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ABSTRACT: Residual dipolar couplings (RDCs) in proteins

arise from independent external medium-related and internal A —_
protein-related ordering of the spin-bearing probe. Griesinger 0_8-3(’-] M A /) 1 /l— /l—
et al. developed a method for treating RDCs in proteins. The ¢ A W% ‘ W &N\‘) mol PAS
global ordering is given in the standard manner by a rank 2, . ' i a

Y,
tensor specified in a known molecular frame, MF. The local v k
ordering is described by the spherical harmonic ensemble ’
averages, (Y5,,(6, )), m = 0, =1, +2, also given in MF. From * x
these quantities, a method we call mf-RDC derives the squared ﬁ
generalized order parameter (S,4.*), the amplitude (direction) z
of the anisotropic disorder, 7 (®'), and an approximation,
(N—H),g to the average probe orientation, i.., to the local director. (N—H),g is determined through a frame transformation
where (Y,) is maximized. @’ is associated with a subsequent frame transformation where (Y, + Y,_,) is maximized. The mf-
RDC method was applied previously to N—H and C—C,, gy sites in ubiquitin. In this study, we convert the respective (Y,,,(6, ¢))'s
into a Saupe tensor, which is diagonalized. This is the standard procedure. It yields the eigenvalues, S,,, S,,, and S, and the Principal
Axis System (PAS) of the rank 2 local ordering tensor, S. S 7, and @ can be recast as S, S, and S_.. The mf-RDC frame
transformations are not the same as the conventional Wigner rotation. The standard tensorial analysis provides new information. The
contribution of local ordering rhombicity to S,q” is evaluated. For the a-helix of ubiquitin, the main local ordering axis is assigned as
i1 — Ci; for the methyl sites, it is associated with the C—C,, .4y axis, as in mf-RDC. Ordering strength correlates with methyl type.
The strength (rhombicity) of S; associated with picosecond—nanosecond local motions is reduced moderately (substantially) by
nanosecond—millisecond local motions. A scheme for analyzing experimental RDCs based on the standard tensorial perspective, which

4 L ’

08F

allows for arbitrary orientation of the local director in the protein and of the PAS of S; in the probe, is formulated.

1. INTRODUCTION

Residual Dipolar Couplings (RDCs) between pairs of NMR
nuclei in spatial proximity arise when the protein containing
them is dissolved in an anisotropic liquid-crystalline (LC)
medium."” The RDC has emerged as an important factor in 3D
NMR structure determination procedures, a useful means for
detecting the mobility of large chain segments such as domains,
and an important source for the detection of slow local
motions.” Effort has been invested in recent years to develop
methods for accurate determination of the global ordering
(alignment) tensors® and for minimizing structural noise.*
Significant advances in perfecting experimental methodologies
and establishing theoretical approaches for obtaining from
RDCs accurate information on the dynamic structure of the
protein have been reported.’~**

In the weakly ordered media used to measure RDCs from pro-
teins, motions faster than approximately 10 ms affect the RDC.>
NMR spin relaxation is probing picosecond—nanosecond motions
extending up to the (nanosecond) rotational correlation time of
the protein.”> NMR relaxation dispersion is probing motions
extending from approximately 50 ys to approximately 10 ms.*®
Thus, the RDC is unique in providing information on motions
that are slower than the rotational correlation time of the
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protein and are not detected by relaxation dispersion methods.
It should be pointed out that RDCs report exclusively on
averaged out motional effects that materialize as spatial
restrictions, ie., as features of (global and local) ordering.
The “N—'H bond is useful for studying local ordering at
protein backbone sites, and the C—'">CH; moiety (which for
fast methyl rotation is represented by the C—Cny axis) is
useful for studying local ordering in protein side chains. Herein
we focus on these probes.

RDCs arise due to nonuniform sampling of the conforma-
tional space. For rigid molecules, this is due to the anisotropic
liquid-crystal (LC) solvent, which exerts spatial restrictions
at the site of their motion.””?® In the standard theories
for treating restricted motions in liquids,>”
are expressed in terms of second-rank ordering tensors, S;. The
eigenvalues of these tensors, ie., the order parameters, are
defined in terms of the potential of mean torque, POMT,.
The latter determines the probability distribution function,
P, » which describes the orientation of the molecule relative to

28 .
these constraints
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the LC director.>”*® For small and rigid molecules, methods for
determining S, tensors and associated geometric features from
experimental RDCs were developed in early work.”’~>* These
methods have been extended to rigid proteins.’

When the molecule is flexible, the motion of the probe is
restricted not only by the external anisotropic medium but also
by its immediate (intramolecular) protein surroundings. For
independent external and internal POMTs, the analysis of
RDCs from small flexible molecules is outlined formally in ref
29. Along this line of thought, and with a model-free perspec-
tive, Griesinger and co-workers developed a method called
Model Free Analysis (MFA)*'® for analyzing RDCs from
proteins. The global ordering is treated in the standard manner
in terms of a diagonal rank 2 tensor, Sg defined with respect
to the uniaxial liquid-crystal (LC) director. Its orientation is
specified with respect to the 3D NMR or X-ray crystallography
structure of the protein (MF). The local ordering is treated using a
procedure we call mf-RDC. This scheme was applied extensively
to N—H sites in ubiquitin‘}_lz’18 and recently also to C—Cnyl
sites in this protein."> We refer to “sites” rather than "bonds” to
account for the fact that the symmetry of the RDC probe (hence
the symmetry of the local ordering) is allowed to be rhombic.
For N—H sites, the MF frame is associated with the N—H-bond-
comprising peptide-bond plane. For methyl sites, it is associated
with the plane defined by the C,_;—C; bond and the C;—C,,sy
axis. Reference 4 used 2003 N—H RDCs obtained from 36
different alignment media. Reference 13 used 605 methyl group
RDCs obtained from 13 different alignment media. These date are
used in this study.

