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Abstract: We prove that in Einstein-Maxwell theory the inequality (8πJ)2 +
(4πQ2)2 < A2 holds for any sub-extremal axisymmetric and stationary black
hole with arbitrary surrounding matter. Here J,Q, and A are angular momen-
tum, electric charge, and horizon area of the black hole, respectively.

1. Introduction

For a single rotating, electrically charged, axisymmetric and stationary black
hole in vacuum (described by the Kerr-Newman family of solutions), the angular
momentum J , the electric charge Q, and the horizon area A are restricted by
the inequality

p2
J + p2

Q ≤ 1 with pJ :=
8πJ

A
, pQ :=

4πQ2

A
. (1)

Equality in (1) holds if and only if the Kerr-Newman black hole is extremal.
That is to say,

p2
J + p2

Q < 1 (2)

holds for any non-extremal Kerr-Newman black hole.
As was shown in [1], the equality p2

J +p2
Q = 1 holds more generally in Einstein-

Maxwell theory for axisymmetric and stationary degenerate1 black holes with
surrounding matter. Moreover, it was conjectured in [1] that inequality (1) is
still valid if the black hole is surrounded by matter (i.e. if it is not a member of
the Kerr-Newman family).

Inequality (2) was proved in [7] for axisymmetric and stationary black holes
with surrounding matter in pure Einsteinian gravity (without Maxwell field).

1 Degeneracy of an axisymmetric and stationary black hole is defined by vanishing surface
gravity κ.

http://arXiv.org/abs/0812.2811v1
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In that article, emphasis was put on “physically relevant” configurations by
assuming the black hole to be sub-extremal. This condition requires the existence
of trapped surfaces (i.e. surfaces with a negative expansion of outgoing null
geodesics) in every sufficiently small interior vicinity of the event horizon, see
[3]. Here, we consider again sub-extremal axisymmetric and stationary black
holes with arbitrary surrounding matter, but provide a proof of (2) which is
valid in the full Einstein-Maxwell theory.

The idea of the proof relies on showing that a black hole cannot be sub-
extremal for p2

J + p2
Q ≥ 1. In order to prove this, we study the Einstein-Maxwell

equations in a vicinity of the black hole horizon. It turns out that a reformulation
can be found which states that an appropriate functional I (to be defined below)
must always be greater than or equal to 1. In this way, we encounter a variational
problem, and the corresponding solution provides a proof of inequality (2). As
will be shown below, this variational problem can be treated with methods from
the calculus of variations.

This paper is organized as follows. In Sec. 2, we introduce appropriate co-
ordinates which are adapted to the subsequent analysis. Moreover, we list the
Einstein-Maxwell equations and the corresponding boundary and regularity con-
ditions in these coordinates. In Sec. 3, we express the ingredients pJ and pQ,
which appear in the inequality (2), in terms of metric and electromagnetic po-
tentials. We formulate the variational problem mentioned above in Sec. 4 and
solve it in Sec. 5. Finally, we conclude this paper with a discussion on phys-
ical implications of inequality (2), see Sec. 6. In an appendix, we establish a
connection to degenerate black holes.

2. Coordinate systems and Einstein equations

Following Bardeen [2], we describe an exterior electrovacuum vicinity of the black
hole2 in spherical coordinates (R, θ, ϕ, t) in terms of a Boyer-Lindquist-type3 line
element

ds2 = µ̂

(

dR2

R2 − r2h
+ dθ2

)

+ û sin2θ (dϕ − ωdt)2 − 4

û
(R2 − r2h)dt2, (3)

where the metric potentials µ̂, û and ω are functions of R and θ alone and, where
in addition µ̂ and û are positive functions. The event horizon H is located at
R = rh, rh = constant > 0.

The electromagnetic field gives rise to an energy momentum tensor

Tij =
1

4π

(

FkiF
k
j −

1

4
gijFklF

kl

)

, (4)

where, using Lorenz gauge, the electromagnetic field tensor Fij can be written
in terms of a potential (Ai) = (0, 0, Aϕ, At),

Fij = Ai,j −Aj,i. (5)

2 For a stationary spacetime, the immediate vicinity of a black hole event horizon must be
electrovacuum, see [5] and [2].

3 In the special case without any exterior matter, i.e. for the Kerr-Newman black hole, we
obtain Boyer-Lindquist coordinates (r, θ, ϕ, t) through a linear transformation r = 2R + M ,
where M is the black hole mass.
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Note that, like the metric quantities, Aϕ and At also depend on R and θ only.
In the Boyer-Lindquist-type coordinates, the Einstein-Maxwell equations in

electrovacuum are given by4

(R2 − r2h)ũ,RR + 2Rũ,R + ũ,θθ + cot θ ũ,θ

= 1 − û2

8
sin2θ

(

ω2
,R +

ω2
,θ

R2 − r2h

)

− 1

û sin2θ

[

(R2 − r2h)A2
ϕ,R +A2

ϕ,θ

]

− û

4

[

(Φ,R −Aϕω,R)2 +
(Φ,θ −Aϕω,θ)

2

R2 − r2h

]

, (6)

(R2 − r2h)µ̃,RR +Rµ̃,R + µ̃,θθ

=
û2

16
sin2θ

(

ω2
,R +

ω2
,θ

R2 − r2h

)

− (R2 − r2h)ũ2
,R +Rũ,R − ũ,θ(ũ,θ + cot θ), (7)

(R2 − r2h)(ω,RR + 4ω,Rũ,R) + ω,θθ + ω,θ(3 cot θ + 4ũ,θ)

=
4

û sin2θ

[

(R2 − r2h)Aϕ,R(Φ,R −Aϕω,R) +Aϕ,θ(Φ,θ −Aϕω,θ)
]

, (8)

(R2 − r2h) [Φ,RR −Aϕω,RR + 2ũ,R(Φ,R −Aϕω,R) −Aϕ,Rω,R]

+ Φ,θθ −Aϕω,θθ + (2ũ,θ + cot θ)(Φ,θ −Aϕω,θ) −Aϕ,θω,θ = 0, (9)

(R2 − r2h) [Aϕ,RR − 2ũ,RA,ϕ,R] + 2RAϕ,R +Aϕ,θθ − (2ũ,θ + cot θ)Aϕ,θ

=
û2

4
sin2θ

[

(Φ,R −Aϕω,R)ω,R +
Φ,θ −Aϕω,θ

R2 − r2h
ω,θ

]

. (10)

Here, we have used the dimensionless quantities

ũ :=
1

2
ln

û

ûN
, µ̃ :=

1

2
ln

µ̂

ûN
,

where ûN is the the north pole value of û,

ûN := û(R = rh, θ = 0) .

