §jrid covers both stars, so that the
volume of the finest grid i¢? times larger and the simulation is therefore alfitimes more
expensive. The third row reports the variations measurezhviine interpolation for the spatial
prolongation operation needed in the time-stepping of ceshrefinements is changed from
3rd to 5th-order (only for the spacetime variables). The fourth refers to a variation in the
coefficient of the artificial-dissipation (see discussioffi7,[14]). The value of the dissipation
coefficiente in the fiducial simulation ig).1 and the table reports the changes when using
insteads = 0.001; clearly the differences are minute but a higher dissipatiiso provides
waveforms which are less affected by reflections amongréifferefinement levels. Finally,
the fifth row reports the changes when the outer-boundaatilmt is increased by a factor
While the content of the table is self-explanatory, it is tharemarking that in all cases the
induced variations are beloiy at these resolutions and that the times are essentiallysalwa
increased.

to a series of local maxima in the evolution|6%4)22| (see.e.g.,Figure 26 of paper I)
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6. Conclusions

We have presented a detailed analysis of the accuracy anergemce properties of our
general-relativistic simulations of the inspiral and negrgf binary neutron stars. More
specifically, we have shown that for a high-mass binary amdicé} resolutions ofh ~
0.19 Mg —0.12 M, the results show the expected convergence rateSafuring the inspiral
phase, the collapse and the subsequent ringdown. Howkeeamptvergence rate dropsit@
at the merger and during the evolution of the HMNS. This detation of the convergence
rate is not surprising and can be explained as a combinatigat teast) two effects. Firstly,
strong shocks form during the merger and HRSC schemes ayelsfibrder accurate at
discontinuities. Secondly, the merger gives rise to théul@nt motions, related to the
development of a Kelvin-Helmholtz instability, for whiche concept of local convergence
needs to be revisited.

We have also presented tests on the conservation of physiaatities, such as the rest
mass, the energy and the angular momentum, taking into attoat the last two are not
conserved because of the gravitational-wave losses. licplar, we have shown that, at
our best resolution, the rest-mass is conserved with am grro0—¢, while the energy and
the angular momentum are conserved3ol% after taking into account the parts lost to
radiation. In addition, when considering the accuracy efektraction of gravitational-wave
information, we have shown the very good agreement, in bb#s@ and amplitude, of the
gravitational waves extracted from different detectorthimi the same simulation, or from
the same detector but at different resolutions. Such wanefdvave been shown to be also
convergent at a rate df.8. Finally, we have reported a first investigation on how pyrel
numerical changes in some of the setting of the simulationmffuence the physical results.
This analysis has lead to the construction of a straightfiodwWerror budget”, whose entries
are all belowl %, at least for the high-mass binary considered here.

A final remark should be made when contrasting binary-blaale-simulations with the
corresponding ones involving binary neutron stars. Wthdlethe first ones the numerical
methods are sufficiently robust (and the convergence ordficiently high) that an increase
in resolution is usually the solution to the most seriousbfgms, the hydrodynamical
complexities inherent to the second ones (and the smallezgance order after the merger)
are such to require extra caution and very careful assessrhtiie possible sources of error.
Experience has shown us that results which appear reasoaathlconvergent, are however
contaminated by large truncation errors and hence of fittlgsical relevance. In view of this,
and of the low convergence rate after the merger, we conalittiea remark that although
obvious in general, is worth making when considering bimaaytron star calculations: high-
order methods and the highest possible resolutions areatipeto draw robust conclusions.
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