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Abstract. We have recently presented an investigation in full generalrelativity of the
dynamics and gravitational-wave emission from binary neutron stars which inspiral and merge,
producing a black hole surrounded by a torus [1]. We here discuss in more detail the
convergence properties of the results presented in [1] and,in particular, the deterioration of
the convergence rate at the merger and during the survival ofthe merged object, when strong
shocks are formed and turbulence develops. We also show thatphysically reasonable and
numerically convergent results obtained at low-resolution suffer however from large truncation
errors and hence are of little physical use. We summarize ourfindings in an“error budget” ,
which includes the different sources of possible inaccuracies we have investigated and provides
a first quantitative assessment of the precision in the modelling of compact fluid binaries.

PACS numbers: 04.30.Db, 04.70.Bw, 95.30.Lz, 97.60.Jd

1. Introduction

The study of the final stages of the evolution of binary systems is a cornerstone of any
theory of gravity and a long-standing problem in General Relativity. Important issues in
relativistic astrophysics still awaiting clarification, such as the mechanism responsible for
gamma-ray bursts (GRBs), may be unveiled through a better understanding of the complex
physics accompanying the inspiral and merger of two neutronstars. Furthermore, the study
of the events that lead from a binary system of neutron stars to a black hole, possibly
surrounded by a hot and high-density disc, will provide the gravitational waveforms and the
energetics of one of the most important sources of gravitational radiation. While analytical
techniques are very successful in describing binary systems which are widely separated and
thus moving at comparatively small velocities and in slowlyvarying gravitational fields,
numerical simulations represent possibly the only tool to investigate the dynamics when the
two compact objects are performing the final few orbits of their evolution and the dynamics
are in a fully nonlinear regime.

Considerable progress has been achieved in the past few years in the modelling in full
general relativity of compact-objects binaries (see [2, 3,4, 5, 6, 7, 8, 9, 10] for the most recent
work from the different groups), and we have recently presented a systematic investigation of
the dynamics and gravitational-wave emission from binary neutron stars which inspiral and
merge, producing a black hole surrounded by a torus [1] (hereafter paper I). The purpose of
this paper is to consider in more detail the results presented in paper I and assess critically their
accuracy, their convergence properties and highlight the difficulties that can be encountered
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when simulating the turbulent motions that develop after the merger and that characterize the
subsequent evolution of the merged object up to the collapseto a black hole.

The plan of the paper is as follows. After a brief introduction in Section 2 to our code and
to the binary models we simulated, we give in Section 3 a review of the general dynamics of
the inspiral and merger of equal-mass neutron star binaries. Section 4 is instead dedicated to
the discussion of the accuracy of our simulations when performed with different resolutions,
while Section 5 assesses the influence that purely numericalaspects have on the physical
results and presents them in a compact“error budget” . Finally, our summary and conclusions
are collected in Section 6.

2. Mathematical and Numerical Setup

All the details on the mathematical and numerical setup usedfor producing the results
presented here are discussed in depth in [11, 1]. In what follows, we limit ourselves to a
brief overview.

2.1. Einstein and Hydrodynamics equations

The evolution of the spacetime was obtained using theCcatie code, a three-dimensional
finite-differencing code providing a solution of a conformal traceless formulation of the
Einstein equations [11]. The general-relativistic equations were instead solved using the
Whisky code presented in [12, 13, 14], which adopts a flux-conservative formulation of the
equations as presented in [15] and high-resolution shock-capturing schemes. TheWhisky
code implements several reconstruction methods, such as Total-Variation-Diminishing (TVD)
methods, Essentially-Non-Oscillatory (ENO) methods [16]and the Piecewise Parabolic
Method (PPM) [17]. Also, a variety of approximate Riemann solvers can be used, starting
from the Harten-Lax-van Leer-Einfeldt (HLLE) solver [18],over to the Roe solver [19]
and the Marquina flux formula [20] (see [12, 13] for a more detailed discussion). All the
results reported hereafter have been computed using the Marquina flux formula and a PPM
reconstruction. We stress again (as already done in [1, 21])that the use of high-order methods
and high-resolution isessentialto be able to draw robust conclusions on the inspiral and
merger. Lower-order methods in the reconstruction and low resolution may yield convergent
and apparently reasonable results which however contain a large truncation error. Specific
examples of this type of problem are presented in Appendix 1 of paper I and in Figure 4
of [21].