As pointed out above, it is assumed in mf-RDC that the
external and internal ordering potentials are independent. Hence,
the associated ordering phenomena may be treated independ-
ently. Furthermore, the local ordering may be considered the
same in all of the LC media used. Taking the local director
uniaxial, the spherical harmonic ensemble averages, (Y5,,(0", ")),
m = 0, 1, +2, are derived in the MF frame as representatives
of the local ordering (a biaxial local director would require 25
ensemble averages featuring the Wigner rotation matrix elements
Dj,, where k, m = 0, +1, +2). This requires at least five LC
media that yield different S, tensors. From the (Y5,,(0, @))'s,
one derives the squared generalized order parameter, S5 The
(6, @) frame is transformed into the (&, ¢’) frame, where an
effective N—H orientation, (N—H).g given in MF by the polar
angles (0.5 @.q), is determined by maximizing (Y,o(0, ¢")).
This procedure assumes that the N—H distribution is axially
symmetric. (N—H),4 is thus an approximation to the average
N—H orientation, (N—H),, which represents the local
director. The amplitude of the anisotropic disorder, 7, is
defined in the (&, ¢') frame.® By a specific rotation @' around
its Y-axis,'® the (¢, ¢') frame is transformed into the (6", ¢")
frame, where (Y,,(6", ¢") + Y,_,(6", ¢")) is at maximum.®'°
The (0", ") frame represents the PAS of the S, tensor. The
angle @' represents the direction of the anisotropic disorder.

In this study, we convert the (Y,,)'s obtained previously
with MFA for each (N—H) (ref 4) and C—C,osy (ref 13) site
in ubiquitin into the corresponding Saupe tensor, which is
diagonalized. This yields the eigenvalues S,,, S,, and S, and
the Principal Axis System (PAS) of the local ordering tensor,
S, S§ = S,, represents the strength of the local ordering, and
S3=(2/3)*(S,, — Syy) represents its rhombicity (S} and S are
the Wigner scheme order parameters); the PAS axes represent
orientations of preferential ordering.
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We find that S42, #, and @' can be recast as S_.,, y and S_.. The
angles 0., @ and @', on the one hand, and the Euler angles of the
conventional Wigner rotation, on the other hand, are not the same.
The following new information is obtained by pursuing the standard
tensorial analysis. The contribution of local ordering rhombicity to
S, is evaluated quantitatively. For the a-helix of ubiquitin, the main
local ordering axis is assigned as CiL;,—C". For the C—C, .y, sites
of ubiquitin, the main local ordering axis is associated with the
C—C ety axis. The strength of the local ordering correlates with
methyl type/side-chain length. Local ordering tensors from “N—'H
spin relaxation and "N—'H RDC are compared. We find that the
strength (thombicity) of the local ordering emerging from fast
picosecond—nanosecond local motions is reduced moderately
(substantially) when slow nanosecond—millisecond local motions
are also present.

Physical ordering tensors are defined with respect to the direction
of preferred ordering, called director. Here, both S and the mf-
RDC parameters are defined with respect to (N—H),;, which
represents the N—H bond orientation in the X-ray crystallography
or NMR structures.” (Note that the definition of (N—H) is
independent of the derivation of the S; tensor and the mf-RDC
parameters). For the N—H sites and the C—Ciethyl sites associated
with relatively short side chains, using (N—H),,q. instead of the
local director is a reasonably good approximation (see below).
However, a general scheme that determines inherently the orienta-
tion of the local director in the protein, which is the main structural/
geometric information sought in RDC research, is undoubtedly
desirable. Allowing for arbitrary orientation of the local ordering
frame with respect to the dipolar frame is also desirable. Given that
typically the orientation of the dipolar frame in the probe is known,
this will make possible assigning the local ordering frame from a
structural point of view. We propose below such a scheme.

2. THEORETICAL BACKGROUND FOR RDC ANALYSIS

2.1. Comprehensive Tensorial Approach. The frame
scheme underlying the tensorial approach proposed is depicted
in Figure la. LF is the space-fixed laboratory frame with its
Z-axis parallel to the external magnetic field. The uniaxial liquid
crystal director points along LF. AF is the Principal Axis System
(PAS) of the global ordering tensor, Sy MF is a known molecular
frame, typically the 3D NMR or X-ray crystallography struc-
ture. The PAS of AF is determined relative to MF. VF is the
uniaxial local director given in the present case by (N—H),, or
(C—Chrethyl)a- The AF, MF, and VF frames are fixed in the
protein. OF is the PAS of the local ordering tensor, S;. DF is the
PAS of the "'N—'H dipolar tensor. OF and DF are fixed in the
probe. The PAS of OF is determined relative to the DF frame.

Figure 1b depicts the various frames in the context of a
typical protein structure. Part a shows the Z-axes of the global
ordering frame (AF) and molecular frame (MF). Part b shows a
segment of the central helix with a representative N—H bond
defined as Zyg(local). The local director, VF, is depicted
as (N—H)eq, which according to the mf—RDC nomenclature is
(N-H),,. Part ¢ shows this N—H bond, pointing along the
(axial) dipolar frame, DF, in the context of the respective
peptide-bond plane, represented by the C{;—C{ axis. This axis
is identified with the main local ordering axis, Zqg (see below).

The contribution of the dipolar interaction between two
nuclei, i and j, to the spin Hamiltonian is given by the following
e)(pression27’28’32

2 2,k)*m(2,
Hij,DF = Z <Dmk(QLF—DF)>Fi§,D12 T;,L?)
m,k (1)
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(a)

Z,,(local) = NH NH = DF

VF = NH,,

Figure 1. (a) Frame scheme of the standard tensorial analysis. LF,
laboratory frame, with its Z-axis along the external magnetic field; AF,
PAS of the global ordering tensor, S,; MF, known molecular frame,
typically the X-ray crystallography or average NMR structure; VF, local
director frame; OF, PAS of the local ordering tensor, S;; DF, PAS of
the magnetic *'N—'H dipolar tensor. AF, MF, and VF are fixed in the
protein; OF and DF are fixed in the probe. The Euler angles Q¢ _,r
are distributed due to the external ordering. The Euler angles Qyr_qp
are distributed due to the local ordering. (b) The frames of (a), shown
in the context of a typical protein structure. Z-axes of the global ordering
(AF) and molecular (MF) frames (part a). A segment of the central
helix with a specific N—H bond defined as Zyg(local). The local
director, VF, is depicted as (N—H)eq, which according to the mf—RDC
nomenclature is (N—H),, (part b). Representative N—H bond, pointing
along the (axial) dipolar frame, DF, shown in the context of the
respective peptide-bond plane, represented by the C,—C{" axis. This
axis is identified with the main local ordering axis, Zop (part c).

where Fl(f[;c% denotes the components of the magnetic dipolar

tensor in the DF frame, and T{>™ denotes the components of
the relevant spin operators in the LF frame. Dj,, are the Wigner
rotation matrix elements.

