
Fortschr. Phys. 57, No. 5 – 7, 329 – 337 (2009) / DOI 10.1002/prop.200900060

T-Duality, dual conformal symmetry and integrability
for strings on AdS5 × S5

Niklas Beisert∗

Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut, Am Mühlenberg 1, 14476 Potsdam,
Germany

Received 20 February 2009, accepted 2 February 2009
Published online 6 April 2009

Key words T-duality, dual conformal symmetry, integrability, strings on AdS5 × S5.

PACS 11.25.Tq, 02.30.Ik, 11.55.-m

In recent years two intriguing observations have been made for N = 4 super Yang–Mills theory and for
superstrings on AdS5 × S5: In the planar limit the computation of the spectrum is vastly simplified by the
apparent integrability of the models. Furthermore, planar scattering amplitudes of the gauge theory display
remarkable features which have been attributed to the appearance of a dual superconformal symmetry. Here
we review the connection of these two developments from the point of view of the classical symmetry by
means of a super-T-self-duality. In particular, we show explicitly how the charges of conformal symmetry
and of the integrable structure are related to the dual ones.

c© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

1 Introduction

Two observations of recent years have led to remarkable progress in N = 4 supersymmetric gauge theory
and in IIB string theory on AdS5 × S5 as well as in their conjectured duality, the AdS/CFT string/gauge
correspondence. One development is the appearance of integrable structures helping dramatically in deter-
mining the AdS/CFT spectrum (we refer the reader to reviews on this subject [1–3]). The other observation
is that scattering amplitudes in the gauge theory have a much simpler structure than expected (see the re-
views [4, 5]). Both phenomena have in common that they hold only in the strict large-Nc alias the planar
limit. For a long time the coinciding requirements have led to speculations that both features may be related.
Recent works are starting to confirm this idea and to make the connection more rigorous and concrete.

Perhaps the first indication of extended symmetries for scattering amplitudes was found in [6] where it
was argued for the existence of a dual conformal symmetry in addition to the original conformal symmetry.
This observation helped the four-loop unitarity construction of four-gluon scattering [7] producing a result
for the cusp anomalous dimension which is in perfect agreement with the prediction based on integrability
[8]. Later in [9] scattering amplitudes of the gauge theory were related to certain Wilson loops in the
string theory. The key step was the proposal of a T-duality transformation on the worldsheet coordinates of
the string which leaves the (bosonic) action invariant. The relationship between scattering amplitudes and
Wilson loops was shown to hold also purely within the perturbative gauge theory setup [10–12] even at
higher loops [13,14]. The conformal symmetry of Wilson loops turns into the dual conformal symmetry of
scattering amplitudes [10, 15]. Moreover, the dual symmetry also combines with supersymmetry into dual
superconformal symmetry [16,17]. On the string theory side the above mentioned T-duality transformation
maps between the original and the dual symmetries. For the full supersymmetric string action the standard
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Fig. 1 Embedding of the original and dual superconformal symmetries
Q = Y (1), Q̃ = Ỹ (1) into the integrable structure, Y (�) or Ỹ (�̃).

bosonic T-duality has to be supplemented by a fermionic T-duality in order to map the worldsheet action
back to itself [18] (see also some more recent work [19, 20]).

One may wonder what is the closure of the algebra generated by the original and the dual symmetries.
Furthermore, what is the image of the integrable structure under T-duality? It turns out that both questions
have a common answer [18, 21, 22] (see also [23]). The closure of the algebra is the integrable structure,
and the latter is mapped to itself but in a non-trivial manner. This is conveniently illustrated in Fig. 1: The
integrable structure consists of the loop algebra of superconformal symmetry, i.e. infinitely many copies
of the superconformal generators indexed by an integer label. There are many ways of choosing a closed
Lie algebra within its loop algebra, and the original and dual symmetries are two such instances. Very
recently, the integrable structure was shown to apply directly to tree-level scattering amplitudes in gauge
theory [24]. The loop algebra is quantised to Yangian symmetry. This symmetry is almost identical to
the Yangian symmetry for one-loop anomalous dimensions [25]. Thus the simplicity of planar scattering
amplitudes is indeed closely related to the integrability of planar AdS/CFT.