Moreover, we have replaced At by the comoving electric potential

Φ = At + ωAϕ.

At the horizon, the metric potentials obey the boundary conditions (cf. [2])

H : ω = constant = ωh,
2rh√
µ̂û

= constant = κ, Φ = constant = Φh, (11)

where ωh, κ, and Φh denote the angular velocity of the horizon, the surface grav-
ity, and the value of the comoving electric potential at the horizon, respectively.

4 Throughout this paper we consider vanishing cosmological constant, Λ = 0. (Note that
inequality (1) can be violated for Λ 6= 0. An example is the Kerr-(A)dS family of black holes,
see [3].)
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On the horizon’s north and south pole (R = rh and sin θ = 0), the following
regularity conditions hold5:

µ̂(R = rh, θ = 0) = û(R = rh, θ = 0)

= µ̂(R = rh, θ = π) = û(R = rh, θ = π) =
2rh
κ
, (12)

Aϕ(R, θ = 0) = Aϕ(R, θ = π) = 0. (13)

In the forthcoming calculations we need relations between metric and elec-
tromagnetic quantities at the black hole horizon H. These are provided by an
investigation of the equations (6) and (7). For the evaluation of these equations
in the limit R → rh, we introduce the regular horizon potentials (cf. [1])

ω̂ :=
ω − ωh

R− rh
, Φ̂ :=

Φ− Φh

R− rh
. (14)

from which it follows that

lim
R→rh

ω2
,θ

R2 − r2h
= lim

R→rh

(

R− rh
R+ rh

ω̂2
,θ

)

= 0,

lim
R→rh

(Φ,θ −Aϕω,θ)
2

R2 − r2h
= lim

R→rh

[

R− rh
R+ rh

(Φ̂2
,θ −Aϕω̂,θ)

2

]

= 0.

Using these relations, we obtain for (6) and (7) in the limit R → rh

2rhũ,R + ũ,θθ + cot θ ũ,θ = 1− û2

8
sin2θ ω2

,R −
A2

ϕ,R

û sin2θ
− û

4
(Φ,R −Aϕω,R)2, (15)

rhµ̃,R + µ̃,θθ =
û2

16
sin2θ ω2

,R + rhũ,R − ũ,θ(ũ,θ + cot θ). (16)

3. Calculation of pJ and pQ

In order to find suitable expressions for pJ and pQ, we introduce the following
functions which are defined as follows in terms of the metric and electromagnetic
quantities at the black hole horizon H:

U(x) :=
1

2
ln

û

ûN

∣

∣

∣

H
, V (x) :=

1

4
û ω,R

∣

∣

H, (17)

S(x) :=
û

2
√
ûN

(Φ,R −Aϕω,R)
∣

∣

H, T (x) :=
Aϕ√
ûN

∣

∣

∣

H
, (18)

where x := cos θ.

5 Note that (13) holds on the entire rotation axis.
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In terms of these quantities we obtain for angular momentum J , charge Q
and horizon area A (cf. [1]): 6

J =
1

8π

∮

H
(mi;j + 2mkAkF

ij)dSij

= − 1

4

π
∫

0

û

[

û

4
ω,R sin2θ −Aϕ(Φ,R −Aϕω,R)

]

∣

∣

∣

H
sin θ dθ

= − ûN

4

1
∫

−1

[V e2U (1 − x2) − 2ST ]dx, (19)

Q = − 1

4π

∮

H
F ijdSij = −1

4

π
∫

0

û(Φ,R −Aϕω,R)
∣

∣

H sin θ dθ (20)

= −
√
ûN

2

1
∫

−1

S dx (21)

A =2π

π
∫

0

√

µ̂û
∣

∣

H sin θ dθ = 4πûN . (22)

Here, we have used conditions (11) and (12). Finally, we arrive at

pJ ≡ 8πJ

A
= −1

2

1
∫

−1

[V e2U (1 − x2) − 2ST ]dx, (23)

pQ ≡ 4πQ2

A
=

1

4





1
∫

−1

S dx





2

. (24)

4. Reformulation in terms of a variational problem

As a first step towards the proof of the inequality (2) for sub-extremal black
holes, we consider the following lemma.

Lemma 1 (Characterization of sub-extremal black holes). A necessary
condition for the existence of trapped surfaces in the interior vicinity of the event
horizon of an axisymmetric and stationary charged black hole is

π
∫

0

(µ̂û),R

∣

∣

H sin θ dθ > 0. (25)

6 Note that mi denotes the Killing vector with respect to axisymmetry.
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This lemma was originally derived in the setting of pure Einsteinian gravity
(without Maxwell-field), see [7]. As the corresponding proof presented in [7]
carries over to the full Einstein-Maxwell theory, we may use the lemma in the
forthcoming investigation.