The system of hydrodynamics equations is closed by an equation of state (EOS) and,
as discussed in detail in [1], the choice of the EOS plays a fundamental role in the post-
merger dynamics and significantly influences the survival time, against gravitational collapse,
of the hyper-massive neutron star (HMNS) likely produced bythe merger. It is therefore
important that special attention is paid to use EOSs that arephysically realistic, as done in [22]
within a conformally description of the fields and a simplified treatment of the hydrodynamics.
Because we are here mostly concerned with assessing the sizeof the truncation error rather
than with a realistic description of the neutron-star matter, we have employed the commonly
used “ideal-fluid” EOS, in which the pressurep is expressed asp = ρ ǫ(Γ − 1), whereρ is
the rest-mass density,ǫ is the specific internal energy andΓ is the adiabatic exponent. While
simple, such EOS provides a reasonable approximation and weexpect that the use of realistic
EOSs would not change the main results of this work.
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2.2. Adaptive Mesh Refinements

Both the Einstein and the hydrodynamics equations are solved using the vertex-centered
adaptive mesh-refinement (AMR) approach provided by theCarpet driver [23]. Our rather
basic form of AMR consists in centering the highest-resolution level around the peak in the
rest-mass density of each star and in moving the “boxes” so totrack the position of this
maximum as the stars orbit. The boxes are merged when they overlap.

The results presented below refer to simulations performedat three different resolutions
and for each of them we have used6 levels of mesh refinement. More specifically, the finest
refinement level has been chosen to have resolution of eitherh = 0.1875 M⊙ = 277 m
(hereafter “low” resolution), ofh = 0.1500 M⊙ = 222 m (hereafter “medium” resolution),
or of h = 0.1200 M⊙ = 177 m (hereafter “high” resolution). It may be useful to point
out that although the simulation at high-resolution stretches the computational resources
available to us, it is effectively less expensive (both in memory and computing time) than
an equivalent simulation carried out for binary black holesat resolutions that are10 times
larger but on fine grids that are much smaller (cf. the high-resolution in [11]). Using the
medium resolution as a reference, the grid structure is suchthat the side of the finest grids
is 15 M⊙ = 22.15 km, while a single grid resolution covers the region between a distance
r = 150 M⊙ = 221.5 km andr = 250 M⊙ = 369.2 km from the center of the domain.
The latter region is the one in which our gravitational-waveextraction is carried out, with
a resolution ofh = 4.8 M⊙ = 7.088 km (as a comparison, the gravitational wavelength is
∼ 100 km and thus reasonably well-resolved on this grid). In addition, a set of refined but
fixed grids is set up at the center of the computational domainso as to capture the details of
the Kelvin-Helmholtz instability (cf. paper I). For all the simulations reported here we have
used a reflection-symmetry condition across thez = 0 plane and aπ-symmetry condition
across thex = 0 plane.

An important difference with respect to paper I, where the finest grid was covering only
the central region of each neutron star, is that here each star is completely covered by the
finest grid. Although this choice is computationally more expensive, it allows us to reach
convergent results already with resolutionsh & 0.19 M⊙, which are therefore smaller than
those discussed in paper I (where we have used what is here thehigh resolution).

The timestep on each grid is set by the Courant condition (expressed in terms of the speed
of light) and so by the spatial grid resolution for that level; the typical Courant coefficient
is set to be0.35. The time evolution is carried out using4th-order–accurate Runge-Kutta
integration algorithm. Boundary data for finer grids are calculated with spatial prolongation
operators employing3rd-order polynomials and with prolongation in time employing 2nd-
order polynomials. The latter allows a significant memory saving, requiring only three
timelevels to be stored, with little loss of accuracy due to the long dynamical timescale relative
to the typical grid timestep. See Section 5 for a discussion on the changes caused by the
different interpolation order.

2.3. Initial data

As initial data we use the general relativistic binaries produced by Taniguchi and
Gourgoulhon [24] with the multidomain spectral-method code Lorene [25]. The initial
solutions for the binaries are obtained assuming a quasi-circular orbit, an irrotational velocity
field, and a conformally-flat spatial metric. The matter is modelled using a polytropic EOS
p = KρΓ with K = 123.6 andΓ = 2.

