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Abstract

K+ channels control transmembrane action potentials by gating open or closed in response to external stimuli. Inactivation
gating, involving a conformational change at the K+ selectivity filter, has recently been recognized as a major K+ channel
regulatory mechanism. In the K+ channel hERG, inactivation controls the length of the human cardiac action potential.
Mutations impairing hERG inactivation cause life-threatening cardiac arrhythmia, which also occur as undesired side effects
of drugs. In this paper, we report atomistic molecular dynamics simulations, complemented by mutational and
electrophysiological studies, which suggest that the selectivity filter adopts a collapsed conformation in the inactivated
state of hERG. The selectivity filter is gated by an intricate hydrogen bond network around residues S620 and N629.
Mutations of this hydrogen bond network are shown to cause inactivation deficiency in electrophysiological measurements.
In addition, drug-related conformational changes around the central cavity and pore helix provide a functional mechanism
for newly discovered hERG activators.
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Introduction

Regulated current through K+ channels plays an essential role

in cellular ionic homeostasis and intercellular signaling [1].

Although activation gating – a large-scale reconfiguration of the

pore-forming transmembrane helices – had long been viewed as

the main regulatory switch of K+ channels, C-type inactivation

and the coupling between activation and inactivation have

recently been recognized as general control mechanisms of K+

channel gating [2–6]. There is increasing evidence that the

inactivation gate of K+ channels resides near the K+ selectivity

filter (SF), and that C-type inactivation entails a conformational

change of the filter itself [3–5,7–9]. C-type inactivation plays

a particularly important role in the K+ channel hERG (human

ether-a-go-go related gene potassium channel, Kv11.1).

hERG is a channel protein predominantly expressed in human

cardiac myocyte membranes [10,11]. It forms a pore at the

interface of four subunits each containing six transmembrane

(TM) helices and the pore helix. The pore comprises the K+

selectivity filter (SF) and a central, water-filled cavity (Fig. 1A) [10],

lined by the innermost TM helices S5 and S6. In addition to its

cardiac function, hERG also appears to contribute to tumor cell

proliferation and apoptosis [12]. In most K+ channels, C-type

inactivation is a slow process that decreases channel current on

time scales of seconds. In hERG, it proceeds much faster (0.7–

2.9 ms) and thus dominates its conductance properties. As the

repolarization phase of the human cardiac action potential is

governed by flux through hERG, its kinetics determine the length

of the action potential and, thereby, strongly contribute to normal

function of the heart [10,13].

hERG malfunction is thus implicated in many forms of cardiac

arrhythmia, which affect up to 1 in 5000 humans and are

a common cause for sudden death [14–16]. The highest

arrhythmic risk is associated with hERG mutations in the pore

region which affect inactivation, and with undesired drug binding

to hERG, again primarily affecting the inactivated form of the

channel [17–22]. Long-QT syndrome is caused by loss of hERG

function, either through misfolding, trafficking defects, or hERG

missense mutations, while impairment of inactivation induces

short-QT syndrome via gain of hERG function [23–26].

To understand inherited or acquired short- and long-QT

syndrome, insights into the mechanistic basis for inactivation

gating are essential. It has been suggested that the inactivated state

of the hERG SF resembles the collapsed (low-[K+]) configuration

of the SF (as displayed by the crystal structure of KcsA; [27]), but

this hypothesis awaits validation [22]. We used our recently

developed consensus structure model of the hERG open state [28]

to investigate the driving forces, nature, and consequences of the

conformational change that leads to hERG inactivation. This

model has recently been shown to quantitatively reproduce

experimental hERG blocker structure-activity relationships [29].

Combinations of in silico molecular dynamics (MD) and docking

studies with in vitro and in vivo mutagenesis and electrophysiology
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studies revealed the pathway of the conformational change at the

SF and a distinct molecular switch that toggles the SF between

conductive and collapsed states.

Results

Tightening of a Hydrogen Bond Induces Collapse of the
hERG Selectivity Filter

Crystal structural and electrophysiological studies on KcsA have

indicated that hydrogen bonding between residues E71 and D80

behind the SF affects C-type inactivation in this prokaryotic K+

channel [8,9]. Inactivation is thought to involve conformational

changes within a network of residues encompassing the SF as

highly conserved structural element [30]. Many mutations that

affect hERG inactivation scatter around the homologous hERG

sequence positions S620 and N629 as central residues [18].

According to most present hERG structural models, these residues

are arranged behind the fully conserved hERG SF [31–33],

however without a close and direct interaction in most cases

[32,33]. On the basis of our recent consensus structural model

[28], we carried out a computational interaction scan, in which the

distance between the side chains of S620 and N629 was

systematically varied in intervals of 1 Å (Fig. 1A). We then

monitored the response of the inner SF, i.e. the backbone region

between residues S624 and G627, in extensive MD simulations.

