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Abstract A novel Penning trap tower consisting of
five compensated cylindrical Penning traps is developed
for the PENTATRAP mass spectrometer at the Max-
Planck-Institut fiir Kernphysik in Heidelberg, Germany.
An analytical expression for the electrostatic potential
inside the trap tower is derived to calculate standard
Penning trap properties like the compensation of an-
harmonicities and an orthogonal geometry of the trap
electrodes. Since the PENTATRAP project described in
the preceding article aims for ultra high-precision mass-
ratio measurements of highly charged ions up to ura-
nium, systematic effects for highly charged ions inside
the trap tower are considered for the design process as
well. Finally, a limit due to remaining anharmonic shifts
at large amplitudes is estimated for the resulting geome-
try, which is important for phase-sensitive measurements
of the reduced cyclotron frequency of the ions.

1 Introduction

The mass of atoms and nuclei are of great interest in
many fields of modern physics due to its inherent con-
nection with the atomic and nuclear binding energies.
The list of applications of precise mass or mass-ratio val-
ues ranges from tests of nuclear and atomic structure,
determination of fundamental constants and main fea-
tures of the Standard Model for elementary particles to
measurements related to neutrino physics [I]. This gen-
eral need for very accurate mass values has triggered an
ongoing technical development in mass spectrometers.
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Penning traps have proven to be the ideal devices for
the determination of atomic masses, capable of reach-
ing extremely high accuracy down to dm/m ~ 10711
Worldwide nearly 20 Penning trap mass spectrometers
are in operation or under construction [2].
With a destructive time-of-flight cyclotron frequency de-
tection method, the most precise mass values reached so
far for stable atoms have a relative accuracy of dm/m ~
6 - 10710 [3l4]. Even for extremely short-lived species
(down to t; /5 = 8.8 ms) or very low production rates of
less than one atom per second in the case of heavy and
superheavy ions, relative accuracies down to 5-10~% have
been shown [B[6]. For light and stable atoms and with a
non-destructive image current detection method, results
with an even more striking accuracy below the 10~ !!
barrier have been achieved, allowing, e.g., for the most
stringent direct test of Einstein’s energy-mass-relation
E = mc? [7] and the most precise mass measurement of
‘He [8].
This outstanding accuracy in Penning trap mass spec-
trometry can be reached, since the measurement of the
mass m of an ion with charge ¢ is done via a determina-
tion of the cyclotron frequency
1 1 ¢

Ve = 27rwc o7 mB’ (1)
where B is the magnetic field strength of the trap’s mag-
net. In Penning traps, the free cyclotron frequency v, can
be determined by application of the Brown-Gabrielse in-

variance theorem [9]

Vf:l/i—i—yf—l—yz, (2)
where vy, v, and v_ are the eigenfrequencies of the
charged particle in the presence of the trap’s magnetic
and electrostatic field. Eq. is immune to small mis-
alignments between the electrostatic axis of the trap and
the magnetic field and also to small ellipticities of the
trap electrodes. An exhaustive review of the physics of
single charged particles in a Penning trap can be found



in [I0].

The accuracy of measurements of atomic masses or mass-
ratios is limited by a variety of systematic and statisti-
cal effects. Examples are magnetic or electric trapping
field imperfections and their temporal stability, eigenfre-
quency shifts arising from the detection system, image
charge effects or relativistic shifts of the ion’s mass them-
selves (see e.g. [I11[12]). The most crucial effect setting
limits to the precision of the measurements is expected to
be the temporal stability of the magnetic field. There are
several concepts in current state-of-the-art experiments
to minimize this influence. A very obvious approach has
led to the development of an advanced stabilization sys-
tem for superconducting magnets [I3], where relative
drifts of §B/B ~ 2 - 107'2/h were realized. The tem-
poral stability is even more crucial, since high-precision
measurements are always performed in a relative way,
which means that only frequency ratios between two ion
species are measured. Therefore, not only the measure-
ment itself, but also the loading and preparation of the
two species has to be performed very quickly. Taking this
to the limit, a very elegant method has been developed
for low charged ions, where both ions are prepared on
a common magnetron radius and measured at the same
time [I4]. Thus, temporal drifts and noise act on both
ions in the same way and cancel out in the frequency
ratio determination.