This note is a review of the works [9,18,21] outlining T-duality for superstrings on AdS5×S5 and how
the integrable structure transforms under it. We extend the previous works slightly by making the mapping
of the integrable charges more explicit. We start by reviewing the AdSn coset space sigma model, its inte-
grable structure as well as its T-duality transformations. Then we show how T-duality maps the symmetries
and the integrable structure and finally we sketch the extension of the above to the supersymmetric model
on AdS5 × S5.

2 The AdSn+1 sigma model and integrability

The anti-de Sitter spacetime AdSn+1 is most conveniently viewed as the symmetric coset space
SO(n, 2)/SO(n, 1). Let the algebra so(n, 2) be spanned by the standard conformal generators:
Lμν (Lorentz), D (dilatation), Pμ (momentum) and Kμ (special conformal). These obey the algebra rela-
tions1

[Lμν , Lρσ] = ηνρLμσ ∓ 3 terms,

[Pμ, Kν ] = 2Lμν + 2ημνD,

[Lμν , Pρ] = ηνρPμ − ημρPν ,

[Lμν , Kρ] = ηνρKμ − ημρKν ,

[D, Pμ] = +Pμ,

[D, Kμ] = −Kμ. (1)

1 We disregard reality conditions of the algebra and use this freedom to remove factors of i into the definition of the generators.
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We embed the denominator algebra so(n, 1) as the invariant space of the Z2 automorphism Ω of so(n, 2)
defined by

Ω(Lμν) = Lμν , Ω(D) = −D, Ω(Pμ) = Kμ, Ω(Kμ) = Pμ. (2)

We can formulate the non-linear sigma model on AdSn+1 using the SO(n, 2)-valued field g and its
associated Maurer–Cartan form J = g−1dg. The coset space is implemented through the gauge symmetry
g �→ gh with a SO(n, 1)-valued field h for which J acts as a gauge connection. Dynamics of the model is
governed by a set of invariant equations for J and K = J − Ω(J)

dJ + J ∧ J = 0, d∗K + J ∧ ∗K + ∗K ∧ J = 0. (3)

The first expression is the Maurer–Cartan equation following from the definition of J and the second is the
equation of motion which follows from the standard non-linear sigma model Lagrangian.

This two-dimensional field theory model turns out to be integrable: The gauge connection J can be
deformed into the Lax connection

A(x) = J +
1

x2 − 1
K +

x

x2 − 1
∗K. (4)

Provided that the above equations of motion hold, the Lax connection is flat, dA(x) + A(x) ∧ A(x) = 0,
for all values of the spectral parameter x. Note that the Maurer–Cartan equation for the combination K
reads dK + J ∧ K + K ∧ J − K ∧ K = 0.

Now the forms J and K are covariant under gauge transformations which makes the identification of
conserved quantities cumbersome. We therefore go to a gauge-invariant frame by conjugating with the
group element g. The field k = gKg−1 obeys the equation dk − k ∧ k = 0 as well as d∗k = 0. In other
words, k is the Noether current leading to the conserved Noether charges

Q =
∫

∗k. (5)

The Lax connection in the invariant frame is obtained by conjugation of the associated covariant derivative
d + a(x) = g(d + A(x))g−1, it reads

a(x) =
1

x2 − 1
k +

x

x2 − 1
∗k =

x−2

1 − x−2
k +

x−1

1 − x−2
∗k. (6)

It is used to construct the higher charges of the integrable model through its parallel transport, the so-called
monodromy M(x), along a curve γ on the worldsheet. Due to the vanishing of a(x) near x = ∞, the
expansion of M(x) around this point

M(x) =
−−−→
P exp

∫
γ

a(x) = exp

( ∞∑
n=1

x−nY (n)

)
(7)

leads to a tower of n-local charges Y (n)

Q = Y (1) =
∫

∗k,

Y (2) = 1
2

∫∫

σ1<σ2

[∗k1, ∗k2] +
∫

k,

Y (3) = − 1
6

∫∫∫

σ1<σ2<σ3

([∗k1, [∗k3, ∗k2]
]
+

[∗k3, [∗k1, ∗k2]
])
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+ 1
2

∫∫

σ1<σ2

(
[k1, ∗k2] + [∗k1, k2]

)
+

∫
∗k, . . . (8)

The first of these multi-local charges Y (1) is precisely the Noether charge Q and thus the integrable struc-
ture enhances the Lie algebra so(n, 2) to an infinite-dimensional algebra. The higher charges Y (n), n > 1,
are not strictly conserved: Shifting the end-points of the curve γ in Y (n) leads to commutators involving
the lower Y (k).