For rigid proteins, Qi pp = Qg ap + Qup_pp That is,
Qr_pr represents the combined effects of rotations by both
sets of Euler angles on the right of this equation (with Qp_pg
fixed). Averaging the appropriate trigonometric functions over
the Euler angles € ,p yields the global order parameters.
Given that Zpy points along the N—H bond, the Euler angles
Qur_pr represent the structural/geometric information of
interest in RDC research. For a uniaxial LC and at least C,,
symmetry around the Z-axis of AF, the only Wigner scheme
order parameters that survive are Sz = (Dgo(Qr_ar)) and S,
= (D3(Qup_ar) + D3_s(Qur_ap)).””?*** The corresponding

Saupe scheme order parameters are S, = ((3/ )Y Zng - Sgo)/z,
Sy = =((3/2)28} + Sp)/2, and Sy = §pp. ™7
The RDC between the nuclei i and j is given by
RDC; = (/40/47r)}/i}/]_h/(47r2;;j3) [SgZOPZ(cos B pr)

+ /3/2 [Sg22 sinz(ﬂAF_DF)cos(ZaAF_DF)] @)

6108

where y, is the permeability of vacuum; y; and y; are the
magnetogyric ratios of the nuclei i and j; & is Planck’s constant;
and r;; is the distance between the nuclei i and j.

In the presence of local ordering, one has € p pp =g sp +
Qur-vr + Qv + Que_or + Qop_pr (Figure 1). That is,
Q r_pr represents the combined effects of the rotations by all
of the Euler angles on the right of this equation (with Qp_yp
Quip_yp and Qop_pr fixed). By virtue of the assumption that
the POMT, and the POMT; are independent,”® one may
average separately over Q p_, to obtain S}, and S, and over
Qur_or to obtain S and S (the index 1" is omitted below).

Let us delineate the basics of the standard tensorial approach as
applied to the local ordering. This treatment is formally the same
as the treatment of the global ordering. The POMT] is denoted
u(Qup_op) (in units of kgT). This function is expanded in the
basis set of the Wigner rotation matrix elements. When only the
lowest order, L = 2, terms are preserved, one obtains®"?%%

U(Quyp_op) _
koT

- Cf[Doz,z(waoF) + Doz,fz(gvpfop)]

u(QVF—OF) = _COZDOZ,O(QVF—OF)

®3)

The coefficient ¢} evaluates the strength of the POMT), and
the coefficient ¢} evaluates its rhombicity.

The equilibrium probability distribution associated with the
local ordering is given by P,; = exp[—U(Qyz_or)/ksT]/
<exp[—U(Qvp_or)/ksT]>, where <..> means averaging over
Qv_oF-

27,28,32
The local order parameters are defined as™"

<D§m(QVF—OF)> = /dQVF—OFng(QVF—OF)

X exp[_u(QVF—OF)]/ dQyr_opexp[—u(Qyg_op)]
4)

For a uniaxial local director and at least C,, symmetry around
the Z-axis of the local ordering frame, OF, only S§ =
(Dn(Qyp_op)) and 83 = (Dg(Qp-or) + Doa(Qvr—or))
survive.”**** The Saupe scheme order parameters relate to S
and § as S, = ((3/2)"283 - §)/2, S, = —((3/2)'S} + §)/2,
and S, = SZ.

The RDC between the nuclei i and j that emerges from the
combined effect of the independent global and local ordering
phenomena is given by

RDC; = (/‘0/4”)}§J’jh/(4”2’§j3) Z <D§p(QLF—AF)>
par

X D;qu(QAF—MF)DqZO(QMF—VF) (Do (Qz—op))
X Djo(Qop_pe) (8)

with the various constants defined above. Equation 5 refers to a
particular RDC in a given LC medium.

This expression comprises five terms. The first term
represents the eigenvalues of S,. The second term represents
the orientation of S, in MF. The third term represents the
orientation of the local director in the protein. The fourth term
represents the eigenvalues of the S; tensor. The fifth term
represents the orientation of the local ordering frame with
respect to the dipolar frame. All of these well-defined physical
quantities can be determined with data fitting. Such a scheme
comprises six variables for the local ordering (see below). By
setting aop_pr equal to zero (which in our experience from "N
spin relaxation analysis with the slowly relaxing local structure
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(SRLS) approach is a reasonable approximation),*** the
number of variables is reduced to 5, as in mf-RDC. The
important angles Que_vr = (Ayp_ve Pvr—ve 0) and Qop_pr =
(aop-pE Bor-pr 0) (or Qop_pr = (0, fop_pr, 0)), which are
not determined in the current scheme, are provided in the
proposed scheme. The current scaling of the (Y,)'s (ref S),
implied mainly by both S; and §; being defined with respect
to the same frame (MF), is unnecessary because now S is
defined with respect to VF, whereas S, is defined with
respect to MF. The scheme proposed makes possible
comparing local ordering tensors from RDC analysis and
from spin relaxation analysis, provided that the method
underlying the latter accounts for general tensorial proper-
ties. Currently the only method that fulfills this requirement
is SRLS.**** Such comparison is more insightful than the
current comparison of squared generalized order parame-
ters, in particular in the context of elucidating the effect on
nanosecond—millisecond local motions.

2.2, Actual Approach. 2.2.1. Global Ordering. The first
two terms of eq 5, Zm(Dé (Qup-ar))Dygo(Rap_mr), are
treated separately in MFA.*'® The eigenvalues of Sy
(Doo(Qup-ar)) and (D5 (Qur_ar) + Do_(Qpz_ar)), and the
Euler angles, Q,p_yy, which define the PAS of S, in the MF
frame, are obtained as outlined in refs 4 and 10. It is assumed
that the local ordering is independent of the LC medium.
Using at least five different LC media (i.e., five different S,
tensors), one derives the ensemble averages (Y,,,(6, )), m =
0, +1, 2, that describe the local ordering. The analysis of
these quantities within the scope of mf-RDC is outlined in
the next section.

2.2.2. Local Ordering: The MF-RDC Approach. As pointed
out above, the MF frame is taken as the X-ray crystallography
or NMR structure of the protein. We will use the designation
"MF" to describe its local parts corresponding to the site of the
RDC probe, which are relevant for treating the local ordering.
For the N—H sites, Zy; is parallel to the N—H bond; Xy is
perpendicular to Zyy in the peptide-bond plane; and Yy is
perpendicular to both Zy; and Xy, ie., to the peptide-bond
plane. For the methyl sites, Zy; is parallel to the C—C, . axis;
Xy is perpendicular to Zy in the plane defined by the C,_;—
C; bond and the C;—C,,ey axis; and Yy is perpendicular to
both Zy; and Xy Both mf-RDC and the standard analysis
proposed use these (Y,,,(6, @))'s, and these definitions for the
(local) MF frame.