The most pronounced level of conformational variability was

observed in simulations with a transiently vacated SF. To

distinguish protein-mechanistic from ion-induced effects, we

repeated the simulations with varying ion occupancy in the SF

(Fig. S1).

As shown in Fig. 1, the configuration of S620 and N629

markedly influenced the dynamics of the SF. The root mean

square fluctuation (RMSF) of the carbonyl oxygen atoms that

coordinate K+ ions at the binding sites S1–S4 [27] was minimal

when the distance between S620 Cb and N629 Cb remained close

to 10 Å (Fig. 1B). Especially the fluctuation of the terminal groups

of oxygen atoms in the SF (S624 and F627) was modulated by up

to a factor of 2 by the distance between S620 and N629. The

average fluctuation levels varied between *0.8 Å and 1.6 Å,

depending on their separation. At distances larger than d = 11 Å,

Figure 1. Model structure of the hERG channel and switch behind the selectivity filter. (A) Model of the hERG channel, lined by the S6
helices (green), and including the K+ selectivity filter (SF, red), pore helices (P, blue), internal cavity and outer pore loop. As structural information on
the turret loops is sparse and modeling according to homology is not possible in this region, the loops were modeled as in KvAP [28]. (A, inset) Scan
of H-bonds between N629 and S620. (B) Dependence of the backbone carbonyl fluctuation (RMSF) of SF residues S624–F627 on the distance
between S620 and N629. (C) Small separations between S620 and N629 (5 Å, blue curve) promote SF collapse (1K4D, upper red bar), while larger
separations (10 Å, green curve) stabilize its conductive state (1K4C, lower red bar). For an equally short separation (5 Å, magenta curve) the S620T
mutant displays a marked deviation from the WT. Each time trace represents the mean of four independent simulations with their standard error
(shaded area) (D) Direct dependence of the extent of SF collapse on the interaction between N629 and S620 (blue line). The formation of a stable
inter-chain H-bond to G628 stabilizes the conductive SF (green circle). The non-inactivating mutant S620T does not reach a fully collapsed state even
at a T620-N629 distance of 5 Å (magenta circle), while the double mutation G628C/S631C precludes a close contact between N629 and S620 and
hence a transition to the collapsed state (red circle).
doi:10.1371/journal.pone.0041023.g001
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a sharp increase in fluctuation was seen owing to stretching of the

SF backbone.

To investigate the structural consequences of such increased

flexibility, we examined hERG configurations with minimum and

maximum fluctuation levels. The obtained SF conformations were

then compared to high-resolution crystallographic data. We chose

the highest-resolution structures of the KcsA SF backbone in their

high-[K+] (conductive, PDB ID 1K4C; [27]) and low-[K+]

(collapsed, PDB ID 1K4D; [27]) configurations as comparison,

and used the projection of the SF configurations on the difference

vector between these extreme geometries as reaction coordinate.

Fig. 1C shows that a conformational change from the

conductive (1K4C) to a collapsed SF state (1K4D, horizontal red

bars) was elicited when the interaction distance between S620 and

N629 was closest (dS{N = 5 Å, measured between the respective

Cb atoms in four independent simulations, compatible with an

intact H-bond, blue curve). The conformational change occurred

on a time scale of *40 ns. In sharp contrast, a wider S620–N629

separation (dS{N = 10 Å) stabilized the highly ordered, conductive

state of the SF (Fig. 1C, green curve), even without the presence of

ions in the filter. For comparison, in KcsA, collapse of the SF to its

low-[K+] state has recently been identified as the most likely cause

of slow inactivation [3–5]. In addition, hydrogen bonding between

the residues homologous to S620 and N629 in KcsA, E71 and

D80, has been shown to directly influence entry into the C-type

inactivated state of KcsA [8,9]. It has been debated whether the

mechanism of hERG inactivation may be fundamentally different

from other K+ channels, in particular from slow inactivation in

KcsA [30]. For instance, there are major differences in the

response to extracellular tetraethylammonium and K+ concentra-

tion. However, recent mechanistic insights gained by mutation

studies and simulations point toward many common mechanistic

features shared by SF inactivation in the pore domain of most K+

channels, including KcsA and hERG [4,30].

Fig. 2 displays a direct view of the SF observed in the two

extremes of the distance scan with water molecules present at that

particular time frame, together with a comparison to KcsA SF

crystal structures. Please note that the transient presence of water

does not imply stable binding sites. At the end of the dS{N = 10 Å

simulation, the SF backbone (Fig. 2B) had remained close to the

configuration of the high K+ state (1K4C, Fig. 2D). This is

remarkable, as K+ ions were not bound to the SF and the

fluctuation level at the simulation temperature was relatively high.