For highly charged ions it is not possible to measure the
mass ratio of two ions with high accuracy simultaneously
in the same trap, due to the strong Coulomb interaction
and the resulting systematic shift. Thus, the ions have
to be measured either alternately in one trap, or simul-
taneously in two different traps. Our project PENTA-
TRAP [15], which aims for measurements of mass ra-
tios of highly charged ions with an accuracy of < 107!,
will enable both options. For this purpose, five identi-
cal cylindrical Penning traps will be used to provide the
possibility of flexible measurement schemes and fast ex-
changes of ions between traps. The latter option, where
the cyclotron frequencies of the two ions are measured
simultaneously in adjacent traps is certainly favorable,
since it suppresses statistical variations in the cyclotron
frequency ratio due to temporal fluctuations of the B-
field. Additionally, one trap can be used to store an ar-
bitrary ion and permanently monitor its cyclotron fre-
quency to detect temporal fluctuations of the magnetic
field or to serve as a reference for the stabilization of
the trap potential. The possible measurement schemes
of this trap setup and ion candidates are described in
detail in the preceding article by J. Repp et al. [15]. Be-
sides temporal fluctuations of the magnetic field, which
are taken care of by the measurement scheme, numerous
other systematic effects have to be taken into account
and intensive studies of the complete measurement sys-
tem have to be performed.

The subject of this paper is the design of the five-Penning-
trap tower, which implies the calculation of the ideal or-
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thogonal geometry of the compensated traps. Further-
more, systematic effects for highly charged ions inside
the traps like image charge shifts and the Coulomb re-
pulsion between two ions in adjacent traps are considered
for the design process. Finally, machining imperfections
are included and limits for measurements at large ampli-
tudes are estimated, which is of special importance for
the measurement of the reduced cyclotron frequency.

2 Cylindrical Penning traps

The natural geometry of a Penning trap utilizes hyper-
boloidly shaped electrodes to generate a quadrupolar po-
tential in the trap center [I0]. In our case cylindrical trap
electrodes with open endcaps [16] will be used. This trap
geometry enables an easy injection of the particles or ex-
change between different traps. Additionally, cylindrical
trap electrodes can be machined with higher precision
and the resulting trap potential can be calculated ana-
lytically, which is crucial for the design process. There-
fore, this geometry has become very popular in recent
years and is widely used at various Penning trap experi-
ments like high-precision mass measurements, see e.g. [I
2] and references therein, g-factor measurements of the
bound electron and the proton [I7] as well as the free
electron and the positron [I8], cooling of highly charged
ions [T9] or the capture of anti-protons [20] and for the
production of anti-hydrogen [211[22].

If very high frequency resolution has to be achieved, it
is essential that the electrostatic potential is harmonic
along the trap axis to ensure that the axial frequency is
independent of the energy of the ion. Therefore, correc-
tion electrodes are added to compensate, e.g., for ma-
chining imperfections. This was first done for hyper-
boloidal traps in [23] and also applied to cylindrical traps
n [16]. However, an additional correction voltage gener-
ally changes the curvature of the harmonic potential and
therefore the ion’s axial frequency, which is very unde-
sirable for practical use. Thus, a special geometry can
be found where the harmonic part of the potential is
independent of the applied correction voltage and stays
constant while tuning out anharmonicities [16].

2.1 Potential of a cylindrical trap tower

An analytical expression for the potential of cylindrical
trap geometries can be derived in a standard way from
the Laplace-equation with azimuthal symmetry

10 0¢ 0%¢
2 —_ —_-— [— _— =
For a potential invariant under z — —z transformation,
the general solution is given by [24]
6(p2) = [ dbA(R)To(hp) o). (1)
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Here, k results from the separation of variables and I is
the modified Bessel function of zero order and first kind.
The coefficient A(k) is defined by the boundary condi-
tions, which are given by the geometry of the trap elec-
trodes and the voltages applied to them. Unfortunately,
this integral cannot be calculated analytically. Assum-
ing closed and grounded endcaps, the potential has to
vanish at the ends of the trap and the integral can be
represented by an infinite sum, given by

$(p,2) = Y Alkn)Io(knp) cos(ky2), (5)

n=—oo

where k is replaced by the discrete k, = “*. Here, [
is the total length of the trap tower. As discussed for
a single open-endcap trap in [25], the suitability of this
approximation for open-endcap traps depends on the ra-
tio of the inner radius and the length of the grounded
endcaps. It gives results valid to better than 1 % in all
electrostatic coefficients if the length of the endcaps is
three times the inner radius. In our case, this ratio is
even higher which therefore leads to much more precise
predictions about the electrostatic coefficients, as will be
shown later.