The frame scheme used to analyze the (Y, (6, ¢))'s for
the N—H sites is shown in Figure 2a. An analogous scheme
(not shown) is used to treat the C—Cirerny sites, with DF
(the dipolar tensor frame) replaced by QF (the quadrupolar
tensor frame). The angles (6, @) are the coordinates of the
N-H bond in the (rhombic) MF frame. The squared
generalized order parameter, S’ is defined in this frame
(although it may be defined in any frame).

The frame (6, @) represents the nondiagonal instantaneous
local ordering frame of a given N—H bond, which is a member
in the local N—H distribution. This frame is transformed into
another instantaneous local ordering frame, (0, ¢’), as follows.
One assumes that the N—H distribution is axially symmetric. In
this case, there will be a particular (&, ¢') frame with its Z-axis
at the maximum of the axial N—H distribution. This Z-axis
represents the effective local director, (N—H),g The respective
(@, @) values, denoted (0.5 @.q), define the orientation of
(N—H).4 in the MF frame. In general, the instantaneous local
ordering frames, (¢’, ¢'), have their Z-axes orienting
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a MF b
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O y ﬁ
(N'H)eﬂ'
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|® s} 82
/L (el l, (Pl I)
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Figure 2. (a) Frame scheme of the mf-RDC method for treating the
local ordering at N—H sites. The frame scheme for treating the global
ordering is depicted in Figure 1. The MF frame has Zy; parallel to the
N-—H bond, Xyr perpendicular to Zy in the peptide-bond plane, and
Yue perpendicular to both Zy and Xy, ie, to the peptide-bond
plane. (6. @) are the coordinates of (N—H).q in the MF frame
determined by maximizing (Y,o(6, ¢')). The angles (¢, ¢') are the
coordinates of the N—H bond in a local ordering frame with Zgg
orienting preferentially along (N—H).; The angles (0", ¢") are the
coordinates of the N—H bond in a local ordering frame where
(Y (0", @) + Y,_,(0", ¢”)) is at maximum. The (0", ¢") frame is
obtained by a rotation, ®', given by eq 11, around the Y-axis of the
(¢, ') frame. The (0", ¢") frame represents the PAS of the $; tensor.
The parameters S4.> (eq 9), 77 (eq 10), and ®’ (eq 11) characterize the
local ordering. (b) Frame scheme of the standard tensorial method.
The MF frame is defined above. Qyp op are the Euler angles
associated with the conventional Wigner rotation from the MF frame
to the PAS of S;. S,> and S,” are the Wigner scheme eigenvalues of S,
(which yield in a straightforward manner the Saupe scheme
eigenvalues; see text).

preferentially along (N—H). Each Z-axis points along the
corresponding instantaneous N—H orientation, i.e., the
corresponding principal axis of the dipolar tensor. This scenario
is called Z-ordering (see below). The amplitude of the
anisotropic disorder, 7 (cf. eq 10 below), is defined in the
(0, @) frame

The instantaneous frame, (&, ¢’) is transformed into the
instantaneous frame (0", ¢") where (Y,,(0", ¢") + Y,_,(0",
@")) is at maximum. This is accomplished by a rotation
around the Y-axis of the (&', ¢') frame by an angle @’ defined
in eq 11 below. @' represents the direction of the anisotropic
disorder.

The (0", @") frame represents the PAS of the local
ordering tensor, S;. We show this by recalling the following
definitions®>

(D5y(0, 0, @) + Dj_,(0, 6, @))
= \/477"/5 (Y()Z(g) §0) + Y()—z(er §0)>

(Dg,(0, 6, ) + Dy_(0, 6, @)
- V4”/5 <Y01(9) (ﬂ) + Y()—l(e: §0)>

(Dgo(0, 0, @)y = J41/5(Yy(0, @)

<D§1(0x 61 Ca) - DOZ—l(O) 9; §0)>
—4r/S <Y01(9! ®) — Yo—l(er ®))

(D3,(0, 6, @) — D;_,(0, 6, p))
= \/4”/5 <Y02(91 4’) - Yo-z(er §0)>

(6)
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<D§0> = Szz
<D§1> =W 2/3 (sz - isyz)
(Dy) = \1/68,, — J1/6S,, — i[2/35,,

(Dg,) = (=1)"(Dg_,,)* @
Szz = <D§0>

Su = 3/8(D} + DE_y) — (DY)/2

S,, = —/3/8(D} + Di_,) — (D%)/2

Sxy = Syx = 1\13/8<D§2 - D(J2—2>

S = S = V/3/8(D}, - D))

S,. =S, = i\/3/8(Dg, + D)) (8)

Maximizing (Y5, (6", ¢") + Y,_,(0", ¢")) sets (Dg; + Dj_,)
and (D§; — Dj_;) equal to zero;° hence, S,; and S, in eq 8 are
equal to zero. According to the definition of @ (eq 11),
rotation around it sets @’ equal to zero in the (0", ¢") frame;
this sets S,, in eq 8 equal to zero. Thus, only the diagonal
elements of §; survive.

The squared generalized order parameter, S,47 is defined by
analogy with the squared generalized order parameter, S* used
in model-free-based spin relaxation analysis.36 S is given
(in any frame) by’

Srdc2 = 2

m=0,+1,+2

KY,,,(8, §))(Y5,(6, ),

m==+2,+1,0

)

Because the global ordering is determined without
accounting for the local ordering, while both are defined with
respect to the MF frame, it is necessary to scale the (Y,,)'s
prior to calculating S, to compensate for having ignored the
effect of the local ordering in determining the 6global ordering.
Strategies for doing this have been developed.>® Similar to S?, 6
the parameter S, is conceptualized as the amplitude of the
local motion.

5The amplitude of the local motional anisotropy, 7, is defined
as

Ter s (G0, 0)YE(0, ) |
Zm=0,il,12 <Y2m(6,) (p/)><Y;<m<0/; 40,)) (10)

The direction of the anisotropic local motion, @', is defined
6
as

]7:

(1(0', @) — ¥, (0, ¢))
i(Yu(0', ¢') + %,5(0', 9))] (11)
The parameter (Y,0(6, ¢')) represents the axial order.'” The
parameters 77 and @’ represent the amount of anisotropic

disorder.'® The direction of the N—C” bond in the (6", ¢")
frame is given by the angle &y, defined ast

1
®’ = — arctan
2

"

INca
szIC(X (12)

This parameter characterizes the anisotropy with respect to the

peptide-bond plane.