3 Poincaré coordinates and T-self-duality

The above formulation in terms of a coset still leaves a large amount of gauge freedom. For AdSn+1 there
is a convenient (local) chart of coordinates which fixes the gauge: It is sufficient to specify the coordinates
along the P and D directions of SO(n, 2) because the SO(n, 1)-directions L and P + K are unphysical.
We can thus choose the group element to be

g = exp(XμPμ) exp(ΦD). (9)

Here Φ measures the distance to the boundary and a slice of constant Φ is a Minkowski space. Consequently
we call (Xμ, Φ) Poincaré coordinates for AdSn+1. The advantage of this chart is that the algebra generated
by P, D is triangular and the Maurer–Cartan form takes a simple form

J = g−1dg = JP + JD, JP = e−ΦdXμ Pμ, JD = dΦD. (10)

The Maurer–Cartan equations and the equations of motion read

0 = dJD,

0 = d∗JD − 1
2 JP ∧ ∗Ω(JP) − 1

2 ∗Ω(JP) ∧ JP,

0 = dJP + JD ∧ JP + JP ∧ JD,

0 = d∗JP − JD ∧ ∗JP − ∗JP ∧ JD. (11)

In fact, the equations of motion for the coordinates Xμ, Φ are even simpler

d(e−2Φ∗dXμ) = 0, d∗dΦ − e−2ΦdXμ ∧ ∗dXμ = 0. (12)

Interestingly, the field X appears in all places only through its derivative dX . This allows to introduce
a set of dual fields (X̃μ, Φ̃) through the relation

dX̃μ = e−2Φ∗dXμ, Φ̃ = −Φ. (13)

In fact, the transformation is a combination of a formal T-duality on the coordinates Xμ and a flip of the
sign of Φ [9]. Note that the transformation between X and X̃ is non-local because their relation is defined
only via their derivatives. It was chosen such that the above equation of motion (12) for X is automatically
satisfied, ddX̃ = 0. Conversely, closedness of dX leads to an equation of motion for X̃ . Incidentally, it
takes precisely the same form as (12). Likewise the equation of motion for Φ̃ matches the one of Φ with all
fields replaced by their duals

d(e−2Φ̃∗dX̃μ) = 0, d∗dΦ̃ − e−2Φ̃dX̃μ ∧ ∗dX̃μ = 0. (14)

In the first-order formalism involving the Maurer–Cartan form, the transformation is given through the map

J̃P = ∗JP, J̃D = −JD. (15)

The set of first-order equations (11) is again mapped to itself, however, the role of Maurer–Cartan equation
and equation of motion for JP are interchanged.
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4 T-self-duality and symmetries

We are thus in the curious situation that the T-duality transforms the model to itself, namely it is a T-self-
duality [9]. The model can be expressed through two sets of variables which incidentally obey the same
set of equations. For all quantities expressed through the original variables there must therefore exist a
quantity expressed through the dual variables enjoying the same properties. For example, in addition to
the Noether charge Q there exists a dual Noether charge Q̃. The associated symmetry is the so-called dual
conformal symmetry. This symmetry is a SO(n, 2) group which is not equivalent to the original conformal
SO(n, 2) symmetry, although, for example, the Lorentz subgroup of both symmetries coincides. One also
comes to the conclusion that the higher integrable charges Y (n) lead to dual charges Ỹ (n). An important
question is whether these charges are independent of the original ones and thus whether the model has two
coexisting integrable structures. Alternatively, there could be a relation between the two towers of charges,
and if so, what is it precisely?