The coefficients A(k,) can be obtained by using the or-
thogonality relation of the cosine function and integrat-
ing over z along the inner surface of the electrodes at
p = a. The potential at p = a at the small gaps between
the electrodes can be approximated in axial direction by
a linear interpolation between the values of the two ad-
jacent electrodes. This leads to a negligible error if the
length d of the gaps is much shorter than the length
scales of the electrodes [26]. In doing so, the following
expression results for a trap with grounded endcaps and
m = (2k + 1) electrodes:

(0. 2) = S Alkn)o (kup)cos (knz)  (6)
n=1,odd
_4
[ k2d &=

K

A(ky,) (Ui —U;—1)

o8 (knza;) — cos (knz2;—1)
To (Fna) ' @

As shown in Fig. |1} U; are the voltages applied to the
electrodes, zo; and z9;_1 specify the ends of the indi-
vidual electrodes and a is the inner radius. In our case,
every trap consists of five electrodes, in particular of a
central ring electrode RE with length [, = 2z, two cor-
rection electrodes CE with length I, = z3 — 29 and two
grounded endcaps EC with length [, = z5 — 24.

The potential in Eq. @ allows one to deduce analyt-
ical expressions for the static electric field coefficients.
For hyperboloidal traps, extensive studies of these co-
efficients and the influence on the ion’s motion can be
found in [I0,27]. In [I6] these results are transferred to
cylindrical traps. In all of these works the potential is
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Fig. 1 Ilustration of the a five-electrode cylindrical trap in-
side a trap tower. The inner radius is given by a. The lengths
of the trap electrodes are marked with [,, = 2z for the central
ring electrode RE, I. = z3 — 22 for the correction electrodes
CE and l. = z5 — z4 for the endcaps EC. The length of the
gaps separating the electrodes is given by d. The potentials
at the inner surface of the electrodes are given by U; with a
linear approximation at the gaps between the electrodes.

expanded in spherical coordinates in terms of Legendre
polynomials. Additionally, in order to make the expan-
sion coeflicients dimensionless, the polynomials are mul-
tiplied by powers of the small ratio r/dy, where r is the
radial coordinate and dy a characteristic trap parameter
[10).
In our work we follow another ansatz as shown in [26],
where the trapping potential is Taylor expanded in cylin-
drical coordinates [p, ¢, z| at the center of the trap,
P (8)
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The coefficients ¢; j_; =

are nor-

malized to the ring voltage Uy. Due to the symmetry of
reflection in z, all terms with odd order have to vanish
to fulfill the boundary conditions. Therefore, both ¢ and
7 have to be even numbers. In the following, we will use
only the pure axial coefficients

_ 1 1&¢(p.2)
Ci=C0 =77 7 A

Uo j' 8zj (10)

(0,0)

to analyze the potential. Due to VZ¢(p,z) = 0, the
knowledge of the potential on the axis also determines
the radial behavior. These Taylor coefficients are only
functions of the geometry and the applied voltages and



can, therefore, directly be used to analyze the harmonic-
ity of the trap geometry. By comparison of the coeffi-
cients of same order j to the Legendre expansion used
in [16], it can be shown that the two kind of coefficients
simply differ by a factor of 1/(2d})). Therefore, all results
in [I6] concerning the ion’s motion can be used and are
shortly summarized below in terms of the coefficients de-
fined in Eq. (L0J).