!
£y = arctan
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Formal analogies between the Wigner or Saupe scheme order
parameters and the mf—RDC parameters can be established.
One has

Sl%) = \lSrdcz(l - ;72)

8122 =2 cos(2®")1S 4. (13)
and

S.. = 0.5[/3/2 (V2 cos(2®")1S,4.) — +/S.a.”(1 — 17°) ]

S, = —0.5[/3/2 (\/2 cos(2®")S,4.) + /S (1 — 1%)]

Szz = \/Srdcz(l - ’72)

(14)

2.2.3. Local Ordering: The Standard Approach. The local
ordering is given by the last three terms of eq S5, Zq’,
DéO(QMF—VF)<D%r(QVF—OF)>DrZO(QOF—DF)' The first term com-
prises the orientation of the local director in MF. The second
term comprises the order parameters Sg and S3 associated with
the diagonal S; tensor. The third term represents the relative
orientation of the local ordering frame, OF, and the dipolar
frame, DF. This scheme comprises the variables g vy,
Pur—ves S5 S3, Aop_pr and Por_pr. On the basis of our
experience with SRLS analysis of "N spin relaxation in
proteins, dop_py may be set equal to zero.*>** This reduces the
number of variables for the local ordering to five, as in mf-RDC.

However, we do not use the expression depicted above
for treating the local ordering. Rather, we use the expression
(D4 (@yp_o)) = (~1)"(47/5)XYy). This is appropriate
when (a) VF = Zyg and (b) Zpg points along one of the
principal axes of the local ordering frame, OF. With regard to
point (a), there is evidence that VF and Zyy are near one
another for the N—H sites (Figure 4 of ref 10) and for the
C—Cipethyl sites associated with short side chains (Figure 3b of
ref 13). With regard to point (b), the following is of interest.
Maximizing (Y5,(¢", ¢')) is based on the approximation that
P,y is axially symmetric. In this context ¢’ = 0, and P,y;(6") ma
be expanded in the full basis set of the Legendre polynomials.®
When only the lowest order, L = 2, term is preserved, one
obtains P,y;(6") ~ (P,(cos €)) = (Y5,(6,0)). Mazimizing this
ensemble average is formally equivalent to minimizing a
POMT, given by the first term of eq 3. In the (6", ¢") frame,
P, is expanded in the full basis set of the spherical harmonic
functions. When only the L = 2, K = 0, 2, terms are preserved,
one obtains P (0", @") ~ (Y(0, @) + (Y(0", ¢") +
Y, (6, ¢")). Maximizing (V&) ¢") + Yooo(0') ¢7)) after
having maximized (Yy,(¢, ¢')) (within the scope of the
approximation mentioned above) is formally equivalent to
minimizing the POMT) given by eq 3.

Equation 3 is at minimum for three scenarios. (a) fyp_op = 0%
the main local ordering axis (i.e., the axis that orients
preferentially parallel to the local director) is Zgg. In this case,
Z-ordering prevails. (b) fyr_op = 90° and yyp_op = 0° the
main ordering axis is Xog. In this case, X-ordering prevails.
(c) Pyr—or = 90° and yyp_op = 90°: the main ordering axis is
Yor. In this case, Y-ordering prevails.’® As pointed out above,
the definition of (N—H). in mf-RDC implies Z-ordering. On
the other hand, the standard tensorial approach is consistent
with X-, Y-, or Z-ordering. We show below that this feature,
along with rank 2 tensor eigenvalues and PAS, can provide
important new information.
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3. RESULTS AND DISCUSSION Bi B2 O helix By Ba  3i-helix Bs

The Saupe tensor given bgf eq 8 is diagonalized using the
Lapack computer program.® This program registers the eigen-
values in ascending order of their magnitude, according to the
convention IS_| > IS, | > IS_1.*

3.1. N-H Sites. 3.1.1. Standard Analysis. Ubiquitin
comprises an a-helix (residues 23—34), a 3;y-helix (residues
56—59), and a f-sheet with strands denoted f3,—f; (residues
2—7, 12—17, 41—45, 49—50, and 65—72). A flexible end chain
(residues 73—76) is also featured. Figure 3 shows the elements
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Figure 4. Saupe scheme order parameters, S,,, S, and S_, and the
rhombic Wigner scheme order parameter, S3, obtained by subjecting
the tensors shown in Figure 3 to Lapack diagonalization. The abscissa
represents the protein sequence. We estimate the errors to be

approximately 5%, according to ref 4.

diagonalization process exchanged Xz and Zy, which became
Zor and Xy, respectively. This agrees with the values of the
Euler angles shown in Figure 5, obtained by a standard

B B2 OL-helix B3 PBa 3io-helix Bs

Residue 200 2l
Figure 3. Elements of the (nondiagonal) local ordering Saupe o0 100 B
tensor for the N—H sites of ubiquitin. These data were derived 0 ]
from the (Y,)'s of the tenth cycle of the SCRM analysis.* The -100 ]
abscissa represents the protein sequence. The red vertical lines -200
delineate the data corresponding to residues A28 and D32. On the 200 o]
basis of S,4.2 errors of 1.3, 6.2, and 2.8% for the secondary structure pe 150 ]
elements, the loops, and the entire protein backbone, respectively, 100 =
reported in ref 4, we estimate the errors in the data shown to be 50 .
approximately 5%. 0 ]
200
= C{
of the Saupe tensor given in the local MF frame described in v 102-_ B
Section 2.2.2. The secondary structure of ubiquitin is depicted ool b
on the top. The (Y,,,)'s underlying Figure 3 correspond to the 200k l | . | I | . 1
tenth cycle of the Self-Consistent RDC-based Model-free 0 20 R 60 80
analysis (SCRM),* applied to the structure of ubiquitin with
PDB code 1UBL Figure S. Euler angles of the Wigner rotations that generated the order
The elements of the (nondiagonal) Saupe tensors in the MF parameters ShOWI"l in Figure 4. The abscissa r‘epresents the prot'ein
frame vary substantially along the protein backbone. For residue izqrueefn:e. We estimate the errors to be approximately 5%, according

A28 (D32), depicted by the red vertical lines in Figure 3, the
nondiagonal elements are SME — —0.074 (0.035), S%F = 0.019
(0.020), and SgF =0.016 (—0.063). These values are very small, counter-clockwise ZYZ Wigner rotation. These values are a =
indicating that the respective Saupe tensors are nearly diagonal 19.3° (22.1°), B = 90.7° (87.4°), and y = —3.2° (1.5°) for
in MF. The diagonal elements are S} = 0.893 (0.909), residue A28 (D32). The a angle represents a small rotation
Sxp = —0.422 (—0.437), and S = —0471 (-0.472), for around Zy. The f angle represents a 90° rotation around the
residue A28 (D32). The largest positive order parameter is Sy new Y-axis. The y angle is nearly zero given that the OF frame

xx )

indicating that Xy, ie., the orientation perpendicular to the is nearly axially symmetric for these residues, as shown by the