The proof of (2) relies on showing that for p2
J + p2

Q ≥ 1 inequality (25) is
violated, which implies by virtue of lemma 1 a violation of the sub-extremality
condition:

p2
J + p2

Q ≥ 1 ⇒
π
∫

0

(µ̂û),R

∣

∣

H sin θ dθ ≤ 0. (26)

Using Einstein equations (15) and (16) together with the boundary conditions
(11), we may rewrite the integrand in (25) as

(µ̂û),R

∣

∣

H =
2(ûN)2

rh

[

1 −
(

ûω,R

4

)2

sin2θ − ũ,θ(ũ,θ + 2 cot θ)

−
A2

ϕ,θ

û sin2θ
− û

4
(Φ,R −Aϕω,R)2

]

. (27)

Hence we can express (25) in terms of S, T , U , and V :

1

2

1
∫

−1

[

(V 2 + U ′ 2)(1 − x2) − 2xU ′ + (S2 + T ′2)e−2U
]

dx < 1 (28)

where ′ := d/dx. With the expressions for pJ and pQ [see (23), (24)] we can thus
write the implication in (26) as follows:





1
∫

−1

[

V e2U (1 − x2) − 2ST
]

dx





2

+
1

4





1
∫

−1

Sdx





4

≥ 4

⇒ 1

2

1
∫

−1

[

(V 2 + U ′ 2)(1 − x2) − 2xU ′ + (S2 + T ′ 2)e−2U
]

dx ≥ 1. (29)

In the following we show that this implication holds for all sufficiently regular
functions7

S, T, U, V : [−1, 1] → R

which satisfy the boundary conditions

U(±1) = T (±1) = 0. (30)

The conditions in (30) follow from (17), (18), (12), (13).

7 A precise statement about the required regularity properties follows below.
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In the next step we formulate a variational problem which is a sufficient
criterion for the validity of the implication in (29). Applying the Cauchy-Schwarz
inequality to the first inequality in (29), we obtain







√

√

√

√

√

1
∫

−1

V 2(1 − x2)dx

√

√

√

√

√

1
∫

−1

e4U (1 − x2)dx+ 2

∣

∣

∣

∣

∣

∣

1
∫

−1

S Tdx

∣

∣

∣

∣

∣

∣







2

+
1

4





1
∫

−1

Sdx





4

≥ 4.

With the abbreviations

c1 :=

√

√

√

√

√

1
∫

−1

e4U (1 − x2)dx, c2 :=

1
∫

−1

STdx, c3 :=
1√
2

1
∫

−1

Sdx, (31)

this inequality leads to the estimate

1
∫

−1

V 2(1 − x2)dx ≥M2
2 , (32)

where

M1 := max
{

0, 4 − c43
}

, M2 := max

{

0,

√
M1 − 2|c2|

c1

}

. (33)

Using (32) in order to replace the term
∫

V 2(1− x2) dx in the second inequality
in (29), it follows immediately that

I[S, T, U ] :=
1

2

1
∫

−1

[U ′ 2(1 − x2)− 2xU ′(x) + (S2 + T ′ 2)e−2U ]dx+
M2

2

2
≥ 1 (34)

is a sufficient condition for the validity of the implication in (26). We summarize
this result in the following lemma.

Lemma 2 (Variational problem). The inequality p2
J + p2

Q < 1 holds for any
sub-extremal axisymmetric and stationary charged black hole with surrounding
matter provided that the inequality

I[S, T, U ] ≥ 1 (35)

is satisfied for all S ∈ L2(−1, 1), T, U ∈W 1,2
0 (−1, 1).

Remark: The Lebesgue and Sobolev spaces L2 and W 1,2
0 contain all functions

S and T , U , respectively, that arise in the physical situation above.
With this lemma, we have reduced inequality (2) to the variational problem

of calculating the minimum of I[S, T, U ] and showing that this is greater than
or equal to 1. In the next section, we solve this problem with methods from the
calculus of variations.
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5. Solution of the variational problem

5.1. An approximating family of functionals.

Analyzing the functional I proves difficult as the factor 1− x2 is singular at the
boundary x = ±1, cf. definition of I in (34). We therefore approximate it by a
family of slightly modified functionals Iε which are conducive to analysis using
techniques of the calculus of variations. We work on the Hilbert space

X := (L2 ×W 1,2
0 ×W 1,2

0 )(−1, 1) (36)

endowed with the inner product

〈

(S, T, U), (S̃, T̃ , Ũ)
〉

:=

1
∫

−1

[

SS̃ + T ′T̃ ′ + U ′Ũ ′(1 + ε− x2)
]

dx

depending on a fixed ε > 0. Recall that this inner product is equivalent to the
ordinary one by the fundamental theorem of calculus. Moreover, we have

Proposition 1 (Theorem 2.2 in Buttazzo-Giaquinta-Hildebrandt [4]).
On any bounded interval J ⊆ R, W 1,2(J) →֒ C0(J) compactly. Moreover, the
fundamental theorem of calculus holds in W 1,2(J).

For ε ≥ 0, we consider the functional Iε : X → R given by

Iε[S, T, U ] :=
1

2

1
∫

−1

[

U ′ 2(1 + ε− x2) − 2xU ′ + (S2 + T ′ 2)e−2U
]

dx+
M ε

2 [S, T, U ]2

2

(37)
where the auxiliary functionals M ε

2 ,M1, c
ε
1, c2, c3 : X → R are defined by

cε1[S, T, U ] :=

√

√

√

√

√

1
∫

−1

e4U (1 + ε− x2)dx, c2[S, T, U ] :=

1
∫

−1

ST dx, (38)

c3[S, T, U ] :=
1√
2

1
∫

−1

S dx, M1[S, T, U ] := max
{

0, 4 − (c3[S, T, U ])4
}

, (39)

and

M ε
2 [S, T, U ] := max

{

0,

(√
M1 − 2|c2|

cε1

)

[S, T, U ]

}

, (40)

respectively. All of these functionals can easily be seen to be well-defined, and
all auxiliary functionals are weakly continuous on X by Poincaré’s inequality.
Also, cε1 is positive and both M1, M

ε
2 are non-negative.

We now show that for ε > 0 there exists a global minimizer (S, T, U) ∈ X for
Iε and study its value Iε[S, T, U ]. Following this investigation, we take the limit
ε→ 0 and see that the claim of lemma 2 follows.
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5.2. Existence and characterization of the minimizer.