Certainly, the lowest order coefficients in Eq. @D are the
most important, since the axial amplitude of the ion is
much smaller than the trap dimensions. For an ideal har-
monic trap, the axial oscillation frequency is given by

U
w, = 1/ T22¢,. (11)
m

The higher order coeflicients determine the anharmonic-
ity of the trapping potential. They result in an amplitude
dependent shift in the axial oscillation frequency. For the
leading anharmonic coefficients ¢4 and cg the shift in the
axial frequency w, is given by

sz_3<04 5C6EZ>EZ
2 4c3qUy) qUy’

w, 4

(12)

where F, is the axial excitation energy of the ion. In a
five-electrode cylindrical trap, the potential can be tuned
to minimize this anharmonic shift by adjusting the cor-
rection voltage Uy = U,. (see Fig. . Since the potential
in Eq. @ is linear in the applied voltages, the Taylor
coefficients of this potential can be written as [26]

Cj = ej —+ de, (13)

where T = U, /Uy is the ”tuning ratio” between the ring
voltage Uy and the correction voltage U.. The e; coef-
ficients determine the part which is independent of the
correction voltage, while the d; coefficients defined by
d; = 9c; /0T contain the influence of U,. If T is chosen
tobeT = T|C4:0 = —ey/dy, the leading anharmonic co-
efficient ¢4 cancels out. Due to the dependence of ¢y on
U,, tuning of the anharmonic coefficients by adjustment
of U, is accompanied with an undesirable change of ¢y
and, therefore, also of the axial frequency in Eq. .
To avoid this, a geometry has to be found in which ds
and, therefore, the dependence of the axial frequency on
the correction voltage is minimized. This trap geometry
is called orthogonal.

2.2 Ion-ion interaction

Since we want to store at least three ions in adjacent

traps in the final measurement process of our high-precision

Penning trap mass spectrometer, an important issue is
the Coulomb repulsion and the possibly resulting shift
of the free cyclotron frequency.

To analyze this effect, the additional ion-ion potential
@4 (r,r’) induced by a charge at r’ has to be calculated at
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the position r of the ion-of-interest. Thereby, for our case
the distance between two trap centers (Az ~ 10 mm) is
much larger than the typical axial oscillation amplitude
of the ions (~ 10 pm) and all dynamical aspects can be
neglected.

The analysis can be performend by expanding the ion-
ion potential in a Taylor series with cylindrical coordi-
nates [p, ¢, z], in a way similar to the expansion of the
trap potential in the previous section:

tayl
b5 (2,0, 2) =

_ i z": 1 and)ii(pvzvplvzl) m,n—m
ml(n —m)l  9pmozn—m P

n=0m=0 (0,0)

= Z Z Gmn—mp 2" (14)

n=0m=0

In contrast to the trap potential, for this interaction
there is no symmetry with respect to the z-axis at the
position of the ion-of-interest. Nevertheless, by inserting
Eq. into the Laplace equation it can be shown that
the following relation of the Taylor coefficients holds for
potentials with azimuthal symmetry:

¢§§wlor = 90,0 + 91,0 P+ go,1 -2+
+ 920 P+ 911 P2+ go2 2+ (15)
+0(p%, 2%),

. 1
Wlth 91,0 = O, 91,1 =0 and 9270 = —59072. (16)

Hence, in second order this potential has exactly the
same shape as the quadrupolar trap potential [I6]. In
other words, in second order the ion-ion potential acts
as a small offset on the trapping voltage, which exactly
cancels in the determination of the free cyclotron fre-
quency v, [10].
The remaining effect is a repulsion of the ions induced by
go,1 resulting in a shift of the axial equilibrium position.
The new minimum can be calculated from the superpo-
sition of the ion-ion potential and the harmonic part of
the trap potential ¢(r,2) = Upca(22 — p?/2) defined in
Eq. @D The minimum is given by

~ 90,1

= 2(Uocz + go,2)’ (17)
where Cy; = Upco can be determined by Eq. for
every g/m ratio. The coefficients go1 and go2 can be
calculated by the potential of a point-charge in a con-
ducting cylinder with inner radius a¢ and length L given
by [28]

o0

(bii(ra r/) _ ﬂ-eqoal Z eim(sa—cp’) (]_8)
o Jm (5 : mmn) Jm (%/ : xmn)

n=1 x””"LJ72rL+1($mn) sinh (% . xmn)

x sinh (Z—< . xmn) sinh (L — 2 xmn) .
a a
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Here, z,,, is the n-th root of the Bessel function J,, of
order m and z-,. are the larger or smaller value of z
and 2'.

Certainly the largest shift is expected for a shallow trap-
ping potential corresponding to a large ¢/m ratio. On the
other hand, the Coulomb repulsion in the trap tower is
strongly suppressed compared to free space due to the
shielding of the surrounding trap electrodes.