The only exception are transiently flipped carbonyl groups at

V625, as previously reported (see below). By contrast, a distance

dS{N of 5 Å resulted in filter collapse toward a final state closely

resembling the KcsA SF low-K+ state, again within the limits of

thermal fluctuation (Fig. 2A,C). Please note that Fig. 2A,B show

simulation snapshots at T = 310 K, and so, in contrast to crystals,

a complete four-fold symmetry between the channel subunits

cannot be expected.

The carbonyl groups of V625 were frequently observed to

transiently flip backward (black arrows in Fig. 2A,B) in our

simulations. In the past, such flips have been linked to non-

conductive SF states (e.g. [6,32]), but crystal structures and

electrophysiological measurements of a non-inactivatable KcsA

mutant (E71A, Fig. 2F) have demonstrated that flipped states of

V625 retain a conductive channel [8]. In addition, recent

crystallographic studies on the E71A KcsA mutant have concluded

that ‘the flipped SF conformation is actually yet another

conductive filter state, encountered with high frequency’ [34].

Taken together, our simulations suggest that the conformational

state(s) of S620 and N629 control inactivation of hERG, which

comprises a change of the hERG SF from a conductive

conformation to a geometry resembling a collapsed SF state.

From simulations with varying ion occupancy in the SF (Fig. S1),

we conclude that the complete transition of the SF is promoted by

at least a transient phase in which K+ ions are not bound in the

filter, although the final conformation of the collapsed state

exhibits a single K+ ion in the crystal structures [27]. In a range of

further simulations, raised K+ occupancy disfavored collapse of the

SF (Fig. S1). It is however important to note the limitations of the

present hERG model, which in particular include the absence of

the extracellular turret loop section which may contribute to

inactivation.

Alternating Conformations of N629 Act as Switch for the
Selectivity Filter

We further examined the conformational toggle between S620

and N629 by investigating distances between dS{N = 5–12 Å. The

end points of six additional 50-ns MD simulations (d = 6,7,8,9,11

and 12 Å), together with the eight simulations for 5 and 10 Å,

were determined by averaging the projection of the simulation

trajectories onto the difference vector after 40 ns, as described

above. As shown in Fig. 1D, the degree to which the SF was driven

toward the collapsed state showed a strong dependence on dS{N .

The relationship was found to be almost linear between dS{N = 5–

11 Å. Inter-side chain distances of 10 Å and 11 Å stabilized the

highly ordered, conductive filter configuration, while small

dS{N drove the SF toward the collapsed state. A sharp move

toward the collapsed state was recorded at a distance of 12 Å (and

larger distances, not shown). This demonstrates that the distance

between S620 and N629 acts as a direct and nearly linear switch

that can toggle the SF between its conductive and collapsed state.

We identified the close interaction between S620 and N629 as

a bidentate hydrogen bond that is stably formed around

dS{N = 5 Å, and disrupted toward dS{N = 10 Å.

To test the behavior of known inactivation-deficient mutants of

hERG in the light of these findings, we investigated both the

mutant S620T [21] and the G628C/S631C double mutant

[13,21,32], two intensely studied, non-inactivating forms of

hERG. In the S620T mutant, a methyl group is added directly

behind the SF on the acceptor residue of the proposed hydrogen

bond toggle, providing more steric bulk which may alter a potential

hydrogen bond network. In the double mutant G628C/S631C, an

intra-subunit disulfide bond between sequence positions 628 and

631 is introduced, which is expected to enclose N629 and so to

disrupt a possible hydrogen bond between S620 and N629 [32].

Interestingly, we did not observe a complete transition toward

the collapsed state in the case of the S620T mutant, despite our

simulation settings strongly imposing a distance of 5 Å between

T620 and N629, which is the most favorable contact distance for

collapse in the wildtype (Fig. 1C, magenta curve and Fig. 1D,

magenta circle). This was due to the additional methyl group,

which disrupted a close hydrogen bond contact there. In the

G628C/S631C double mutant, the steric hindrance introduced by

the disulfide bond inhibited such a close approach even further.

Here, the simulations showed that dS{N remained near 9 Å,

a distance which stabilizes the SF near its conductive state

(Fig. 1D). The mutant data shows that hERG variants with

experimentally determined inactivation deficiencies also exhibit

a changed behavior in our simulations. Both mutants were found

to be incapable of fully reaching the collapsed SF state.

To further evaluate the toggle function of N629 in the course

of the simulations, we compared the number of H-bonds

formed by N629 to the same and adjacent subunits, respectively

(Fig. 3). At the smallest S–N-distance, N629 exclusively formed

intra-chain H-bonds, whereas toward larger S–N distances, the

Inactivation of hERG

PLoS ONE | www.plosone.org 3 July 2012 | Volume 7 | Issue 7 | e41023



proportion of H-bonds interconnecting neighboring subunits

steadily increased. A closer inspection at S–N distances around

10 Å exhibited inter-subunit H-bonds formed between the side

chain of N629 and the backbone carbonyl unit of G628 from

the adjacent subunit as the dominant species (Fig. 1A). Such

a connection can be conceived to stabilize the ordered state of

the SF by confining the motion of the extracellular entry.