Let us therefore compare the Lax connection and its dual version expressed through the original vari-
ables via (15)

A(x) =
1

x2 − 1
(
+x2JP − Ω(JP) + x∗JP − x∗Ω(JP) + (x2 + 1)JD − x∗JD

)
,

Ã(x) =
1

x2 − 1
(−xΩ(JP) + xJP − ∗Ω(JP) + x2∗JP − (x2 + 1)JD + x∗JD

)
. (16)

Looking at the D-components, it becomes clear that an algebraic transformation to relate A(x) and Ã(x′)
cannot involve the Hodge dual or a change of spectral parameter, x �→ x′, but it must act by merely
flipping the sign JD �→ −JD. On the other hand the P-components imply that the spectral parameter must
be involved in the transformation. The first two terms suggest two options for the transformation, JP �→
x−1JP, Ω(JP) �→ xΩ(JP) or JP �→ −x−1Ω(JP), Ω(JP) �→ −xJP. The former does however not lead
to the desired result for the Hodge dual terms, while the latter one does. Altogether the transformation can
be formulated as an x-dependent automorphism Ωx [18, 21]

Ã(x) = Ωx(A(x)), Ωx(X) = (−x)D Ω(X) (−x)−D. (17)

Similarly, the automorphism maps between the parallel transports of the Lax connections A and Ã

Ωx :
−−−→
P exp

∫
γ

A(x) �→ −−−→
P exp

∫
γ

Ã(x). (18)

Since the higher integrable charges Y (n) are defined in the invariant frame we have to convert this statement
by conjugation with g

−−−→
P exp

∫
γ

A(x) = g−1
−

(
−−−→
P exp

∫
γ

a(x)

)
g+ = g−1

− M(x)g+. (19)

Here g∓ denote the values of g at the endpoints of the curve γ. The statement is thus

Ωx

(
g−1
− M(x)g+

)
= g̃−1

− M̃(x)g̃+. (20)

Using the definition (9) of g, the T-duality transformation (13) and the K-components of the Noether
charges (see below) Q̃K = (Xμ

− − Xμ
+)Kμ, QK = (X̃μ

− − X̃μ
+)Kμ, we obtain a useful expression for the

relation between the monodromy matrices

exp(−x−1Q̃K) exp(−X̃μ
−Pμ)M̃(x) exp(+X̃μ

−Pμ)

= Ωx

(
exp(−Xμ

+Pμ)M(x) exp(+Xμ
+Pμ) exp(−x−1QK)

)
. (21)

www.fp-journal.org c© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



334 N. Beisert: T-Duality, dual conformal symmetry and integrabilityfor strings on AdS5 × S5

Conveniently the conjugations by exp(Xμ
+Pμ) and exp(X̃μ

−Pμ) lead to only finitely many terms due
to the nilpotency of P. As a first step, let us expand all exponents to linear order in the exponent

∞∑
n=1

x−nỸ (n) � x−1Q̃K +
∞∑

n=1

x−nΩx(Y (n)) − x−1Ωx(QK). (22)

These expressions are exact up to commutators involving the lower charges as well as Xμ
+Pμ or X̃μ

−Pμ.
When we split this into components we find the relations (n ≥ 1)

Ỹ
(n+1)
K � −Ω(Y (n)

P ), Ỹ
(n)
P � −Ω(Y (n+1)

K ), Ỹ
(n)
D � −Y

(n)
D , Ỹ

(n)
L � Y

(n)
L . (23)

We can also write down the first few relations with the omitted commutators explicitly:

Q̃L + Q̃D − [X̃μ
−Pμ, Q̃K] = Ω

(
QL + QD − [Xμ

+Pμ, QK]
)
, (24)

Q̃P − [
X̃μ

−Pμ, Q̃L + Q̃D − 1
2 [X̃μ

−Pμ, Q̃K]
]

= Ω
(−Y

(2)
K + 1

2

[
QL + QD − [Xμ

+Pμ, QK], QK

])
,

Ỹ
(2)
K + 1

2

[
Q̃L + Q̃D − [X̃μ

−Pμ, Q̃K], Q̃K

]
= Ω

(−QP +
[
Xμ

+Pμ, QL + QD − 1
2 [Xμ

+Pμ, QK]
])

.

Let us see in practice, how the duality of charges works. First we work out the components of the
Noether current k = gKg−1 from (9,10)

kK = −e−2ΦdXμKμ,

kD = 2(dΦ − e−2ΦXμdXμ)D,

kL = −2e−2ΦXμdXνLμν ,

kP = (dXμ − 2XμdΦ − e−2ΦX2dXμ + 2e−2ΦXμXνdXν)Pμ.

(25)

Their Hodge duals will be written using the dual coordinates as far as possible

∗kK = −dX̃μKμ,

∗kD = 2(∗dΦ − XμdX̃μ)D,

∗kL = −2XμdX̃νLμν ,

∗kP = (e2ΦdX̃μ − 2Xμ∗dΦ − X2dX̃μ + 2XμXνdX̃ν)Pμ.