Now let ε > 0 be fixed. Iε then has the following properties:

(i) Iε is bounded from below. Using 0 ≤
(

x√
1+ε−x2

− U ′(x)
√

1 + ε− x2
)2

=

x2

1+ε−x2 − 2xU ′(x) + U ′ 2(x)(1 + ε− x2) we conclude that

Iε[S, T, U ] ≥ −1

2

∫ 1

−1

x2

1 + ε− x2
dx =: C(ε) > −∞

for any (S, T, U) ∈ X .
(ii) Iε is coercive with respect to the weak topology on X . Indeed, applying the

Cauchy-Schwarz inequality to
∫ 1

−1
xU ′(x)dx, we obtain that

Iε[S, T, U ] ≥ 1

2
‖U‖2 − C(ε)‖U‖

for any (S, T, U) ∈ X with C(ε) > 0. Hence, for every P ∈ R there ex-
ists QP ∈ R such that Iε[S, T, U ] ≥ P whenever ‖(S, T, U)‖ ≥ QP . This
is equivalent to coercivity of the functional Iε with respect to the weak
topology on X , where both the norm ‖ · ‖ and the weak topology refer to
the inner product defined above.

(iii) The functional Iε is sequentially lower semi-continuous (lsc) with respect
to the weak topology on X . To see this, recall that lower semi-continuity is
additive and that the first terms can be dealt with by standard theory (see
e.g. [9]), and use proposition 1 as well as the Lipschitz continuity of exp on
bounded intervals. For the last term, the weak continuity of the auxiliary
functionals yields the claim.

We are now in a position to show existence of a global minimizer for Iε:
As we have seen in (i), Iε is bounded from below on X . We can hence choose a
minimizing sequence (Sk, Tk, Uk) ∈ X which must be bounded by coercivity (ii)
and thus has a weakly converging subsequence by Hilbert space techniques (the-
orem of Eberlein-Shmulyan [9]) tending to a limit (S∗, T ∗, U∗). Lower semiconti-
nuity as in (iii) then gives us Iε[S

∗, T ∗, U∗] = inf{Iε[S, T, U ] | (S, T, U) ∈ X} and
thus asserts that (S∗, T ∗, U∗) is a global minimizer. However, Iε is not Fréchet-
differentiable at (S, T, U) ∈ X with c2[S, T, U ] = 0 and c43[S, T, U ] = 4 due to the
maximum-terms in the definitions of M ε

i (i = 1, 2). It is consequently impossible
to derive Euler-Lagrange equations for Iε directly.

To circumvent this problem, we introduce the constraints cεi = constant (i =
1, 2, 3) and use the method of Lagrange multipliers to minimize Iε under these
constraints. This leads to a Fréchet-differentiable functional on every class K
with fixed values of cεi . Moreover, the asserted global minimizer (S∗, T ∗, U∗) also
minimizes Iε in its class K∗ which induces conditions on the constants specifying
K∗ and explicit expressions for the related Lagrange multipliers.

5.3. The Euler-Lagrange equations.

Setting c∗i := cεi [S
∗, T ∗, U∗] and M∗

j := M ε
j [S∗, T ∗, U∗] (i = 1, 2, 3; j = 1, 2), the

class K∗ containing the global minimizer (S∗, T ∗, U∗) is characterized by

K∗ := {(S, T, U) ∈ X | cεi [S, T, U ] = c∗i (i = 1, 2, 3)} .
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In this class, Iε can be evaluated as follows

Iε[S, T, U ] =
1

2

1
∫

−1

[

U ′ 2(1 + ε− x2) − 2xU ′ + (S2 + T ′2)e−2U
]

dx+
(M∗

2 )2

2
.

By the theory of Lagrange multipliers, for each minimizer (S, T, U) of Iε in the
class K∗, there is (λ1, λ2, λ3) ∈ R3 such that (S, T, U, λ1, λ2, λ3) ∈ X × R3 is a
critical point of the functional J∗

ε : X ×R3 → R given by

J∗
ε [S, T, U, λ1, λ2, λ3] :=

1

2

1
∫

−1

[

U ′ 2(1 + ε− x2) − 2xU ′ + (S2 + T ′2)e−2U
]

dx

+λ1

(

(cε1[S, T, U ])2 − (c∗1)
2
)

+ λ2 (c2[S, T, U ] − c∗2)

+
√

2λ3 (c3[S, T, U ]− c∗3) ,

which is well-defined and indeed sufficiently smooth by proposition 1. In other
words, there is (λ∗1, λ

∗
2, λ

∗
3) ∈ R3 such that (S∗, T ∗, U∗) satisfies

0 =

1
∫

−1

[

U ′ψ′(1 + ε− x2) − xψ′]dx+

1
∫

−1

[

Sρ+ T ′ϕ′ − (S2 + T ′ 2)ψ
]

e−2U dx

+ 4λ∗1

1
∫

−1

e4Uψ(1 + ε− x2) dx+ λ∗2

1
∫

−1

(Sϕ+ Tρ) dx+ λ∗3

1
∫

−1

ρ dx (41)

for all (ρ, ϕ, ψ) ∈ X . This can be restated by saying that (S∗, T ∗, U∗) is a weak
solution of

0 = −U ′′(1 + ε− x2) + 2xU ′ + 1 − (S2 + T ′ 2)e−2U + 4λ∗1(1 + ε− x2) e4U (42)

0 = −T ′′ + 2U ′T ′ + λ∗2Se2U (43)

0 = S + (λ∗2T + λ∗3)e
2U (44)

0 = T (±1) = U(±1)

on (−1, 1). Any weak solution (S, T, U) ∈ X of the system (42), (43), and (44)
can be shown to be smooth and to satisfy the equations strongly via a bootstrap
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argument: For all (ρ, ϕ, ψ) ∈ X , we can rewrite (41) as