N—-H bond in the peptide-bond plane, is the main local small corresponding S; values (Figure 4d).

ordering axis for these residues. A plausible assignment for Zog, which is perpendicular to
The eigenvalues of S; obtained by Lapack diagonalization are Xor = N=H, is the C |—C{ axis. The standard tilt angle

shown in Figure 4. The Saupe scheme order parameters are between C?,—C{ and N—H (which points along Zpg) is

Si = —0.481 (—0.481), S, = —0.418 (—0.427), and S, = 0.899 —101.3° (refs 41—43). One may either adopt the ortho-

(0.903), and the rhombic Wigner scheme order parameter, S5, Gaussian Axial Fluctuations (GAF) model of ref 41, where
is —0.047 (—0.042) for residue A28 (D32). As expected based Por_pr = 90°, or assign Zog as an approximation to the C—
on Figure 3, and the convention IS_| > IS,| > IS,,| used C axis. There is compelling evidence for C{ ,—C{ serving
by the Lapack program,®” within a good approximation, the as the main ordering axis at N—H sites in proteins. We found
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with SRLS-based fitting of '*N spin relaxation data that the
angle between Zop and Zypg is within 1—2° from —101.3° (refs 33
and 34). C¥;—C{ as main ordering axis is encoded in the 3D
GAF model** which has been used extensively, including the
analysis of ""N—'H RDCs in proteins.**** Molecular dynamics
studies found that crankshaft backbone motions, centered at
the CZ,—C¢ axis, occur pervasively in proteins.**™*’

We assign Zgg as C{L,—C{ for residues A28 and D32 of the
a-helix. For all of the N—H sites within the a-helix, the # angle
is close to 90° (Figure Sb), and the y angle is close to 0° (Figure Sc),
in agreement with the geometric arrangement characteristic of
residues A28 and D32. On the basis of this, and on the similarity
between corresponding Saupe tensor eigenvalues (Figure 4; the
apparently large variations in Figure 4a are due to an expanded scale),
we assign Zgg as C,—C{" for the entire o-helix. For the remaining
N—H sites of ubiquitin, the assignment of Zep (in general, of the
entire PAS of S;) has to await the development of the general scheme
for RDC analysis delineated in Section 2.1.

The finding that for the o-helix of ubiquitin the main
ordering axis is C{*,—C{" (which constitutes insightful structural
information) is due to the tensorial description of the local
ordering. Additional information emerging from the standard
analysis appears in the next section.

3.1.2. Comparison between the Standard Analysis and
mf-RDC. The squared generalized order parameter, S,2 is
considered as a measure of the degree of local ordering. We
compare it with S3, which represents the strength of the local
ordering in the tensorial perspective. These parameters are
depicted in Figure 6a, with S; shown in blue and S,4.* shown in

By B,

OL-helix

B3

Bs

Residue

Figure 6. Axial Wigner scheme order parameter, S (blue), its square
(83)* (black), and squared generalized order parameter, S 4 (red) for
the N—H sites of ubiquitin (a). Rhombic Wigner scheme order
parameter, S; (black), and amplitude of anisotropic disorder, 1
(calculated according to eq 10 and depicted with reversed sign) (red),
for the N—H sites of ubiquitin (b). The abscissa represents the protein
sequence. We estimate the errors to be approximately 5%, according to
ref 4.

red. It can be seen that the respective patterns differ. Sj and
S.a’ are related numerically as follows. The original definition
of S,4” is given by eq 9.° An equivalent definition is

Sa = Q. KDg,XDg_,)

m=0,+1,+2

(13)

S, is the same in any frame. In the PAS of the ordering
tensor, where only (D) and (D, + D}_,) survive, one has

6112

Srdc2 = <D§0>2 + 2{R6<D§2>}2 (16)
Given that S3 = (D3) and S = (D}, + D;_,) = 2{Re(D},)},
one has

2 ICI Y

Srdc - (SO) + 2(82) (17)

St and S3 are independent eigenvalues of the local ordering
tensor, which represnt different physical properties. S 4. is a
parameter that comprises information on both. When the
rhombic contribution to S* is relatively small, one has S, ~
(S3)% this represents the axial ordering scenario. To evaluate
the deviation from axiality, we show (S5)* in Figure 6a (black).
It can be seen that S,4.* and (S3)* are very close to one another,
indicating that the rhombic term in eq 17 makes a small
contribution to S4% An expression equivalent to the one
depicted in eq 17 appears in ref 14. However, to our know-
ledge, its utility in the context mentioned above was not
pointed out previously.

The parameter 7 represents the anisotropy of the local
disorder. We show 7 (calculated according to eq 10) and its
formal analogue S}, which represents the rhombicity of the local
ordering tensor, in Figure 6b. The parameter 7 is by definition
positive. Since based on the convention IS_| > IS,| > IS, S2is
negative, we show # with reversed sign to render the com-
parison convenient. Note that when the Euler angles Qqp_pg
will be determined, the sign of S3 will provide physically
insightful information.

Figure 6b shows that # is smaller in absolute value than S3,
which is itself small (the maximum value of $2 is (3/2)"2).
Thus, the anisotropic disorder is small at the N—H sites of
ubiquitin. These important assessments, including the
quantitative evaluation of the deviation of S,* from (S3)?%
require taking cognizance of the fact that S 4.* is given by eq 17;
n is given by [(0.5 X (83)%)/((S3)? + 0.5 x (83)*)]* (egs 10
and 17); and S§ and S; can be derived from the mf-RDC param-
eters (eq 13). Figure 7 shows ¢.g 0.5 and @' Af,z and A
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Figure 7. mf-RDC parameters ¢ (a), 0.4 (b), and @' (c), for the
N—H sites of ubiquitin, derived from the (Y,,,)'s of the tenth cycle of
the SCRM analysis.* The abscissa represents the protein sequence.

represent the difference in the orientation of (N—H).; and
(N—H)qc in the protein structure. These quantities are on
the order of several degrees (Figure 4 of ref 10), indicating that
(N—H)4 and (N—H),y are close to one another. One may
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conclude that (N—H),, and (N—H),.. are also close to one
another.