In paper I, a number of different initial-data configurations for neutron-star binaries were
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used in order to illustrate the variety of possible behaviours. Here, however, the measure of the
truncation error is more easily done when considering a single configuration and in particular
one that, although representative, also reduces the computational costs. As a result, we have
chosen a model with a rather high mass so that a black hole is formed soon after the merger.
More specifically, our fiducial binary has the following characteristics: a proper separation
between the centers of the starsd/M

ADM
= 12.6 = 60.3 km (this corresponds to a coordinate

distance of∼ 45 km); a baryon mass of each starMb = 1.78 M⊙; a total ADM mass
M

ADM
= 3.23 M⊙; an initial angular momentumJ = 10.13 M2

⊙ = 8.92 × 1049 g cm2/s;
an initial orbital angular velocityΩ0 = 9.39 × 10−3 = 1.9 rad/ms = 302 Hz; a ratio of the
polar to the equatorial coordinate radius of each starrp/re = 0.945.

A note of caution should be made. While our choice for a rathermassive binary does
have the advantage of allowing, within a total timescale of∼ 11 ms, for the analysis ofboth
the inspiral (over more than three orbits) and of the merger,it also leads to a very rapid
collapse to a black hole once the HMNS has been produced (i.e.,after only∼ 1 ms). This is
simply because despite the high temperature and degree of differential rotation, the HMNS is
so massive to be well beyond the instability threshold for the collapse to a black hole. As a
result, this choice inevitably prevents us from determining how different choices of grids or
resolutions influence the survival time of the HMNS when it isvery close to the instability
threshold. This is clearly a limitation of the present approach which will be overcome once
larger computational facilities become available.

3. Review of the dynamics of the merger

In paper I we have described in detail the dynamics of the matter during the inspiral, the
merger, the transition to the collapse, the collapse, and then the black-hole ringdown, for
binaries with different initial masses, initial distances, and (idealized) EOSs. In what follows,
we briefly summarize those results.

A first notable result of paper I is that of having clearly shown that for any given mass,
the survival time of the HMNS depends on the EOS. More specifically, we have shown that
the polytropic and isentropic EOSp = KρΓ, for which therefore no shock heating is possible,
leads either to theprompt formation of a rapidly rotating black hole surrounded by a dense
torus in the higher-mass case, or, in the lower-mass case, toa HMNS, which develops a bar,
emits large amounts of gravitational radiation and eventually experiences adelayedcollapse
to black hole. We have also shown that, for both initial masses, the ideal-fluid EOS inevitably
leads to a further delay in the collapse to black hole as a result of the larger pressure support
provided by the temperature increase due to shocks. In this case the temperature in the formed
HMNS can reach values as high as1011 − 1012 K, so that the subsequent dynamics and
especially the time of the collapse can be reduced if coolingmechanisms, such as the direct-
URCA process, take place.

With the exception of the low-mass ideal-fluid binary, whoseHMNS is expected to
collapse to black hole on a timescale which is computationally challenging (i.e.,∼ 110 ms),
all the binaries considered lead to the formation of a rotating black hole surrounded by a
rapidly rotating torus. The masses and dimensions of the tori depend on the EOS, but are
generically larger than those reported in previous independent studies, with masses up to
≈ 0.07M⊙. Confirming what was reported in [26], we have found that the amount of angular
momentum lost during the inspiral phase can influence the mass of the torus for binaries that
have the same EOS. In particular, the binaries that lose lessangular momentum during the
inspiral, namely the comparativelylow-massbinaries, are expected to have comparatively
high-masstori. In addition, we have also considered the comparison ofbinaries of the same
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mass but with different initial coordinate separation (i.e.,45 and60 km) and found that there
is an excellent agreement in the inspiral phase (as expectedfrom the lowest-order post-
Newtonian approximations), but also small differences at the merger and in the subsequent
evolution, most likely due to small differences in the initial data.