Since the homogeneous part of our magnet is limited to
120 mm, the maximum length of one trap is given by
24 mm. It turns out that at this distance and for a large
inner radius of a = 5 mm, this shift in the origin of oscil-
lation is neglibigle for all experimental situations. Even
in the extreme case of a proton as ion-of-interest and a
charge of ¢ = 81+ in the adjacent trap, the shift is in
the order of Zy ~ 10~'2 m. Therefore, ion-ion interaction
can be safely ignored for our trap tower.

2.8 Image charge effects

As pointed out in [29,30] for hyperboloidal Penning traps,
the shift of the normal-mode frequencies in a Penning
trap due to the electric field of image charges induced in
the trap electrodes is not negligible for highly charged
ions. In the case of cylindrical trap geometries, the re-
sulting electric field and, thus, the force on the ion can be
calculated analytically by solving the Laplace-equation
as shown in [3I]. The shift of the radial frequencies is
given as a function of the trap radius a

q2

dregmadw,’

Awg =~ F (19)
whereas the axial frequency is not shifted, since the im-
age charge electric field is translationally invariant in a
cylindrical trap. The influence on the determination of
the free cyclotron frequency can again be calculated by
using the invariance theorem [9]:

Aw, _ 2
w z(""JrJr"‘)>qg (20)

We We  we ) dmegmaiw?’

The resulting shift is shown in Fig. [2|for different masses.
Note that for typical experimental conditions with wy >
w, > w_, Eq. is independent of the charge ¢ of the
ion. From this point of view it is convenient to have an
inner radius as large as possible. At @ = 5 mm, the shift
in the free cyclotron frequency is still at ~ 5- 10710 for
heavy ions like 20%Pb.

At charge states ¢ > 20+, the relative shift per mass
unit u is below 2.5- 1072 for masses between A = 100 u
and A = 250 u. Thus, if reference ion and ion-of-interest
have nearly the same mass, the image charge effect on
the ratio becomes negligible. As mentioned before, main
interests of our project are neutrino related mass-ratio
measurements or measurements of binding energies of
electrons in highly charged ions. In this type of measure-
ments, the mass differences of interesting candidates are
typically well below 1 u.

5
~~
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S 100 — ¥Rb
X 50 133
N’ 35
— 7Cs
S oY 208
3|3 °° —*Pb
4—
2 3 4 5 6 7 8
a (mm)

Fig. 2 Relative shift of the free cyclotron frequency due to
image charges induced in the trap electrodes as a function of
the inner radius a of the trap electrodes. Parameters used for
the calculation are B =7 T and w. = 27 - 600 kHz. For the
calculation, the ¢/m ratio was chosen sufficiently high such
that Eq. becomes independent of the charge state ¢ of
the ions.

3 Design of the PENTATRAP tower

The design of our trap tower consisting of five identi-
cal five-electrode traps is based on the potential given in
Eq. @ The Taylor coefficients of this potential were cal-
culated using Eq. . Since the required order of Bessel
functions n strongly increases with the total length and,
therefore, the number of electrodes, all calculations were
done with only three adjacent traps. For three traps
the result of the calculations in the central trap are
not affected by adding another electrode on the outside.
Therefore, more electrodes are not needed for the calcu-
lations. Furthermore, this shows that the approximation
of the potential in Eq. @7 which vanishes at the outer
ends of the trap tower (see discussion in Sec. , has no
influence on the coefficients in the center and is therefore
justified for our calculations.

For the real trap tower, the situation of two neighboring
traps is common to the three inner traps and the results
of the calculations are valid for them. But, certainly for
the outer traps the performance will be slightly worse.
On the other hand this is no issue to be worried about,
since these traps are not dedicated for high-precision
measurements (see [15]).

Due to the linear dependence of the coefficients on all
applied voltages, the performance of the central trap cer-
tainly depends to a small degree on the ring and correc-
tion voltages in the adjacent traps. Therefore, all calcu-
lations for the design of the trap were done with identical
voltages in all three traps. This is the most common sit-
uation for the planned measurements since mainly mass
doublets, which need almost identical trapping voltages,
are foreseen to be measured.