Simulations of wt-hERG, in which inter-chain N629–G628 H-

bonds were further stabilized by introducing a weak harmonic

potential, showed that the SF continuously remained near its

Figure 2. Selectivity filter conformations of hERG simulations and KcsA crystal structures. For clarity, only two subunits are shown.
Snapshots were taken at the end of the simulations with a 5 Å N629–S620 distance (A), and a 10 Å N629–S620 distance (B). A flip of the V625
carbonyl group is seen (black arrows). For comparison, (C) displays the crystal structures of the collapsed (pdb: 1K4D) and (D) the conductive KcsA SF
(pdb: 1K4C). (E) Comparison with the non-flipped (pdb: 1ZWI) and (F) flipped SF conformation (pdb: 2ATK) observed in crystal structures of the non-
inactivating KcsA mutant E71A [8].
doi:10.1371/journal.pone.0041023.g002
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conductive conformation there, while the S620–N629 distance

was around 9 Å such as in the G628C/S631C mutant (Fig. 1D).

Experimental Evidence for the Role of N629 and
a Neighboring H-bond Network

A number of mutations around the SF have been found to

strongly affect C-type inactivation in hERG [18]. Furthermore, it

could be demonstrated in KcsA that mutation of the H-bonding

power of W67 strongly influenced KcsA inactivation and the

strength of the E71–D80 interaction [35]. According to our

structural model and simulations of hERG, the N629 side-chain

forms the central inactivation switch by tightly interacting with

S620.

We next aimed for independent experimental tests of these

hypotheses. Therefore, we measured channel current of a mutant

that directly altered the S620–N629 interaction by introducing

a longer side-chain into this position (N629Q). Moreover, in our

model, the S620–N629 link is surrounded by side chains that are

likely to modulate the strength of an in-lying H-bond, either by

their hydrophobicity or alternative H-bonding potential. Thus we

additionally tested the conservative mutations Y616F, homologous

to KcsA W67, and F617Y, which both comprise an altered H-

bonding potential in its close vicinity. The effects on hERG

inactivation were then monitored using whole-cell electrophysiol-

ogy in the Xenopus oocyte expression system. Fortunately, the

three mutant hERG channels expressed functional currents

amenable to characterizing the mutational influence on hERG

channel activation, deactivation and inactivation, respectively.

The voltage dependence of hERG channel steady-state activation

was measured with long duration (6 s) depolarizing test pulses.

From a holding potential of 2100 mV, test pulses ranged from

290 to +40 mV in 10 mV increments, followed by a hyperpolar-

izing test pulse to 2140 mV for recording tail currents (Fig. 4,

panel III). Tail current amplitudes were normalized and plotted

against test potential (Fig. 4 III B, C). In agreement with previous

data [36], Boltzmann fits to the data showed that the voltage of

half-maximal activation (V1=2) of wild-type hERG channels was

228.5 + 0.44 mV (n = 3) with a slope factor k= 7.41 + 0.39 mV

(n = 3). Activation of the mutant Y616F and N629Q hERG

channels was shifted by *15 mV to more negative potentials in

comparison to wild-type (see Fig. 4, panel III B). The steady-state

values of V1=2 and k of wild-type and mutant hERG channels are

summarized at the bottom of Fig. 4 III. Because the current-

voltage relations for the F617Y mutant hERG channel apparently

showed two phases, we did not fit a Boltzmann function to the

F617Y data (Fig. 4 III C).

Deactivation time courses were recorded by applying a depolar-

izing conditioning pulse to +20 mV for 1.6 s from a holding

potential of 2100 mV, followed by various test potentials from

2120 to +50 mV in 10 mV increments for 6 s. Single exponential

fits to the data were used to obtain deactivation time constants

(tdeact; Fig. 4 IV). Consistent with previous data [20], tdeact was, at

2120 mV, 73.2 + 4.1 ms (n = 7) for wild-type hERG and, on

average, 33.7 + 3.2 ms (n = 6–9 for each mutant) for the different

mutant hERG channels (Fig. 4 IV). In comparison, time rise to

peak at +20 mV was not markedly different between wild-type and

mutant hERG channels (on average 59.1 + 1.8 ms; n = 3–4 for

each channel).

The three mutations however had a dramatic effect on hERG

channel inactivation (Fig. 4 II). In contrast to wild-type, which

inactivated rapidly, the mutant N629Q hERG channels were

devoid of inactivation (n = 8). In the case of Y616F and F617Y

hERG channels, we observed a strong inward rectification (Fig.