0 =

1
∫

−1



U ′(1 + ε− x2) − x+

x
∫

−1

(S2 + T ′2) e−2Udt

−4λ∗1

x
∫

−1

e4U (1 + ε− t2)dt



ψ′ dx,

0 =

1
∫

−1



T ′e−2U − λ∗2

x
∫

−1

S dt



ϕ′ dx,

0 =

1
∫

−1

[

Se−2U + λ∗2T + λ∗3
]

ρ dx,

where we used integration by parts and proposition 1. By the fundamental lemma
of the calculus of variations, there are constants a, b ∈ R such that the equations

a = U ′(x)(1 + ε− x2) − x+

x
∫

−1

(S2 + T ′2) e−2Udt

−4λ∗1

x
∫

−1

e4U (1 + ε− t2) dt, (45)

b = T ′(x) e−2U(x) − λ∗2

x
∫

−1

S dt, (46)

0 = S(x) e−2U(x) + λ∗2 T (x) + λ∗3 (47)

hold almost everywhere on (−1, 1). Solving iteratively for T ′, U ′, and S, we
deduce the respective smoothness of S, T , and U up to the boundary by a
bootstrap argument (similar to p. 462 in [6]) using propostion 1 in every step.
Differentiating equations (45) and (46), we get validity of (42) and (43) in the
strong sense. In particular, (S∗, T ∗, U∗) is a smooth classical solution of the
Euler-Lagrange equations of J∗

ε with (λ1, λ2, λ3) = (λ∗1, λ
∗
2, λ

∗
3).

5.4. Solution of the Euler-Lagrange equations.

Let us now determine the minimizer (S, T, U) := (S∗, T ∗, U∗) explicitly, dropping
the asterisk in what follows for ease of notation. S can obviously be expressed
as

S(x) = −[λ3 + λ2 T (x)] e2U(x) (48)

by equation (44). Inserting this expression into (43), we get the equation

0 = T ′′ − 2U ′T ′ + λ2 (λ3 + λ2 T ) e4U , (49)

a linear ODE of second order for T for given U . To solve (49), consider two
separate cases:
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(i) Assume λ2 = 0. Then (49) reduces to T ′′ = 2UT ′ which has the general
solution T (x) = a

∫ x

−1
e2U(t) dt+b with a, b ∈ R, so that T (±1) = 0 induces

T ≡ 0.
(ii) Assume now λ2 6= 0. In this case, (49) has the general solution

T (x) =
λ3

λ2



a sin



λ2

x
∫

−1

e2U(t) dt



+ b cos



λ2

x
∫

−1

e2U(t) dt



− 1



 (50)

with a, b ∈ R. For λ3 6= 0, inserting the boundary values T (±1) = 0 gives
us b = 1 and

a =

1 − cos

(

λ2

1
∫

−1

e2U(t) dt

)

sin

(

λ2

1
∫

−1

e2U(t) dt

) = ±

√

√

√

√

√

√

√

√

√

1 − cos

(

λ2

1
∫

−1

e2U(t) dt

)

1 + cos

(

λ2

1
∫

−1

e2U(t) dt

) . (51)

The task of determining U remains to be completed. To this end, set

γ := −
[

S(x)2 + T ′(x)2
]

e−4U(x) ≤ 0 (52)

and observe that dγ/dx = 0, so that γ is a non-positive constant. Moreover,
from the explicit expressions obtained for S and T , we see that γ = −λ2

3 (1+a2)
where, as defined above, a = 0 if λ2 = 0 and a is as in (51) otherwise.

Recall that (S, T, U) is a global minimizer of Iε. Although Iε is not globally
Fréchet-differentiable w.r.t. S and T , it can straightforwardly be shown that it
is continuously Fréchet-differentiable w.r.t. U . We thus deduce via integration
by parts and by the fundamental lemma of the calculus of variations that

0 = −U ′′(1 + ε− x2) + 2xU ′ + 1 − (S2 + T ′ 2)e−2U − 2M2
2

c21
(1 + ε− x2) e4U .

Comparing this equation with (42), we obtain the explicit expression

λ1 = −M
2
2

2c21
≤ 0. (53)

Moreover, the Euler-Lagrange equation (42) for U , which can now be written as

0 = −U ′′(1 + ε− x2) + 2xU ′ + 1 + γe2U + 4λ1(1 + ε− x2) e4U ,

has an integrating factor and leads to the first order ODE

F := −(1 + ε− x2)2U ′ 2 + 2x(1 + ε− x2)U ′ + 2λ1 e4U (1 + ε− x2)2

−x2 + γ (1 + ε− x2) e2U ≡ constant, (54)

because

F ′(x) = 2[(1 − x2)U ′(x) − x]
[

− U ′′(1 + ε− x2) + 2xU ′ + 1 + γe2U

+4λ1(1 + ε− x2) e4U
]

= 0.
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We now proceed to calculate U . Substituting W (x) := (1 + ε− x2) e2U(x) > 0
on [−1, 1], equation (54) can be reformulated to say

W ′

2W
= ±

√

2λ1W 2 + γW − F

1 + ε− x2
, (55)

which in particular implies F ≤ 0 as both λ1, γ ≤ 0 and W > 0 by definition.
We would like to divide by the square root on the right hand side and integrate
the equation. We must first find out where the zeros of W ′ can lie, if they exist
at all. A careful discussion of the ODE (55) refering to (42), the boundary values
W (±1) = ε, and using the fact that we are discussing the class K∗ containing
the global minimizer, shows that W ′ has exactly one zero x̃ ∈ (−1, 1) and that
W ′′(x̃) < 0. Moreover, from this discussion we obtain F < 0 and the fact that
λ1 and γ cannot vanish simultaneously.