Besides the study of the large-scale dynamics of the two neutron stars, in paper I we
have also investigated the small-scale hydrodynamics of the merger and the possibility that
dynamical instabilities develop. In this way, we have provided the first quantitative description
of the onset and development of the Kelvin-Helmholtz instability, which takes place during
the first stages of the merger phase, when the outer layers of the stars come into contact and
a shear interface forms. The instability curls the interface forming a series of vortices which
we were able to resolve accurately using the higher resolutions provided by AMR techniques.
This instability, which could have important consequencesin the generation of large magnetic
fields even from small initial ones, has been recently discussed in [21].

Special attention in paper I was also dedicated to the analysis of the waveforms produced
and to their properties for the different configurations. Inparticular, we have found that
the largest loss rates of energy and angular momentum via gravitational radiation develop
at the time of the collapse to black hole and during the first stages of the subsequent
ringdown. Nevertheless, the configurations which emit the largest amounts of energy and
angular momentum are those with lower masses, since they do not collapse promptly to
a black hole. Instead, they produce a violently oscillatingHMNS, which emits copious
gravitational radiation, while rearranging its angular-momentum distribution, until the onset
of the collapse to black hole. We have also found that, although the gravitational-wave
emission from neutron-star binaries has spectral distributions with large powers at high
frequencies (i.e.,& 1 kHz), a signal-to-noise ratio as large as3 can be estimated for a source
at10 Mpc using the sensitivity of currently operating interferometric detectors.

4. Accuracy of the results

Having reviewed the general dynamics of the inspiral and merger, we next assess the
truncation error of the results. As a first representative measure of the accuracy of our
simulations, we report in the left panel of Figure 1 the evolution of the L2-norm of the
Hamiltonian-constraint violation [i.e., equation (10) in paper I] for simulations at high
resolution (dashed line), at medium resolution (solid line) and at low resolution (long-dashed
line). Although the resolutions are rather similar (their ratio is just0.8), they are high enough
to stretch the supercomputer facilities we have access to. Furthermore, as we will discuss
below, they are only marginally sufficient to provide convergent results and resolutions lower
thanh ≃ 0.19 M⊙ would lead to results that are only consistent‡. The curves relative to
the high and low resolutions have been scaled by a suitable factor compensating for the
different truncation error. The vertical lines are relative to the high-resolution run and indicate
respectively the time of the mergertmerg. (dotted line) and the time when an apparent horizon
is first foundt

AH
(dot-dashed line). Taking theL2-norm of the same constraint as a measure

of the average truncation error, Figure 1 shows that this is initially . 10−6 and that it grows
rapidly to. 10−4 at the time of the merger and later when the black hole is formed. As a
comparison, theL∞-norm of the violation of the Hamiltonian constraint grows from∼ 10−3

‡ We recall that a numerical solution is said to beconsistentif the truncation error associated to it,ǫ
T

, tends to zero
in the limit of infinite resolution,i.e., |ǫ

T
| = 0 for h → 0. A numerical solution is said to beconvergentat the order

p if and only if |ǫ
T
| = κhp for h → 0, whereκ is a positive constant andp is thechosentruncation order. Clearly,

while a convergent solution is also consistent, the opposite is not necessarily true.



Evolutions of inspiralling neutron-star binaries: assessment of the truncation error 6

initially to ∼ 10−2 just outside the apparent horizon; much larger violations,i.e.,L∞ ∼ 1,
are present inside the apparent horizon and are typical of these calculations (cf. [27]).

Once the black hole has essentially stopped ringing, the violation does not increase
further. The convergence rate measured before the merger, thus involving∼ 3 orbits is
therefore≃ 1.8 as shown by the good overlap between the mid-resolution and the rescaled
high/low-resolution curves. We note that: althoughi) the Ccatie code uses4th-order
spatial differential operators,ii ) the time update is made with a4th-order accurate Runge-
Kutta integration scheme, andiii ) the PPM reconstruction scheme is3rd-order (at most), a
convergence rate of≃ 1.8 is not at all surprising and is indeed the same measured with
PPM in much simpler configurations, such as in the evolution of isolated stars [13]§. This is
simply due to the fact that the truncation error of HRSC schemes is not uniform across the
computational domain and can drop to lower orders at local extrema or across shocks.