(26)

The K-components of the Noether charges (5) read

QK =
∫

∗kK = −
∫

dX̃μKμ = (X̃μ
− − X̃μ

+)Kμ, Q̃K = . . . = (Xμ
− − Xμ

+)Kμ. (27)

These two quantities are independent, and the relationship between the monodromies respects this. Next
we consider their L-components

QL = −2
∫

XμdX̃νLμν , Q̃L = −2
∫

X̃μdXνLμν . (28)

Upon partial integration we recover the expression for QL in ∗QL up to some boundary terms

Q̃L = QL + 2(X̃μ
−Xν

− − X̃μ
+Xν

+)Lμν = QL + 2
(
(X̃μ

− − X̃μ
+)Xν

+ + X̃μ
−(Xν

− −Xν
+)

)
Lμν . (29)

This is precisely the L-component of the first equation in (24), similarly for D. It is also interesting to
consider the bi-local charge Y

(2)
K [18]

Y
(2)
K = 1

2

∫∫

σ1<σ2

[∗k1,K, ∗k2,L+D] + 1
2

∫∫

σ1<σ2

[∗k1,L+D, ∗k2,K] +
∫

kK. (30)
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Now because ∗kK is a total derivative the double integral collapses to a single one

Y
(2)
K = 1

2

[
(X̃μ

− + X̃μ
+)Kμ, QL + QD

] −
∫

[X̃μKμ, ∗kL+D] +
∫

kK. (31)

After substituting the remaining expressions and some partial integrations one finds the expression for
Ω(Q̃P) plus some boundary terms

Y
(2)
K = −Ω(Q̃P) + 1

2

[
(X̃μ

− + X̃μ
+)Kμ, QL + QD

]
+ 2(X+ · X̃+)X̃μ

+Kμ + 2(X− · X̃−)X̃μ
−Kμ − X̃2

+Xμ
+Kμ + X̃2

−Xμ
−Kμ. (32)

Some elementary operations later one recovers precisely the second relation in (24).

5 Super-T-self-duality and integrability

An analog construction exists for the superstring on AdS5 × S5 or, equivalently, the sigma model on the
coset space PSU(2, 2|4)/Sp(1, 1) × Sp(2) coupled to worldsheet gravity. The coset construction is based
on a Z4 grading which allows to split the Maurer–Cartan into four components

J = J0 + J2 + J1 + J−1, Ω(Jn) = inJn, Jn =
1
4

3∑
k=0

i−nkΩ◦k(J). (33)

By introducing the combination

∗K = 2∗J2 − J1 + J−1 (34)

we can write the Maurer–Cartan equations and the equations of motion in precisely the same way as in
(3). Note, however, that splitting these equations into their Z4 components yields a more complicated set
of equations than before. These equations can again be cast into the form of a flatness condition for a Lax
connection [26]

A(z) = J0 + 1
2 (z2 + z−2)J2 + 1

2 (−z2 + z−2)∗J2 + zJ1 + z−1J−1. (35)

Note that the bosonic part consisting of the first three terms is the same as above if the spectral parameters
are identified as [27]

z2 =
x − 1
x + 1

, x =
1 + z2

1 − z2
. (36)

The psu(2, 2|4) algebra is spanned by the above so(4, 2) conformal generators L, D, P, K, by the
internal so(6) generators R as well as the supercharges Q, Q̄, S, S̄. The structure of the algebraic relations
can conveniently be sketched as in Fig. 2.

Ω(Q) ∼ iS, Ω(S) ∼ iQ, Ω(Q̄) ∼ iS̄, Ω(S̄) ∼ iQ̄. (37)