3.2. C—Cinetnyl Sites.  3.2.1. Standard Analysis. Figure 8
(Figure 9) shows the Saupe tensor elements in MF for the

B3 Bs
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Figure 8. Elements of the local ordering Saupe tensor for the
C—Cyetyt sites of ubiquitin derived from the (Y5,,)'s of ref 13, presented
as a function of the protein sequence. Errors as in ref 13.
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Figure 9. Elements of the local ordering Saupe tensor for the
C—Cipemy sites of ubiquitin derived from the (Y5,)'s of ref 13, presen-
ted as a function of the methyl type. The red vertical lines delineate
the data corresponding to residues Iy,23 and Iy,30. Errors as in ref 13.

C—Cipetyl sites of ubiquitin outlined in Section 2.2.2., depicted
as a function of the protein sequence (methyl type). The
(nondiagonal) Saupe tensor elements vary substantially in both
representations. In Figure 9, one can distinguish a certain
degree of regularity in the S,, and S, values of Iled, and the
S.. and §,, values of the Leud,. In quite a few cases, S, is
positive and large. Figures 10 and 11 show the results of Lapack
diagonalization applied to the data shown in Figure 9. The
Saupe scheme order parameters S,,, S,,, and S, and the Wigner
scheme order parameter S5 are shown in Figure 10. The Euler
angles associated with the Wigner rotation from the MF frame
to the PAS of S; are shown in Figure 11.

Let us consider the C—C,, 4y sites of residues Iy,23 and
Iy,30, depicted by the red vertical lines in Figure 9. The

nondiagonal elements of the Saupe tensor given in MF are
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Figure 11. Euler angles of the Wigner rotations that generated
the order parameters shown in Figure 10, as a function of methyl

type.

Si' = =0.117 (=0.061), S* = 0.016 (0.002), and SY* = 0.051
(—0.049) for residue Iy,23 (Iy,30). These are small values,
indicating that the respective Saupe tensors are nearly diagonal
in MF. The diagonal elements are S = —0.397 (—0.457),
Sy = —0.285 (=0.215), and S} = 0.681 (0.672) for residue
17,23 (Ir,30). The largest positive diagonal element is S,
indicating that Zygy, ie, the orientation pointing along the
C—Cyethyl axis, is the main local ordering axis for these residues.

The eigenvalues of §; are S,, = —0.426 (=0.470), S, = —0.268
(—0206), and S,, = 0.694 (0.676) for residue 1y,23 (Iy,30)
(Figure 10). The absolute values of these parameters are similar
to their counterparts in the MF frame (Figure 9), and their
designations are preserved. The diagonalization process has
merely set equal to zero the small nondiagonal elements shown
in Figure 9, updating accordingly the diagonal elements. This is
supported by the Euler angles shown in Figure 11, which are
a=149.7° (163.1°), f = 6.3° (3.1°), and y = 11.3° (—6.0°) for
residue Iy,23 (Iy,30). Within a reasonably good approximation,
this represents a 180° rotation around Z, to which the local
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ordering is invariant. Thus, for C—C,my sites, the tensorial
approach supports Z-ordering.

The rhombic order parameter, S3, is —0.129 (—0.216) for
residue 17,23 (Iy,30). The extent of rhombicity is considerable.

For some of the C—C,,y sites of ubiquitin S_, is larger than
0.5 in Figure 9, and the nondiagonal elements are relatively
small. For these methyl groups, the C—C, ., axis is likely to be
the main local ordering axis. For most C—Ci,ey sites, S,, is
negative and close to —0.35. S, is negative for 76% of the C—
Cruethyl sites. Figure 11 shows that nearly 50% of the C—C oy
sites have f# = 20° £ 15°% 71% of the Iley, C—C,,ey sites have
f in the 5°—20° range; and 43% of the Leud, C—C, .y sites
have f in the 14°—44° range. 49% of all the C—C, .y, sites,
71% of the C—C,, .y sites of Iley,, and 62.5% of the C—C,,oy
sites of Leud, have y less than 30°. Thus, in general the
symmetry of the §; tensors for Iy,23 and Iy,30 is, within a
reasonably good approximation, representative of the symmetry
of the §, tensors for all of the C—C,,uy sites of ubiquitin. One
may conclude that Zog resides within a solid angle centered at
the C—C,euny axis; Xop resides within a solid angle centered
at the orientation perpendicular to the C—C,,., axis in the
plane defined by the C,_;—C; bond and the C—C,, .y axis;
and Yop is approximately perpendicular to this plane.
Accurate assignment of the PAS of §; based solely on a
tensorial analysis, which conveys important structural/
geometric information, has to await the development of
the scheme outlined in Section 2.1. A quantitative treatment
of the local ordering at the C—C,, .y sites of ubiquitin, based
on mf-RDC combined with additional independent methods
of analysis, is presented in ref 13.

The order parameter S, is insightful. The red lines in Figure
10c show that S_, is 0.97, 0.67, and 0.47 for the methyl groups
of alanine, threonine/valine/Iley, and Iled,/leucine/methio-
nine, respectively. We studied previously with SRLS *H spin
relaxation from *CDH, methyl groups of Ca**-calmodulin in
complex with the peptide smMLCKp, to find that Icj| (eq 3)
also clusters into three groups.50 In that case, large, small, and
medium Ic3l values were found to correspond to alanine,
methionine, and the remaining methyl types, respectively.
Thus, while (substantial) ordering rhombicity (evaluated in
terms of I31) correlates with methyl-type/side-chain length in
the presence of picosecond—nanosecond motions, ordering
strength (evaluated in terms of Sj) correlates with methyl type/
side-chain length in the presence of picosecond—millisecond
motions (note that ¢ and S, on the one hand, and ¢ and S, on
the other hand, contain similar information). The overall effect
of the large number of different dynamic processes occurring
on the nanosecond—millisecond time scale is to render the
effective ordering more symmetric but still sensitive to methyl
type/side-chain length.

Figure 3b of ref 13 shows that for the methyl groups
associated with long side chains (C—Cemy)er deviates
substantially from (C—C pethyl)static- In such cases, it is important
to allow for arbitrary orientation of (C—Cyey1)a in the protein
and determine this important geometric feature with data
fitting. This can be accomplished with the comprehensive
scheme outlined in Section 2.1.