After the merger, the convergence rate drops to≃ 1.2 and this deterioration may be
due to at least two different reasons and is probably due to both. Firstly, we note that the
merger is accompanied by very large and extended shocks and,as mentioned above, a general
property of HRSC methods is to become only1st-order accurate at discontinuities. Secondly,
the merger leads to the development of a Kelvin-Helmholtz instability with the consequent
generation of a turbulent regime (see the discussion in Section III E of paper I). Under these
conditions, the whole notion of convergence needs to be revisited and a possible approach in
these cases is the one presented in [28]. Note also that the convergence order increases again
after the formation of the black hole, when only a small amount of matter is present in the
form of an orbiting torus. Such flows do not have large-scale shocks, are much smoother and
hence lead to convergence rates that are again∼ 1.8. Clearly, tests at even higher resolutions
should be performed to determine the precise cause of the degradation in the convergence
order, but it is unlikely these will be feasible with the present computational resources. As
a final remark, it is worth reporting that a behaviour similarto the one discussed here has
been found [29] also in the independent AMR codeSACRA [4] (based on similar numerical
methods).

The right panel of Figure 1 shows instead the evolution of themaximum of the rest-
mass density when normalized to its initial value and where,for clarity we have reported only
the medium and high-resolution results (these will be the reference resolutions hereafter).
Clearly, the two lines show a behaviour which is extremely similar during the inspiral phase,
with only very small differences appearing at the time of themerger and after the collapse.
These differences are caused mostly by the slight difference in the time of the merger, which
is ≃ 1.7% smaller in the case of the lower-resolution simulation and which is probably due
to the slightly different initial data and losses of angularmomentum. Note that we have here
used a technique, first reported in [27], where we do not excise any part of the computational
domain, but we rather rely on suitable singularity-avoiding slicing conditions and on the
addition of a small amount of numerical dissipation to avoidthat small inaccuracies influence
the portion of the spacetime exterior to the apparent horizon. Since we do not reserve a
special treatment to the matter collapsing inside the apparent horizon, the matter variables
and their spatial gradients become very large. These are reasonably well-handled by the
HRSC schemes, but only up until all the matter is confined to a few grid cells; at that point,
the conservation properties of our methods are grossly overstretched and the matter is simply
dissipated. Because of these inaccuracies inside the apparent horizon, the evolution of the

§ In the case of isolated stars (or before the merger for binarysystems) the convergence order is lower than third
because of the presence of local maxima at the stellar centreand because small shocks take place in the vicinity of
the stellar surface (see the discussion in Sect. III C of [1]); fortunately these errors are small enough not to degrade
the global convergence order to first order only.
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Figure 1. Left panel: Evolution of theL2-norm of the Hamiltonian-constraint violation for
simulations at high resolution (dashed line), at medium resolution (solid line) and at low
resolution (long-dashed line). Note that the high- and low-resolution curves are rescaled by
1.49, which corresponds to a convergence rate of1.8. The vertical lines indicate the time of
mergertmerger for the high-resolution run (dot-dashed line) and the time when an apparent
horizon is first foundt

AH
(solid line). Right panel: Evolution of the maximum of the rest-

mass density normalized at the initial value and for the highand medium resolutions. Note
that the horizontal lines mark the part of the evolution whenthe rest-mass density is unreliable
after the formation of the apparent horizon; when the matterinside the apparent horizon has
been dissipated, the maximum of the rest-mass density is that of the torus (see text for details).

Figure 2. Left panel: Evolution of the error in the conservation of the rest massMb for the
medium and high resolutions. Note that the fluctuations inMb after the merger are due to the
small amount of matter that ends up in buffer zones between two refinements levels.Right
panel: Evolution of the normalized ADM mass as measured on the numerical grid; until when
significant amounts of gravitational radiation leave the numerical grid (i.e., up until about9
ms), the differences between the two resolutions measure the error in computingM

ADM
.

maximum of the rest-mass density is unreliable after the formation of the apparent horizon
and up until the rest-mass inside the apparent horizon has become negligible. This is shown
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with constant horizontal lines in the right panel of Figure 1. Note that when the matter inside
the apparent horizon has been dissipated,i.e., for t & 10 ms, the maximum of the rest-mass
density is located outside the apparent horizon and thus represents the maximum rest-mass
density of the torus.