S2). It indicated that the mutations had shifted the voltage-

dependence of hERG steady-state inactivation to very negative test

potentials. Steady-state inactivation was determined at different

test potentials from the ratio of instantaneous current amplitude

and current amplitude remaining 100 ms after the onset of the test

potential. We plotted the normalized inactivation data as

a function of voltage (Fig. S2). Fitting a Boltzmann function to

the wild-type data, we estimated that the voltage of wild-type half-

maximal steady-state inactivation (V1=2,inact) was 218.8 + 0.8 mV

(n = 3; S.E.M.), in agreement with data in the literature [37,38].

V1=2,inact for the Y616F mutant was so strongly negatively-shifted

that we were unable to obtain sufficient data points for

measurement. V1=2,inact for the F617Y hERG mutant was

negatively-shifted by about 100 mV. Using an open fit to our

limited set of data we estimated V1=2,inact for the Y616F hERG

channel at 2126.6 + 1.3 mV (n = 3; S.E.M.). Also, the F617Y

mutation affected the inactivation time course (tinact). Fitting

a single exponential to the inactivation time courses, we obtained

at 220 mV for the wild-type channel a tinact-value of 21.73 +
1.63 ms (n = 4) and for the F617Y mutant one of 5.57 + 0.25 ms

(n = 4; Fig. 4 II).

Structural Links to Modulation of Cavity Shape and Effect
of hERG Agonists

Impairment of C-type inactivation is responsible for short-QT

syndrome and plays a key role in drug-induced gain of function in

hERG [23]. hERG agonists are of great potential therapeutic

Figure 3. Hydrogen bonds formed by N629 at different S620–
N629 distances. For each S620–N629 Cb distance (right), the number
of hydrogen bonds formed by the N629 side-chain to the same subunit
(blue area, mainly S620) and to neighboring subunits (green area,
mainly G628) is shown over simulation time. A steady rise in the
proportion of inter-subunit hydrogen bonds can be seen with an
increase in S-N distance.
doi:10.1371/journal.pone.0041023.g003
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Figure 4. Mutations of the H-bond network behind the selectivity filter. (I) Mutation sites N629Q (pore loop), F617Y, and Y616F (both: pore
helix, P). (II) Inactivation properties of wild-type and mutant hERG channels. Inactivation time courses for the different hERG channels were recorded
as shown. A conditioning pulse to +20 mV followed by a 100 ms hyperpolarizing pulse to 2100 mV preceded various depolarizing pulses from 290
to +40 mV in 10 mV increments as illustrated by the pulse protocol on top. (III) (A) Exemplary wild-type (WT) hERG current traces elicited by 6 s
depolarizing voltage steps from 2100 to +40 mV followed by a hyperpolarizing pulse to 2140 mV. Respective tail currents are shown enlarged at
left. (B) Conductance-voltage relations determined from Boltzmann fits to normalized tail current amplitudes for hERG wild-type and Y616F and
N629Q mutant channels. (C) Conductance-voltage relation for the mutant hERG channel F617Y. (D) V1=2 and k parameters obtained under steady
state conditions from the Boltzmann fits for wild-type and mutant channels are summarized at the bottom. *p,0.05 versus wild-type. (IV) (A)
Deactivation time courses of wild-type and mutant hERG channels. Tail currents were elicited according to the pulse protocol shown on top. (B)
Voltage dependence of mean deactivation time constants (tdeact) (n = 4) for the different channels as indicated.
doi:10.1371/journal.pone.0041023.g004
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interest [39,40], forming a possible basis for treatment of patients

suffering from inherited long-QT hERG mutations [23]. We were

therefore interested in the interplay between small molecule

binding to the inner cavity of the hERG channel and C-type

inactivation.

We focused on two recently described hERG agonists, PD-

118057[23] and ICA-105574 [41,42]. Both molecules have been

shown to interact predominantly with a hydrophobic binding

pocket near residue F619 on the hERG pore helix [23,42]. On the

basis of our previous results, the inactivated state of hERG was

modelled by simulating a conformation with a collapsed SF, while

the open form was assumed to exhibit a conductive SF. In both

cases, we carried out 100-ns MD simulations.

The conformational change at the SF initially had a moderate

direct spatial extent (initial RMSD in the SF: *1 Å). Intriguingly

however, it had far-ranging subsequent consequences near the

pore helix and the interface with S6 in the trajectories: The subtle

conformational change within the backbone of the SF (S624-

G628) was gradually amplified by inducing side chain rotations, in

particular those of V625 and F627. This reordering led to rotation

of the directly neighboring residue L622 on the pore helix and the

main drug binding site F619, one helical turn upward. In concert,

these rearrangements in the activated open state were found to be

capable of opening a side pocket, extending from the main cavity

(Fig. 5 A,B), which was found to be wide enough to accommodate

either PD-118057 and ICA-105574 in molecular docking calcula-

tions. In contrast, the pocket was smaller and only transiently

present in the inactivated state, blocking their entry (Fig. 5 C).