Integrating (55) on both [−1, x̃) and (x̃, 1] and using W ′′(x̃) < 0 to determine
the correct sign on each interval we obtain

W±(x) =
2F

γ −
√

γ2 + 8λ1F cosh y±(x)
, y±(x) :=

2
√
−F√

1 + ε
artanh(

x√
1 + ε

)±C,

where

C = − 2
√
−F√

1 + ε
artanh

(

1√
1 + ε

)

+ artanh

(

√

2λ1ε2 + γε− F√
−F + γε

2
√
−F

)

,

W− : [−1, x̃) → R, W+ : (x̃, 1] → R. As the solution W we are looking for is
smooth by the above and agrees with W± where they exist, W− and W+ must
smoothly fit together at x̃. Also, the induced functions U−, U+ both smoothly
extend to [−1, 1] and must agree at x̃ to all orders. Moreover, they both solve
equation (42). Thus, Picard’s uniqueness theorem (cf. p. 9 in [8]) tells us they
agree on the whole interval [−1, 1]. FromW−(−x) = W+(x) we deduce symmetry
of W , x̃ = 0, and C = 0.

Altogether, we know that W has the following form

W (x) =
2F

γ −
√

γ2 + 8λ1F cosh y(x)
, y(x) :=

2
√
−F√

1 + ε
artanh(

x√
1 + ε

). (56)

5.5. Estimating the minimal value of Iε.

In order to estimate the value of Iε at its global minimizer, we use the fact that
(54) allows us to simplify our expression for Iε. Using (53), we obtain

Iε[S, T, U ] = 1 −
(√

1 + ε+
F√
1 + ε

)

artanh
1√

1 + ε
. (57)

We now intend to estimate F from above via

F ≤ −(1 + ε)

[

1 −
2 ln 2+ε

2−ε

ln (2+ε)2

ε

]2

, (58)
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which allows us to conclude that lim inf
ε→0

Iε ≥ 1, see subsection 5.8. We prepare

this estimate with the study of two auxiliary functions f and g, see below. We
then use these functions to obtain (58) in the cases c2 6= 0 and c2 = 0 (and
several subcases), see subsections 5.6 and 5.7.

We define

f(α) :=
1

2
M ε

2 [(1 + α)S, T, U ]2, g(α) :=
1

2
M ε

2 [S, (1 + α)T, U ]2.

The function g : R→ R can be seen to be differentiable at α = 0 and we obtain

g′(0) = −2 |c2|M2

c1
. (59)

As (S, T, U) simultaneously is a minimizer of Iε and a critical point of Jε, it
follows from (41) on the other hand that

0 =

1
∫

−1

T ′ 2 e−2Udx+ λ2 c2 =

1
∫

−1

T ′2 e−2Udx+ g′(0). (60)

We also find that f : R → R is differentiable at α = 0 unless both c2 = 0 and
c43 = 4. Recall that this singular case also led us to the introduction of Lagrange
multipliers. We then have

f ′(0) =

{

g′(0) − 2 M2 c4

3

c1

√
M1

if M1 6= 0

0 if M1 = 0
, (61)

unless both c2 = 0 and c43 = 4. In addition, it follows as above that

0 =

1
∫

−1

S2e−2Udx+ λ2 c2 +
√

2λ3 c3 =

1
∫

−1

S2e−2Udx+ f ′(0), (62)

or equivalently

0 = −γ
1
∫

−1

e2Udx−
1
∫

−1

T ′2e−2Udx+ λ2 c2 +
√

2λ3 c3

= −γ
1
∫

−1

e2Udx−
1
∫

−1

T ′2e−2Udx+ f ′(0). (63)



A universal inequality for black holes with surrounding matter 15

5.6. Estimating the minimal value of Iε: the case c2 = 0.

The explicit expression (59) for g′(0) suggests separate treatment of the cases
c2 = 0 and c2 6= 0. We begin with c2 = 0. Four different subcases arise, namely

(a) c43 = 4
(b) c3 = 0
(c) c3 6= 0, M1 = 0
(d) c3 6= 0, M1 6= 0.

We will find that the last two cases cannot occur in the minimizing class K∗. In
the first two cases, we will indeed arrive at estimate (58).

Let us discuss the singular case (a) first. Here, (60) implies T ≡ 0, c3 6= 0
assures S 6= 0 so that we can deduce λ2 = 0 from (43). RecallM1 = M2 = λ1 = 0,

γ 6= 0. Then (48) implies S = −λ3 e2U so that c3 = − λ3√
2

∫ 1

−1 e2U dx. Let us

proceed to calculate
∫ 1

−1
e2U dx. The boundary condition W (±1) = ε implies

γ = 2F
ε(1+cosh y1)

and we are in a position to calculate

1
∫

−1

e2U(x)dx =

1
∫

−1

W (x)

1 + ε− x2
dx = −

√
−F
2γ

y1
∫

−y1

[

1 − tanh2
(y

2

)]

dy =
ε sinh(y1)√

−F
.

Recalling γ = −λ2
3, we deduce 2 = c23 = 2ε sinh2

(

y1

2

)

so that cosh y1 = 2+ε
ε

,
whence by definition of y1, F = −(1 + ε) in accordance with (58).

We now proceed to a discussion of case (b). From (60) and (62), we get T ≡ 0
and S ≡ 0, respectively. This implies γ = 0 so that λ1 6= 0 by the above. We
therefore obtain

W (x) =

√
−F√

−2λ1 cosh y(x)

so that the boundary condition W (±1) = ε leads to λ1 = F
2ε2 cosh2 y1

. We calcu-

late

c21 =

1
∫

−1

W 2

1 + ε− x2
dx = −

√
−F

2λ1
tanh y1.

Recall that in this particular case also λ1 = − 2
c4

1

by (53) so that y1 = arsinh2
ε

and we arrive at estimate (58) using

arsinhx = ln(x+
√

x2 + 1) and artanhx =
1

2
ln

1 + x

1 − x
.

Let us continue with case (c). From (60) we get T ≡ 0, whereas M1 = 0
implies M2 = 0 and thus λ1 = 0 by (53). On the other hand, we get f ′(0) = 0
from (61) so that by (63) we have γ = 0, a contradiction, because we have seen
in the previous subsection that λ1 and γ cannot vanish simultaneously.