3.2.2. Comparison between Saupe Tensor Diagonaliza-
tion and mf-RDC. Figure 12 shows the parameters S,4.2 77, and
@', and Figure 13 shows the angles 0,4 and ¢ These data have
been reproduced from ref 13. As shown by the red lines in
Figure 12a, S,q” distinguishes between the same three groups of
methyl types as S§ (see red lines in Figure 10c). However, the
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Figure 12. Squared generalized order parameter, S.4.* (a); amplitude
of anisotropic disorder, 77 (b); and direction of anisotropic disorder, @’
(c), for the C—Ciethy sites of ubiquitin, as a function of methyl type,
reproduced from ref 13. The red lines represent averages over the
residues encompassed.
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Figure 13. mf-RDC parameters ¢@.¢ (a) and 0,5 (b) for the C—
Crnethyl Sites of ubiquitin, as a function of methyl type, reproduced
from ref 13.

S and (S§)* patterns differ, and the corresponding absolute
values differ, as shown in Figure 14a, where S§ (blue) and S,y
(red) are superimposed. (S3)* is also shown in Figure 14a
(black). S,4> and (S3)* do not differ substantially, although as
shown below, the local ordering at methyl sites is substantially
rhombic.

In Figure 14b, we show S} superimposed on 7 (taken from
Table S3 of ref 13 and depicted with reversed sign). The
differences are substantial, and the absolute values are
considerable. Thus, for the C—C, .y, sites of ubiquitin we
detect relatively large rhombicity. S5 and S; are distinctive
measures of ordering strength and rhombicity. As pointed out
above, S,4.> and 77 are composites of these properties. Therefore,
it is useful to characterize the local ordering at the C—Ci,iny
sites of ubiquitin in terms of S, S,,, and S, or S% and S3, and
the PAS of S,

3.2.3. Comparison between Saupe Tensor Diagonaliza-
tion and "°N Spin Relaxation. We studied previously “H spin
relaxation from "*CDH, methyl groups in ubiquitin with the
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and S are the same as S,, and S in Figure 10. S,;.* is taken from
Figure 12a. The abscissa represents methyl type.

SRLS approach.®’ Similar to the methyl groups of Ca*'-
calmodulin*smMLCKp,*® the methyl groups of ubiquitin also
exhibit large, small, and medium rhombicity evaluated by Il
for alanine, methionine, and other methyl types, respectively. In
the spin relaxation studies, the angle for_qF was allowed to
vary. In the present analysis, the angle for_qr is implicitly set
equal to its standard value of 110.5° (ref 52). It is of interest to
compare the parameters Sj and S; obtained from spin
relaxation, which probes the picosecond—nanosecond regime,
with their counterparts obtained from RDCs, which probe the
picosecond—millisecond regime. To render the comparison
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Figure 15. S} obtained with SRLS analysis of *H spin relaxation
from '*CDH, methyl groups of ubiquitin, reproduced from ref 49
(black). S obtained in this study with the standard tensorial
approach for the C—C, ) sites of ubiquitin (red) (a). S2 obtained
with SRLS analysis of *H spin relaxation from *CDH, methyl
groups of ubiquitin, reproduced from ref 49 (black). S} obtained in
this study with the standard tensorial approach for the C—C,, g,y sites of
ubiquitin (red) (b).

meaningful, we show in Figure 15 in black only those data from
’H relaxation that were obtained with Por-qg virtually equal

6115

to 110.5°. The red symbols and lines represent the RDC-based
S and S values obtained with the standard analysis.

As expected, the strength of the local ordering decreases in
the presence of nanosecond—millisecond local motions
(Figure 15a). For 75% of the cases, the difference in order-
ing strength is small. Figure 15b shows S3. It can be seen that
the rhombicity of the local ordering is consistently smaller
in the presence of nanosecond—millisecond motions. For 70%
of the cases, the reduction in this property is substantial. This
indicates that the rhombic term of S4? (eq 17) dominates
the difference between this parameter (ref 13) and its spin-
relaxation-derived analogue (ref 49). The cases in which the
rhombicity of the local ordering is virtually unaffected by
nanosecond—millisecond motions include leucine methyl
groups. For the same methyl groups, the strength of the local
ordering is also nearly unaffected. Clearly, further studies are
warranted to elucidate the effect of nanosecond—millisecond
motions.

3.2.4. Comparison among Various Methods. The major
approaches for treating experimental RDCs from proteins
include MFA,*'° the method called Direct Interpretation of
Dipolar Coupling (DIDC),"*"” and the method called Dynamic
Meccano.'® We use eq 5 as measure, as this formulation
comprises the maximum amount of information one can derive
in principle from an appropriate set of experimental RDCs
without scaling requirements.

Let us assume that mf-RDC is used within the scope of the
MFA method. One would still like to have Qyp_vr = (Ayp-ve
Pyr—ve, 0) and Qor_pr = (@op_pr Por-pr 0) as variables. In
addition, one would like to eliminate the requirement for
scaling the (Y,,)'s. In DIDC,'*'” both S; and S; are defined
with respect to MF, which does not have to be known. In this
case, in addition to forgoing the determination of Qyp_ vy and
Qop_pp the determination of 4\ is also forgone. The
enhanced version of DIDC developed in ref 17 treats the local
director in the same manner as mf-RDC.

In the Dynamic Meccano method, MF is not an independently
known frame. Hence, Q,;_, might be affected by fitting issues.
The local director is given by the orientation of the peptide-bond
plane in the context of MF. Thus, €;_yg is encoded in this
method. The angles Qqr_pg are not allowed to vary.

4. CONCLUSIONS

mf-RDC is one of the more elaborate methods for treating
RDC:s from flexible proteins. The global ordering is treated accord-
ing to the standard tensorial procedure. The local ordering is
treated with a specially designed method, mf-RDC. This
approach yields scalar parameters that can be recast as the
eigenvalues of the rank 2 local ordering tensor. On the other
hand, the mf-RDC frame transformations are not the same as
the conventional Wigner rotation. Here, we treat the local
ordering with the standard tensorial approach that yields the
eigenvalues and (through a conventional Wigner rotation) the
PAS of the rank 2 local ordering tensor. New information on,
hence new insights into, RDC-detected local ordering in
proteins is obtained by virtue of the clear physical meaning and
internal consistency of the tensorial representation. This
includes assignment of main ordering axes, evaluation of the
extent of local ordering rhombicity, and the detection of
correlation between ordering strength/rhombicity and methyl
type. Several important features, such as arbitrary orientation of
the average spin-bearing bond in the protein, and arbitrary
orientation of the local ordering frame in the probe, are not

dx.doi.org/10.1021/jp301451v | J. Phys. Chem. B 2012, 116, 6106—6117



The Journal of Physical Chemistry B

inherent to any of the current methods for treating RDCs from
proteins. A scheme based on the tensorial perspective that
accomplishes this is formulated.
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