A closer look at the residues found to be important for activator

interaction reveals that both the location and extent of the side-

pocket are in good agreement with the main interaction sites

identified in Refs. [23] and [42] (Fig. 5. D,E). The residues shown

to interact with ICA-105574 are however located at the lower

entrance of the side-pocket and so a slightly different mode of

binding is suggested (Fig. 5E). We propose a mechanism, in which

activator molecules belonging to this class are able to bind in this

side-pocket in the activated open, but not in the inactivated state.

Thus, by stabilizing the activated state, inactivation is putatively

impaired by these molecules.

Discussion

Inactivation of hERG is of crucial physiological and medical

importance, as it is instrumental in controlling the duration of the

cardiac action potential. Our simulations suggest that the

inactivated state of hERG resembles a collapsed SF conformation

and propose a mechanism for hERG entry into inactivation,

relying on the group N629 alternating between intra- and inter-

subunit hydrogen bonds as a toggle. The toggle is influenced by

a finely-tuned neighboring H-bond network. Non-inactivating

mutants are observed to be unable to form an intra-subunit H-

bond conformation and thus do not reach a collapsed SF state. To

validate these findings, we conducted mutation studies and

electrophysiology experiments which showed a dramatic effect of

conservative mutations that alter the steric properties and H-

bonding potential near the S620-N629 switch.

Recently, it has been shown that a similar collapse of the SF

likely underlies slow inactivation in the prokaryotic K+ channel

KcsA, with a network of H-bonds around D80 controlling the state

of the SF [4,35]. There are important functional differences

between slow inactivation in KcsA and hERG inactivation.

However, recent mutational studies highlight the mechanistic

similarities between KcsA and Kv channel inactivation, given the

high level of functional and structural conservation in the K+

channel pore domain [4,30]. Our work thus expands the findings

on KcsA into the domain of voltage-gated K+ channels. The tight

interaction between two side chains in the same subunit that form

a strong H-bond (S620 and N629) may explain the strong

inactivation tendency of hERG as compared to other K+ channels,

where the homologous groups have a weaker H-bonding potential

(e.g. Kv1.3, KcsA). The hydrophobic character of the immediate

environment, possibly also the unusual sequence of the hERG SF

(GFG instead of GYG), contribute to the strength of this H-bond

and the rapid time course of hERG inactivation. Our results also

have some bearing on a recent electrophysiological study on

Kir1.1 [43], which indicated an inter-subunit salt bridge network

strongly affecting inactivation of the inwardly rectifying Kir1.1

channel. Kir1.1 residues involved in these salt bridges (E118,

R128, and E132) occupy sequence positions homologous to S620,

V630, and T634 in hERG, suggesting a similar role of an inter2/

intra-chain H-bond equilibrium controlling inactivation.

We suggest that the S620-N629 interaction constitutes the

innermost element of a wide range of allosteric switches that can

alter inactivation in hERG and the stability of the open state of the

channel. Some of the wide-ranging rearrangements were elegantly

demonstrated by Wang et al. [30]. More distant effects include

sequence-distal interactions such as S641, mutations of which have

been demonstrated to impact inactivation [30,44] and, possibly,

domain motions encompassing regions as far as helices S6, S4, and

the S4–S5 linker in early stages of inactivation [30]. In line with

this, our mutations slightly affect hERG current-voltage-relations

and deactivation time-courses. Our study shows an intricate

network of hydrogen bonds that may have a profound effect on the

workings of the inner switch and on the link between inactivation

and activation gating [45].

The intensely studied mutant hERG channel hERG S620T and

the double mutant G628C/S631C, which have shown inactiva-

tion-deficiency in earlier experimental studies [13,21,32], were

investigated and displayed an inability to attain a collapsed SF

state. The importance of the proposed switch may also become

evident from comparison with the closely related hEAG1 channel,

in which threonine occupies the location homologous to S620 in

hERG (T432 in hEAG). Similar to the hERG S620T mutant,

hEAG lacks C-type inactivation [46].

Unfortunately, a complete structural model of hERG including

the turret loop region is presently not available, owing to its largely

disordered character. Our investigation relies on the present

consensus hERG model [28], such that more distant interactions

including the turret section were not addressed here. Most cases of

inherited short-QT syndrome are however elicited by the hERG

mutation N588K in this turret region [24–26]. Sequence position

588 is located in a stretch of residues characterized by the fact that

each group strongly affects inactivation when it is mutated (W585–

G594) [18]. It had hence been suggested and later confirmed that

this stretch forms an alpha-helical section within the turret loop,

which immediately borders the SF [47,48]. According to these

data, N588 is located directly next to the SF mouth and thus to

N629. We speculate that a lysine at this position could either

interact unfavorably with the H-bonding network that controls

inactivation or act like SF-binding lysines in channel toxins, which

have been shown to induce recovery from inactivation in K+

channels by an interaction near the filter [7].