Finally, we discuss case (d). As before, we get T ≡ 0 and thus by (43) λ2 = 0

as c3 6= 0 ensures S 6≡ 0. Equation (62) then leads to λ3 = −
√

2c3

3

c2

1

. From this, we

obtain
∫ 1

−1 e2U dx =
c2

1

c2

3

where we used (48) and c3 6= 0. Also, γ = −λ2
3 so that

γ = − 2c6

3

c4

1

. In particular, Iε[S, T = 0, U ] = Iε[0, 0, U ] +
c4

3

2c2

1

> Iε[0, 0, U ]. This

contradicts [S, T = 0, U ] being a global minimizer of Iε.



16 J. Hennig, C. Cederbaum, M. Ansorg

5.7. Estimating the minimal value of Iε: the case c2 6= 0.

Finally let c2 6= 0. If λ1 = 0 were possible, then by (53) M2 = 0 so that g′(0) = 0
and thus T ≡ 0 follow from (59), (60). Equation (61) then tells us that f ′(0) = 0
and whence S ≡ 0, so that also γ = 0, in contradiction to the above exclusion of
λ1 = γ = 0. Thus, λ1 6= 0 which implies both M2 6= 0 and M1 6= 0. Using again
(60), (62), and (53), we obtain:

λ1 = − (
√

4 − c43 − 2|c2|)2
2c41

(64)

λ2 = −2(
√

4 − c43 − 2|c2|)
c21

sign(c2) (65)

λ3 = −
√

2(
√

4 − c43 − 2|c2|)c33
√

4 − c43 c
2
1

. (66)

Rewrite S, T in terms of A(x) := λ2

x
∫

0

e2U(t)dt, A1 := A(1) and use W (±1) = ε,

equation (52), and our definition of y1 as well as symmetry of U to obtain

T (x) =
λ3

λ2

[

cosA(x)

cosA1
− 1

]

(67)

S(x) = − λ3
cosA(x)

cosA1
e2U(x) (68)

γ = − λ2
3

cos2A1
(69)

c21 = −
√
−F

2λ1

[

√

γ2 + 8λ1F sinh y1
√

γ2 + 8λ1F cosh y1 − γ

+
2γ√
8λ1F

arctan

(

γ +
√

γ2 + 8λ1F√
8λ1F

tanh
y1
2

)]

(70)

c2 = − λ2
3

λ2
2

A1 − sinA1 cosA1

cos2A1
(71)

c3 = −
√

2
λ3

λ2
tanA1 (72)

A1 =
λ2√
−2λ1

arctan

(

γ +
√

γ2 + 8λ1F√
8λ1F

tanh
y1
2

)

(73)

ε =
2F

γ −
√

γ2 + 8λ1F cosh y1
(74)

y1 =
2
√
−F√

1 + ε
artanh

1√
1 + ε

. (75)

Now set φ := arccos −γ√
γ2+8λ1F

∈ (0, π
2 ) which is well-defined as λ1 · F > 0.

Using this new constant, equations (67) through (75) take on a simpler form. In
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particular, these equations lead to 0 < |A1| ≤ φ < π
2 and

c21 =
4 tanφ cosA1 | sinA1 −A1 cosA1|√

−F sin4A1

, c3 = ±
√

2 cosA1.

For the Lagrange multipliers, we get

λ1 =
F sin4A1

8 tan2 φ cos2A1
,

λ2 =
4(sinA1 −A1 cosA1)

c21 sin2A1

,

λ3 = ∓ 4

c21
cos

3

2A1
| sinA1 −A1 cosA1|

sin3A1

.

With the above expressions, we obtain

ε =
2 cosA1 sin2φ

sin2A1 cosφ (cosh y1 + cosφ)
.

As sin2x
cos x

is monotonically increasing on
(

0, π
2

)

and |A1| ≤ φ, we have ε ≥ 2
cosh y1+1

or in other words

y1 ≥ arcosh

(

2

ε
− 1

)

.

This implies
√
−F ≥

√
1 + ε arcosh

(

2
ε
− 1
)

2 artanh 1√
1+ε

,

where we have used (75). Recall arcoshx = ln
(

x+
√
x2 − 1

)

to deduce (58) also
in the discussed case c2 6= 0.

5.8. The limit ε→ 0.

We conclude as promised that for c2 = 0 cases (c) and (d) cannot apply for the
minimizer (S, T, U), whereas in the remaining cases (a) and (b), as well as for
c2 6= 0, we can estimate using (57) and (58) that

Iε[S, T, U ] ≥ 1 +
√

1 + ε





(

1 −
2 ln 2+ε

2−ε

ln (2+ε)2

ε

)2

− 1



 artanh
1√

1 + ε

≥ 1 − 2
√

1 + ε ln
2 + ε

2 − ε
. (76)

We now study the limit ε→ 0. For any (S, T, U) ∈ X , c2[S, T, U ], c3[S, T, U ]
and thus M1[S, T, U ] are independent of ε, limε→0 c

ε
1[S, T, U ] = c01[S, T, U ] and

thus limε→0M
ε
2 [S, T, U ] = M0

2 [S, T, U ] so that

|I[S, T, U ] − Iε[S, T, U ]| ≤ ε

2

1
∫

−1

U ′(x)2dx+

∣

∣

∣

∣

M2[S, T, U ]2

2
− M ε

2 [S, T, U ]2

2

∣

∣

∣

∣

→ 0
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as ε → 0, i.e. Iε[S, T, U ] is continuous at ε = 0 for fixed (S, T, U). This finally
leads us to an esimate of the original functional I. We obtain

I[S, T, U ] = lim
ε→0

Iε[S, T, U ]

≥ lim inf
ε→0

Iε[S
∗, T ∗, U∗]

≥ lim inf
ε→0

(

1 − 2
√

1 + ε ln
2 + ε

2 − ε

)

= 1,

where (S∗, T ∗, U∗) denotes the global minimizer of Iε.
This proves the claim of lemma 2 and therefore the inequality (2).