A first measure of the conservation properties of our simulations is offered in Figure 2,
whose left and right panels show respectively the evolutionof the error in the conservation
of the rest massMb and of the ADM massM

ADM
. Note that thanks to the formulation of

the hydrodynamics equations adopted and to the use of HRSC methods, the baryon mass is
extremely well conserved, with deviations that are∼ 10−6 (∼ 10−7 for the high-resolution
simulation) before the merger and are always below∼ 10−5 (∼ 10−6) up to the formation
of the black hole. Note also that at the time of the merger the new grid structure leads to
a certain amount of matter ending up in buffer zones between two refinements levels. This
inevitably increases the error in the conservation, which remains anyway extremely good.
This is particularly evident for the high-resolution run, where the error is intrinsically tiny. As
discussed above, after the apparent horizon is found the baryon mass is no longer conserved
up until all the matter inside the apparent horizon has been dissipated numerically. When this
has happened, the baryon mass is the one contained in the torus and is equally well conserved,
although it cannot be shown in the same panel because much smaller.

The ADM mass cannot be conserved when calculated on the finite-size numerical grid
and it is rather expected to decrease as gravitational radiation leaves the numerical grid. The
right panel of Figure 2 shows the evolution of the ADM mass of the two reference resolutions
when normalized to their initial value. Although this quantity should not be interpreted as
an error, the difference between the two resolutions gives ameasure of the truncation error
in computingM

ADM
. Such a difference is∼ 0.1% for essentially all the simulations and the

large variations at∼ 9 ms take place when the gravitational radiation produced by thecollapse
to black hole leaves the computational domain.

A second and more stringent measure of the overall conservation properties of our

Figure 3. Left panel:Conservation of energy: The continuous line is the ADM mass computed
as an integral over the whole grid; The long-dashed line is the energy carried from gravitational
waves outside the grid; The dashed line is the sum of the two and it should be conserved. The
numerical violation is at most1%. The data refer to the higher-resolution simulation.Right
panel: The same as in the left panel but for the conservation of the angular momentum. Also
in this case the violation is at most1%.
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Figure 4. Left panel: r(Ψ4)22/M⊙ waveform for different detectors, displayed versus
retarded time. The data refer to the higher-resolution simulation. Right panel:r(Ψ4)22/M⊙

waveform as computed for different resolutions.

simulations is presented in Figure 3 and involves quantities which are partially radiated during
the simulation. More specifically, the left panel shows the evolution of the total mass as
normalized to the initial value and relative to the high-resolution simulation. Indicated with
different lines are the volume-integrated values of the ADMmass (solid line), of the energy
lost to gravitational waves (long-dashed line), and of their sum (dashed line). The last quantity
should be strictly constant and this is the case to a precision of ∼ 0.5% during the inspiral,
but with a secular decreases that brings the total error to be∼ 1% at the end of the simulation
(cf. dot-dashed line). Similar considerations apply also to theconservation of the angular
momentum (cf. Figure 9 of paper I). This is shown in the right panel of Figure3, which
uses the same conventions as the left panel [hereJvol is computed with the integral (15) in
paper I]. In this case the radiative losses are much larger (almost15% of the available angular
momentum is lost to gravitational waves) but, as shown in thefigure, the overall conservation
is accurate to∼ 1%.

The accuracy of our gravitational-wave extraction is summarized in Figure 4, where in
the left panel we show the gravitational-wave signal as computed via theℓ = 2, m = 2
component of the Weyl scalar quantityΨ4, i.e., r(Ψ4)22/M⊙, as a function of the retarded
time. The data is that of the high-resolution simulation anddifferent lines refer to different
extraction2-spheres; the agreement among the three curves is extremelygood, with the phases
and amplitudes being almost coincident (see also the small inset). The right panel of Figure 4
shows insteadr(Ψ4)22/M⊙ at the high and medium resolutions, as extracted atr = 200 M⊙.
As mentioned above, the slightly different initial data andlosses of angular momentum will
lead to a slight offset of the waveforms as the inspiral proceeds (this is of∼ 0.03 ms) and the
data is shown once this offset has been removed,i.e.,after aligning the maxima of|(Ψ4)22|.
Clearly the two waveforms are extremely similar and small differences can be seen only when
looking at the total amplituder|Ψ4|22/M⊙ (see the inset).