On a longer range, we found that the conformational change of

the SF from the collapsed to the conductive state altered the shape

of the hERG inner cavity. Our simulations showed that the hERG

agonists PD-118057 and ICA-105574 are bound in a side pocket

of the cavity near F619 that is large enough to accommodate the

agonists, but only exists in the activated state. It had been
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previously established by experiment that PD-118057 and ICA-

105574, drugs that inhibits inactivation and thus increase hERG

current, bind near F619 and L622 [23,42]. Such hERG agonists

are considered a new approach for the treatment of long-QT

associated arrhythmia. Our results provide a simple explanation

for the activation of hERG by these agonists, which may also hold

true for other hERG activators: The groups V625 and F627, part

of the SF, are prevented from adopting their collapsed-SF

positions by the action of this small molecule (Fig. 5B,C), i.e. the

SF cannot reach its inactivated conformation. In contrast to

hERG blockers which bind inside the ion conduction pathway and

reduce current [10], binding of activator molecules to the side-

pocket does not negatively affect ion flux through the pore [23].

Methods

Molecular Dynamics Simulations and Docking
All simulations were based on the recent consensus homology

model of the pore-forming region of hERG, comprising helices S5

and S6, the pore helix, and the pore loop [28]. All simulations

were carried out with the Gromacs simulation software, version

4.0 [49]. The hERG model was inserted into a simulation box

with a fully hydrated and equilibrated membrane consisting of 176

dimyristoylphosphatidylcholine (DMPC) molecules and 12 888

water molecules using g_membed [50]. The amber99sb force field

was used for the protein and ions [51]; parameters for DMPC

were derived from Berger et al. [52] and the solvent was modeled

using the SPC/E water model [53]. Electrostatic interactions were

calculated explicitly at a distance smaller than 1.0 nm, long-range

electrostatic interactions were treated by particle-mesh Ewald

summation at every step [54]. Lennard-Jones interactions were

calculated using a cut-off of 1.0 nm. The LINCS algorithm was

employed to constrain all bonds [55], allowing for an integration

time step of 2 fs. The simulation temperature was kept constant by

weakly (t = 0.1 ps) coupling the lipids, protein and solvent

separately to a temperature bath of 310 K by using the velocity-

rescale method [56]. Likewise, the pressure was kept constant by

Berendsen coupling of the system to a pressure bath of 1 bar [57].

To ensure a conductive conformation of the SF at the beginning of

the simulations, the system was equilibrated for 1 ns with position

restraints on the SF backbone atoms using the high-[K+] crystal

structure of KcsA as reference (PDB entry 1K4C [27]) with a force

constant of 1000 kJ mol21 nm22. For the S620–N629 distance

scan simulations, a distance restraint between the Cb atoms of

S620 and N629 was introduced by means of a harmonic potential

with a force constant of 5000 kJ mol21 nm22. In simulations of

the collapsed SF, the low-[K+] conformation of the SF was used

together with position restraints of 1000 kJ mol21 nm22. After

energy minimization and equilibration of the system using position

restraints of the same strength on all protein heavy atoms for 2 ns,

simulations of 50–100 ns length were carried out. The collective

coordinate describing the transition between the high- and the

low-[K+] crystal structures of the KcsA SF was obtained by

performing a principal component analysis of the SF backbone on

the set of PDB entries 1K4C and 1K4D [27]. To derive the data

points shown in Fig. 1D, we used the average projection of each

simulation on the difference vector after 40 ns. Dockings of PD-

118057 [23] and ICA-105574 [42] were performed using FlexX

from LeadIT [58] with standard parameters. A degree of flexibility

of protein side chains was introduced as derived from the

simulations. The spatial extent of the side-pocket was determined

by calculating its solvent accessibility for molecules the size of

water using in-house code. Independently, the accessibility of the

pocket for PD-118057 and ICA-105574 molecules was investigat-

ed by using FlexX. The receptor surface was defined using a radius

of 18 Å around S620 nearest to the side-pocket. The best scoring

molecule docked in the side-pocket was selected for visual

representation.

In vitro Transcription and Functional Expression in
Xenopus laevis Oocytes

mRNAs were prepared from hERG wild-type or mutant

constructs (Y616F, F617Y and N629Q) in pGEMHE using the

mMESSAGE mMACHINE T7 kit (Ambion) according to the

manufacturer’s instructions. Oocyte incubation and cRNA injec-

tions were performed as described previously [59]. Briefly, 1 day

after surgery, oocytes were injected with cRNA (1–2 mg ml21).