P

Q Q̄

L,D,R

S̄ S

K

Fig. 2 Structure of the superconformal algebra psu(2, 2|4). The generators are arranged
in the plane according to their charges under two Cartan generators (B,D) which are
conserved in commutators.
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In addition to the bosonic gauge group Sp(1, 1) × Sp(2) with grading 0, the model has a local fermionic
kappa symmetry affecting predominantly the components with grading ±1. These local symmetries can
be gauge fixed in many different useful ways. For our purposes it is again advisable to choose them such
that as many components of the Maurer–Cartan form as possible become trivial. Again we would like to
eliminate the components corresponding to conformal boosts, JK = 0. In addition we can eliminate half of
the fermionic components. One option is to eliminate the components corresponding to all superconformal
boosts, JS = JS̄ = 0. This is achieved by choosing the group element to be generated by P, Q, Q̄, D,
R [28–30]. Fig. 2 shows that commutators of the generators close onto the subset, and we can understand
this choice as upper triangular matrices. By the same logic we can instead eliminate JS = JQ̄ = 0 by the
alternative choice of group element generated by P, Q, S̄, D, R [31].2

Both gauges have in common that they make 4 bosonic and 8 fermionic coordinate fields appear only
through their derivatives. Therefore one can apply a T-duality transformation to all of these fields. It is
a combination of a bosonic T-duality similar to (13) and a so-called fermionic T-duality acting on the
fermionic fields [18].3 In contradistinction to the purely bosonic case, the T-duality transformation does
not map the equations of motion into themselves. It rather maps between the equations in the two gauges
discussed above.

The formulation of the T-duality transformation for the fields is somewhat complicated and it depends
on the precise choice of gauge. In fact, it is much simpler to state the resulting transformation in terms of
the Maurer–Cartan form analogously to (15)

J̃P = ∗JP, J̃D = −JD, J̃Q = iJQ, J̃S̄ = Ω(JQ̄), J̃R = Ω(JR). (38)

The statement is that when taking the full set of equations for J and restricting them to the above two
gauge choices, T-duality will map between the two sets. Instead of proving the statement, we will show
that the Lax connections are related by an automorphism as in the bosonic case, which also proves the
equivalence of the integrable structure and its dual. We first split the Lax connection into bosonic and
fermionic components, A(z) = AB(z) + AF(z) which must transform separately. The transformation for
the bosonic components works as in the purely bosonic case (17) after identifying x and z according to
(36). We are left with comparing the fermionic components of the Lax connection in one gauge and its
dual in a different gauge but expressed through the first set of variables via (38)

AF(z) = 1
2 (z + z−1)

(
JQ + JQ̄

)
+ 1

2 (z − z−1)
(−iΩ(JQ) − iΩ(JQ̄)

)
, (39)

ÃF(z) = 1
2 (z + z−1)

(
+iJQ + Ω(JQ̄)

)
+ 1

2 (z − z−1)
(
Ω(JQ) + iJQ̄

)
. (40)

From the bosonic part we know that the automorphism involves the Z4 transformation Ω. Consequently,
here we are forced to interchange the JQ terms which implies a z-dependent factor for JQ. Conversely the
JQ̄ terms must stay in place and the automorphism should be independent of z. Altogether this is achieved
by the following transformation [21]

Ã(z) = Ωz(A(z)), Ωz(X) =
(
− 1 + z2

1 − z2

)D+B

Ω
(
X

) (
− 1 − z2

1 + z2

)D+B

. (41)

Here B generates the u(1) automorphism of psu(2, 2|4) which acts exclusively on the fermionic generators
Q, Q̄, S, S̄. More concretely B is defined such that,

[D + B, (P, Q)] = +(P, Q),

[D + B, (D, L, R, Q̄, S̄)] = 0,

2 This gauge necessarily requires complexification of the coordinates.
3 Note that T-duality in n = 4 bosonic variables induces a shift of the dilaton which is cancelled precisely by T-duality in

2n = 8 fermionic variables leading to a quantum mechanically exact self-duality.
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[D + B, (K, S)] = −(K, S). (42)

Clearly the automorphism Ωz is compatible with Ωx for bosonic generators. The resulting mapping of
non-local charges is analogous to the bosonic case; up to commutator terms, it is depicted in Fig. 3.

Y
(r)
P � −Ỹ

(r−1)
K

Y
(r)
Q � −Ỹ

(r−1)
S Y

(r)

Q̄
� Ỹ

(r±0)

S̄

Y
(r)
L,D,R � ±Ỹ

(r±0)
L,D,R

Y
(r)

S̄
� Ỹ

(r±0)

Q̄
Y

(r)
S � −Ỹ

(r+1)
Q

Y
(r)
K � −Ỹ

(r+1)
P

Fig. 3 Mapping between non-local
charges for classical superstrings on
AdS5 × S5 and their duals (up to
commutators).
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