To take advantage of the complete length of the homoge-
neous region of our superconducting magnet of 120 mm,
the length of I = 24 mm per single trap was chosen.
From the discussion of the image charge shifts and the
ion-ion interaction (Sec. [2.2)), an inner radius of a = 5
mm was fixed as a compromise between these two ef-
fects. The length of the gaps between the electrodes was
set to d = 150 pm due to machining reasons.

In addition to finding an orthogonal geometry where ds



vanishes, care was taken to keep the anharmonic shift in
Eq. as low as possible in the final geometry. To this
end, the trap should allow tuning out ¢4 and the next
anharmonic coefficient cg simultaneously. Therefore, the
difference in tuning ratios AT = T, _, — T'|.,_, has to
vanish.

In order to find a suitable geometry, using numerical
methods the following three equations were solved si-
multaneously to find the unknown parameters I,., [, and
T:

c4(a7d7lr7lC7Z7T) = 07
CG((L,d,lth,l,T) = 07
d2(a7d7 lTalvlC) =0. (21)

The numerical results are summarized in Tab. [T} where
the geometrical lengths are rounded to 1 pm for machin-
ing. In our case, the machining precision of the electrodes
including a gold coating is limited to +5 pm. The elec-
trostatic coefficients are calculated for the ideal geome-
try at the tuning ratio 7' = T|c4:0. The errors resulting
from limited machining precision are simply calculated
by error propagation to estimate the worst case. In this
respect, the contribution of the error of the gaps between
the electrodes is approximately 10 times larger than the
contribution from the error in any other dimensions of
the trap. Note that the higher order coefficients still can
be suppressed experimentally by finding a new tuning
ratio which leads to ¢4 = 0 in the real trap geometry.
In Fig.|3] a technical drawing of the resulting assembled
trap tower is shown.

3.1 Orthogonality

As a measure of the orthogonality of the trap the ratio
ds/co can be taken, which is below 0.01 in the worst
case. Therefore, following from Eq. and Eq. a
change of the tuning ratio shifts the axial frequency by
only

AVZ 1 d2 Hz
=-—v, =424
AT 2¢ v %0 mUnit

(22)

at v, = 600 kHz, where the error is again determined
by machining imperfections of £5 pm. In this context,
the expression mUnit simply denotes a change of 1073
in the dimensionless tuning ratio 7', which is a typical
step size while tuning out anharmonicities.

Since typical narrow-band detection bandwidths are in
the range of 10 to 100 Hz, the ion’s axial frequency
stays well in this range while tuning out anharmonici-
ties in mUnit-steps of the tuning ratio. Therefore, the
ion’s signal is always visible in the tuning process, which
is of practical importance. Furthermore, for uncorrelated
changes in the voltages applied to the ring and compen-
sation electrodes, the effect of do can be expressed in
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Table 1 Geometric and resulting electrostatic properties of
a single trap within the PENTATRAP tower. The ideal ge-
ometry is found by minimizing dz, c4 and c¢ simultaneously.
For machining, the geometric values are rounded to 1 um
with respect to the ideal geometry. For an overview, the elec-
trostatic coefficients up to 8 -th order are calculated for the
ideal geometric values at the tuning ratio of the ideal geom-
etry T = T)| cq—o- Their errors are estimated for a machining
precision of £5 pum. Note that the values of the higher order
coefficients can still be suppressed experimentally by finding
a new tuning ratio with respect to the real trap geometry.

dy (8.406 £ 0.001) - 107*

0+1.892-10"

de (3.579 +0.019) - 1075

cs (1.672 £0.077) - 1077

a (mm) \ 5
d (mm) \ 0.15
I (mm) \ 1.457
l. (mm) \ 3.932
le (mm) \ 7.040
Tl,,—o | 0.881
ez (1/mm? | (—1.496 +0.007) - 102
d> (1/mm? \ 0+1241-107"
cs (1/mm* \ 0+4.199-107°

|

|

|

|

|

(
(
(
¢ (1/mm
(
(
(

ds (—1.196 £ 0.010) - 10~°

relative terms using Eq. and Eq. :

51/2 1 €2 5U0 2 d2 (SUC 2

== = — —=T . 23
v, 2\/(62 Uy > * ca U (23)
Due to this, stability requirements of the correction volt-

age U, are at least 2 orders of magnitude less than for
the ring voltage Uj.