Finally, in Figure 5 we present a convergence test for theΨ4 waveform as extracted at
r = 200 M⊙, where different lines represent the differences between the waveforms suitably
shifted in time and scaled to compensate for the different truncation errors. As discussed in
detail in [11], the dominant source of error is a de-phasing which causes the lower resolution
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Figure 5. Convergence test forr(Ψ4)22/M⊙ waveform as extracted atr = 200 M⊙.
Different lines show the residuals between the waveforms computed at different resolutions,
suitably shifted in time and scaled to compensate for a convergence rate of1.8.

evolutions to “lag” behind the higher resolution. This delay is usually rather small and
between∼ 2 × 10−2 and∼ 5 × 10−2 ms, but it is clearly visible when comparing the total
amplitude ofΨ4 as a function of time. If not properly taken into account, this error spoils
the convergence tests, making the residuals appear as over or under convergent (cf. Figure 2
of [11]). This is obviously an artifact of the near cancellation of the lowest-order terms in
the truncation error and it is induced by the small time-differences at different resolutions.
We have removed this contamination by shifting the time coordinate of the low and medium
resolution runs by the time interval needed to produce an alignment of the maxima of the
emitted radiation (details on how to do this are discussed inAppendix A of [11]). Once
this correction is made, the rescaled residual errors overlap reasonably well, indicating a
convergence rate of1.8; this is most likely due to the fact that the evolution is2nd-convergent
for most of the time and because the coefficients of the∼ O(h) truncation error are much
smaller than the corresponding∼ O(h2) one. To the best of our knowledge this is the first time
that such a convergence test is shown on the gravitational waves from neutron-star binaries.

5. Variations on the Theme and “Error Budget”

In the previous Sections we have discussed in detail the accuracy of our simulations for a
fiducial high-mass binary by analysing how the results change with resolution. However, the
resolution is not the only aspect of these simulations whichcan be modified to yield slightly
different results, although it is unquestionably one of themost important ones. This Section is
therefore dedicated to those purely numerical aspects which can be varied and have been seen
to yield (small) changes in the results. This assessment is obviously computationally very
expensive, but it has allowed us to compile an“error budget” providing a simple reference
on the influence that different sources of inaccuracies haveon the physical results.

We build this budget by considering the evolution of the modulus of the waveform
|(Ψ4)22| (see,e.g.,Figure 20 of paper I or the inset in the right panel of Figure 4)and by
singling out two specific times corresponding to the first andlast maximum‖; we define

‖ When the collapse to black hole is delayed, the HMNS emits large amounts of gravitational radiation, thus leading
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Table 1. “Error-budget”, i.e., variation of physical quantities induced by changes in the
numerical settings. The table reports: the numerical setting varied, the amount of such a
variation with respect to our standard simulation, and the percentile change of the time of the
merger,tmerg., and of that of the collapse,tcoll. (see text for definitions), with respect to our
standard simulation. A± sign indicates whether the time is increased (+) or decreased (−)
with respect to the fiducial medium-resolution run.

Numerical setting varied variation ∆tmerg. (%) ∆tcoll. (%)
resolution × 1.25 (from medium to high) +0.45 +0.37
extent of finest grid × 4 +0.6 +0.6
spatial prolongation order 3rd vs.5th order +0.2 +0.3
artificial dissip. coeff. × 100 (from 0.1 to 0.001) +0.1 +0.1
outer-boundary location × 2 −0.06 +0.1

these two times as the “time of merger”,tmerg., and the “time of collapse”,tcoll.. For the
high-resolution simulation described here, these aretmerg. = 8.7 ms and tcoll. = 9.3 ms,
respectively. Note that the merger time defined above shouldnot be confused with the time of
the “hydrodynamical merger”, namely the time when the two stellar cores merge,thd−merg.,
and which takes place considerably earlier (thd−merg. = 7.4 ms for the high-resolution case);
we mark this hydrodynamical merger as the time when the maximum rest-mass density has a
first significant minimum (cf. Figures 2 or 8 in [1]).