Functional expression was typically assessed 1–3 days after

microinjection. Inward current levels were in the range of 1–10

mA at repolarizing voltages of 2100 mV to ensure proper voltage

control.

Electrophysiological Recordings
Whole-cell currents were recorded under two-electrode voltage

control using an Oocyte-clamp amplifier (Oc-725C Oocyte-clamp,

Warner Instrument Corp., USA). Glass microelectrodes (World

Precision Instruments, Sarasota, FL, USA) were pulled (DMZ

Universal puller, Zeitz Instruments, Martinsried, Germany), and

their tips were bevelled (Micro forge, Narishige Co. LTD, Tokyo,

Japan) to obtain resistances between 0.1–2 MV. The pipettes were

filled with 3 M KCl and the oocytes were superfused with ND96

solution: (in mM) KCl 2, NaCl 96, CaCl2 1, MgCl2 1, HEPES 5,

pH 7.4 (adjusted with 1 N NaOH). All currents were digitally

sampled at 2 kHz and leak and capacitive currents were corrected

on-line using the P/4 subtraction method. The sweep interval was

25 s and the holding potential was 2100 mV. Data were

converted with an AD/DA-computer interface (TIC16, Instrutec

Corporation, Great Neck, USA) and stored on a personal

computer. All experiments were performed at room temperature

(20–23uC). The program packages Pulse+Pulsefit (HEKA Elek-

tronik, Lambrecht, Germany) and IGOR Pro (WaveMetrics Inc.,

Oregon, USA) were used for data acquisition and analysis.

Experimental Data Analysis
The voltage dependence of activation was assessed by standard

tail current analysis using repolarizing pulses to 2140 mV. Tail

current amplitudes were normalized to maximum. A Boltzmann

function Itail=Imax~1z1=(1z(exp(V1
2
{V )=k)) was fit to the

data to estimate V1=2 and the rate constant k, where V1=2 is the

potential at half-maximal current activation and k the slope factor.

A single exponential function was fit to the deactivating currents to

using Pulsefit software. Steady-state inactivation was determined

essentially as described by Zhang et al. [38]. The ratio of

Figure 5. Suggested mechanism of action for hERG activators. (A) Binding pocket for activators, shown here located between the pore
helices of two adjacent subunits (orange surface). (B) The experimentally determined binding pocket for PD-118057 and ICA-105574 is located
around residue F619 and extends to residue L622 (secondary subunit contacts are marked with a prime symbol). (C) A cascade of conformational
changes triggered by collapse of the SF leads to constriction of the binding pocket (orange lines) and rearrangement of L622. (D) The cavity is large
enough to accommodate PD-118057. All residues known to affect PD-118057 binding [23] line the pocket (yellow). (E) The activator molecule ICA-
105574, shown docked to the side-pocket with residues known to influence binding in yellow.
doi:10.1371/journal.pone.0041023.g005
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instantaneous current amplitude and amplitude of current

remaining after 100 ms was taken as measure of steady-state

inactivation at a given test potential. The voltage of half-maximal

steady-state inactivation (V1=2,inact) was calculated by fitting

a Boltzmann function to the data. To obtain an estimate of

V1=2,inact for F617Y hERG channels, we used an open fit

procedure with the assumption that the mutation did not alter

the slope of the steady-state inactivation–voltage relation. Data are

given as mean + S.E.M.

Supporting Information

Figure S1 Distance scan (S620-N629) with a single K+

ion in the hERG SF. Position on the interpolation vector at the

end of the simulations. In all cases in which the ion remained in

the SF (red dots), the conformation of the SF remained stable in an

intermediate state between the ‘‘ordered’’ 1K4C and ‘‘collapsed’’

1K4D conformation. At Cb distances of 6 and 8 Å, the K+ ion

diffused out of the channel (green dots) resulting in a conforma-

tional change of the selectivity filter toward the collapsed state.

This effect is more pronounced at shorter S-N distance. We

ascribe the lesser extent of the transition toward a collapsed state

to a partial inhibition caused by the presence of ions in the SF. In

our interpretation of the results, a complete SF transition requires

at least a transient vacation of the SF, in spite of the fact that the

final state displays the presence of a single ion in the crystal

structures. The final state may then become reoccupied with one

K+ ion on longer timescales.

(TIF)

Figure S2 Wild-type and mutant hERG inactivation. (A)

Steady-state inactivation plotted against the voltage of the test

pulse. For experimental details see Methods. Solid lines corre-

spond to a Boltzmann fit to the data (n = 3; S.E.M.). (B) Voltage-

dependence of tail-current amplitudes. Data were obtained using

the pulse protocol shown in Figure 4 (IV).

(TIF)
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