3.2 Compensation

In the PENTATRAP mass spectrometer we plan to use
only cryogenic non-destructive ion detection. The axial
frequency v, will be measured with the dip method [32]
at cryogenic temperatures of 4 K. Due to the small par-
ticle amplitudes in the order of 10 pm, anharmonic shifts
are of no concern for this method. The same is true for
the measurement of the magnetron frequency v_, which
is planned to be performed with the double-dip method
explained in [33].

Anharmonic shifts are of more concern if detection meth-
ods with excited particle amplitudes are used. For our
setup this is the case for the measurement of the radial
frequency v . This concern is even more important, since
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EC CE RE CE EC

/}Ia_ L .l — Il
N\ \ 7
1\ o k 4 .
Ve /¥ /8,8 "™/ T T /T T T /¥ L
trap 1 trap 2 trap 3 trap 4 trap
120.6 mm

Fig. 3 Technical drawing of the complete trap tower consisting of five identical, cylindrical and compensated Penning traps.
The electrodes are labeled RE for the ring electrode, CE for the correction electrodes and EC for the grounded endcaps. The
length scales of the electrodes can be found in Tab.[I} The electrodes are separated by sapphire rings, shown in white.

the typical hierarchy of the three trap eigenfrequencies
is vy > v, > v_. Therefore, the accuracy achieved by
mass measurements mainly depends on the accuracy of
the measurement of v .

This frequency will be measured indirectly by a fast
phase-sensitive detection method such as the so-called
Pulse-aNd-Phase method (PNP) [34] or a similar novel
method [35]. In both cases, the phase of v is transferred
to the axial mode by side-band coupling, where it is read
out by detection of the signal peak. The frequency of the
modified cyclotron mode is then given by the derivative
of its phase with respect to evolution time.

In general, the gain in measurement speed of phase-
sensitive measurement methods compared to Fourier-
limited frequency methods is approximately given by
the factor 27/0(¢), where o(¢) is the resolution of the
phase measurement [36]. For low amplitudes, the phase
resolution is limited by thermal phase jitter resulting
from the noise background of the detector. Therefore,
as a premise for fast measurements for both methods, a
sufficient signal-to-noise (SNR) ratio has to be ensured
by exciting the ion to amplitudes far above the thermal
noise floor. In this context, anharmonic shifts can result
in an upper limit for the excitation of the amplitude.
This limit will be roughly estimated for our trap in the
following paragraph.

In most experimental situations it is convenient to tune
out the leading anharmonic coefficient ¢4 by choosing
T = T|C4:0. In this case, the remaining anharmonic
shift is mainly given by the next anharmonic coefficient
cg. For the ideal geometry, both coefficients vanish for
the same tuning ratio and the anharmonic shift given
by Eq. therefore also vanishes. For the real trap,
this will not be the case anymore since these two co-
efficients vanish at different tuning ratios. However, it
will still be possible to compensate c4 only. To get an
estimate of the remaining anharmonic shift in the real
trap, a specific geometry has to be chosen since all coef-
ficients ¢;(a,d, l,,1.,1,T) and therefore the tuning ratio

T|.,—o = Tlo—o (a,d, 11, 1) are functions of the real

geometry.

As an example, we chose the rounded values for the trap
geometry given in Tab.[l} In this case, the 6-th order co-
efficient can be calculated to cg(T],,_y) ~ £1.892-1077-
1/mm® with worst case mechanical tolerances included,
and the difference in the tuning ratio of ¢4 and cg is given
by AT = T|,_g — Tl,—o = 22.9-107°. As a result,
the remaining anharmonic shift at low energies given by
Eq. ranges from 9?v, /(0T OE.) ~ 3.5 mHz/(mUnit
meV) to 1.4 mHz/(mUnit meV) at v, = 600 kHz for
masses of 100 u to 240 u, respectively. As mentioned
before, this will not be a problem for the low energy de-
tection of v, and v_. However, for the phase detection of
vy via the excited axial amplitude zy (see [34,35]), the
following limitation arises:

Due to finite reproducibility of the excitation pulse and
different starting conditions in the cooled axial mode,
the final excited axial amplitude zy differs between two
consecutive measurements. A typical value reported to
us is a ~ 10 % deviation [35]. This in turn causes a shift
of the frequencies of two consecutive measurements due
to the amplitude dependent anharmonic effects given by
Eq. . These frequency shifts limit the resolution of
a phase measurement to o(¢) = Aw, - Tineas [36], where
Tineas is the measurement time for the axial motion.
With our calculated value of cg, this resolution normal-
ized to the measurement time T},¢qs is shown in Fig.
For the measurement timge, typically ~ 3 times the cool-

ing time constant 7, = D&f) £ 12 [32] of the excited motion
is used. This constant depends on the charge ¢ and mass
m of the ion. Ry is the parallel resistance of the detec-
tion system described in [I5] for our case. Dcyy is the
so-called effective electrode distance of the pickup elec-
trode [39], which is a measure of the coupling strength of
the detection electronics to the ion. In our case Dy is
approximately 31.4 mm for the endcap electrode, where
the detection pickup is planned to be.

For charge states above ¢ = 204 and our detection
system, the expected cooling time constant can be es-
timated to be below 300 ms even for masses up to 240 u.
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Fig. 4 Phase resolution o(¢) due to anharmonic shifts in the
axial oscillation frequency, normalized to the measurement
time Tineaqs. The shifts are caused by a 10 % difference in the
amplitude zo of two consecutive phase measurements (see
text).

This implies, if a phase resolution of 10° and therefore a
gain in measurement speed of approximately one order
of magnitude compared to frequency measurements is
aimed for, we are limited to 300 pm axial amplitude at
a measurement time of T},0qs ~ 1 s. On the other hand,
this is of no concern since the signal strength scales with
q [32] and therefore, at ¢ > 20+ amplitudes of 300 pm
should ensure more than sufficient SNR.

3.8 Simultaneous measurement in adjacent traps

The main advantage of our five-Penning-trap setup is
the possibility to measure the cyclotron frequencies of
two ions of different species in adjacent traps at the same
time, and hence suppress the effect of magnetic field vari-
ation on the ratio. But, due to different charge-to-mass
ratios there are different trapping voltages needed for
the individual ions while the electrostatics of the traps
was designed for identical voltages (Sec. . Certainly,
deviations from identical conditions can affect the per-
formance due to the close distance and large openings
of the traps. According to Eq. 7 the difference in the
trapping voltages is determined by the difference in the
g/m ratio between the ions in two traps.

In many cases, e.g. the measurement of Q-values of (-
transitions, which are interesting for the determination
of the neutrino mass, the corresponding mass difference
is very small. E.g. in the transition of 18"Re— '87Os, the
@-value is only about 2.5 keV. Thus, for the same charge
state of the ions, almost identical trapping voltages are
needed which differ only by ~ 0.7 ¢V in this case.

The most critical case in this respect are measurements
concerning binding energies of electrons in highly charged
ions in order to test predictions of bound state QED the-
ory. In this case the difference in the ¢/m ratio of two
charge states is much larger. For the measurement of the
mass-ratio between Pb8'* and Pb%2* at ¢/m = 0.39, the
difference is about A(g/m) = 1.2 %. The trapping volt-
ages at v, = 600 kHz differ by AU ~ 0.15 V. At this
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voltage difference between the traps, the anharmonic co-
efficients in both traps are about twice as large compared
to the case of identical trapping voltages. Resulting from
the discussion of anharmonic effects in the previous sec-
tion, this will not limit our measurement resolution for
high charge states of the ions.

4 Summary

In this article the design of a novel five-Penning-trap
tower for the mass spectrometer PENTATRAP [15] was
presented. The potential of a five-electrode cylindrical
Penning trap inside a trap tower was calculated from
the Laplace-equation and the electrostatic properties an-
alyzed in terms of a Taylor expansion of the potential.
Special attention was payed to the orthogonality of the
calculated trap geometry as well as the possibility to
tune out the leading two anharmonic coefficients of the
electrostatic potential simultaneously. The experimen-
tal limitations due to anharmonic effects at large am-
plitudes were estimated, which is important for phase-
sensitive measurement methods of the reduced cyclotron
frequency. Furthermore, the systematic effects of highly
charged ions in terms of image charge shifts of the free
cyclotron frequency as well as Coulomb interaction of
two ions in adjacent traps were estimated for the result-
ing trap geometry given in Tab.
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