The error budget is reported in Table 1, whose rows contain information about the
specific numerical setup which has been varied, the amount ofthe variation and the differences
in the two times. Note that because the HMNS collapses promptly to a black hole, the
differences intcoll. reported here are particularly small and should therefore be taken as
lower limits. Indeed, for less massive HMNSs, the corresponding differences can be as
large as∼ 10% and increase to& 70% when considering simulations run at low resolution.
The determination oftcoll. represents therefore an emblematic example of how physically
reasonable and numerically convergent results obtained atlow-resolution suffer from very
large truncation errors.

The first row in Table 1 reports the variations due an increasein the resolution (i.e.,from
the medium resolution to the high one) and does not need further comment besides noting
that the results for the subsequent rows refer to medium-resolution simulations. The second
row shows the change induced when the extent of the finest gridis increased by a factor of4
in all the three spatial directions. In this case, a single fine grid covers both stars, so that the
volume of the finest grid is43 times larger and the simulation is therefore about64 times more
expensive. The third row reports the variations measured when the interpolation for the spatial
prolongation operation needed in the time-stepping of our mesh refinements is changed from
3rd to5th-order (only for the spacetime variables). The fourth rowrefers to a variation in the
coefficient of the artificial-dissipation (see discussion in [27, 14]). The value of the dissipation
coefficientε in the fiducial simulation is0.1 and the table reports the changes when using
insteadε = 0.001; clearly the differences are minute but a higher dissipation also provides
waveforms which are less affected by reflections among different refinement levels. Finally,
the fifth row reports the changes when the outer-boundary location is increased by a factor2.
While the content of the table is self-explanatory, it is worth remarking that in all cases the
induced variations are below1% at these resolutions and that the times are essentially always
increased.

to a series of local maxima in the evolution of|(Ψ4)22| (see,e.g.,Figure 26 of paper I)
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6. Conclusions

We have presented a detailed analysis of the accuracy and convergence properties of our
general-relativistic simulations of the inspiral and merger of binary neutron stars. More
specifically, we have shown that for a high-mass binary and typical resolutions ofh ∼
0.19 M⊙−0.12 M⊙, the results show the expected convergence rate of1.8 during the inspiral
phase, the collapse and the subsequent ringdown. However, the convergence rate drops to1.2
at the merger and during the evolution of the HMNS. This deterioration of the convergence
rate is not surprising and can be explained as a combination of (at least) two effects. Firstly,
strong shocks form during the merger and HRSC schemes are only 1st-order accurate at
discontinuities. Secondly, the merger gives rise to the turbulent motions, related to the
development of a Kelvin-Helmholtz instability, for which the concept of local convergence
needs to be revisited.

We have also presented tests on the conservation of physicalquantities, such as the rest
mass, the energy and the angular momentum, taking into account that the last two are not
conserved because of the gravitational-wave losses. In particular, we have shown that, at
our best resolution, the rest-mass is conserved with an error . 10−6, while the energy and
the angular momentum are conserved to. 1% after taking into account the parts lost to
radiation. In addition, when considering the accuracy of the extraction of gravitational-wave
information, we have shown the very good agreement, in both phase and amplitude, of the
gravitational waves extracted from different detectors within the same simulation, or from
the same detector but at different resolutions. Such waveforms have been shown to be also
convergent at a rate of1.8. Finally, we have reported a first investigation on how purely
numerical changes in some of the setting of the simulation can influence the physical results.
This analysis has lead to the construction of a straightforward “error budget”, whose entries
are all below1%, at least for the high-mass binary considered here.

A final remark should be made when contrasting binary-black-hole simulations with the
corresponding ones involving binary neutron stars. While for the first ones the numerical
methods are sufficiently robust (and the convergence order sufficiently high) that an increase
in resolution is usually the solution to the most serious problems, the hydrodynamical
complexities inherent to the second ones (and the small convergence order after the merger)
are such to require extra caution and very careful assessment of the possible sources of error.
Experience has shown us that results which appear reasonable and convergent, are however
contaminated by large truncation errors and hence of littlephysical relevance. In view of this,
and of the low convergence rate after the merger, we concludewith a remark that although
obvious in general, is worth making when considering binaryneutron star calculations: high-
order methods and the highest possible resolutions are imperative to draw robust conclusions.
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