⊓⊔
Finally, after we have seen that the functional I has a lower bound of 1, we

can ask the question of whether there exist functions S, T , and U for which I
takes on this value. The investigation of this question together with a discussion
of the meaning of I in the context of degenerate black holes can be found in
appendix A.

6. Discussion

With techniques from the calculus of variations, we have shown that the inequal-
ity p2

J + p2
Q < 1 holds for axisymmetric and stationary sub-extremal black holes

with surrounding matter in full Einstein-Maxwell theory.
In particular, we have proved the inequality I[S, T, U ] ≥ 1 for the functional

I defined in (34). As I could not directly be seen to have a local minimizer, we
introduced a family of approximating functionals Iε which could be shown to
have one.

Together with a theorem for degenerate black holes in [1], we can deduce the
following.

Theorem 1. Consider Einstein-Maxwell spacetimes with vanishing cosmological
constant. Then, for every axisymmetric and stationary sub-extremal black hole
with arbitrary surrounding matter we have the inequality

(8πJ)2 + (4πQ2)2 < A2.

If the axisymmetric and stationary black hole is degenerate, the equation

(8πJ)2 + (4πQ2)2 = A2

holds.

Observe that the assumptions for the result in [1] which has been used here
have been weakened, see appendix A.

Theorem 1 provides a remarkable relation between the geometrical concept of
the existence of trapped surfaces and the physical black hole properties described
by rotation rate pJ and charge rate pQ. We see that “physically reasonable”
(sub-extremal) black holes cannot rotate “too fast” and cannot be charged “too
strongly”.
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Finally, our results shed new light on the notions of sub-extremality and ex-
tremality of axisymmetric and stationary black holes. Any sub-extremal black
hole in the sense of [3] (the notion of which we have used throughout this paper)
is also sub-extremal in the sense that p2

J + p2
Q < 1. In fact, p2

J + p2
Q = 1 holds in

the degenerate limit, for which reason we may call these black holes “extremal”.
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A. Remarks on degenerate black holes

In order to discuss extremal black holes (as done in [1]) and to get an idea of
the meaning of the appearing functional I, one can apply similar techniques as
used in Sec. 5 to I itself to derive Euler-Lagrange equations and a complete
characterization of the minimizers of I. As minimizers of I need not be limits of
minimizers of Iε, this renewed analysis is necessary.

It turns out that the Euler-Lagrange equations for S and T are just as before,
cf. (43) and (44). Moreover, there again exists an integrating factor for the Euler-
Lagrange equation for U leading to

−1 = −(1 − x2)2U ′ 2 + 2x(1 − x2)U ′ + 2λ1 e4U (1 − x2)2 − x2 + γ (1 − x2) e2U ,

where γ is defined as in (52). Introducing W (x) := (1−x2)e2U(x) on the interior
(−1, 1), we find that equation (55) holds on (−1, 1) with ε = 0 and F = −1.
Discussing the radicand in (55) as before, we see that it vanishes at at most
one inner point. Assuming non-vanishing of the radicand and integrating the
equation on (−1 + δ, 1 − δ) for some δ > 0 leads to a contradiction as the
unique solution U derived from W diverges as δ → 0 while we know that the
smooth solution U exists on the whole interval by the same bootstrap argument
as sketched above. Thus we know that there exists exactly one interior zero of
the radicand and we can integrate the equation as before to obtain

e2U(x) =
2

(1 + γ)x2 + 1 − γ
, (77)

and the consistency condition

γ2 − 8λ1 = 1,

using the boundary values for U , U(±1) = 0. In other words, U belongs to a
family parametrized by γ ∈ [−1, 0].

Proceeding as above, we find that S and T are given by

S(x) = ±
[

(−γ) 3

2 +
√

1 − γ2|T (x)|
]

e2U

T (x) = ±
√

−γ(1 − γ2)
1 − x2

1 − γ + (1 + γ)x2
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with γ ∈ [−1, 0]. The signs of S and T can be chosen independently of each
other. It can a posteriori be seen that all functions S, T , U of this form with
γ ∈ [−1, 0] in fact satisfy

I[S, T, U ] = 1

so that we have identified all minimizers of I. Moreover, one can show that the
Lagrange parameters λ1, λ2, λ3 can explicitly be expressed as

λ1 = −1

8
(1 − γ2), λ2 = ±

√

1 − γ2, λ3 = ±(−γ) 3

2 , (78)

where again the signs are not correlated.
By comparison with [1], one finds that these are exactly the functions S, T ,

and U arising in the context of arbitrary degenerate black holes with surrounding
matter8. Moreover, the differential equations characterizing S, T , and U in [1]
are exactly the Euler-Lagrange equations of I derived in this paper where the
Lagrange parameters in (78) correspond to the constants appearing in [1].

We arrive at two conclusions: First, our analysis dispenses with additional
assumptions made in [1], namely equatorial symmetry and the existence of a
continuous sequence of spacetimes, leading from the Kerr-Newman solution in
electrovacuum to the discussed black hole solution. The latter was necessary to
assure uniqueness (up to a parameter) of the solution to the horizon equations
in [1].

As a matter of fact, any smooth solution of the equations in [1] is a minimizer
of I as can be seen by solving the equations as done above and using the relations
in (78) between γ and the Lagrange parameters. Thus, any solution of these
equations is automatically equatorially symmetric and of the form assumed in
[1]. Hence, the unnecessary assumptions of [1] can be dropped.

Secondly, we see that the functional I plays the role of a “primitive” of the
Einstein equations on the event horizon of degenerate black holes: Remarkably,
the Euler-Lagrange equations corresponding to I lead uniquely to the electro-
magnetic and metric potentials S, T , and U belonging to degenerate black holes.
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