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We study the interior electrovacuum region of axisymmetric and stationary black holes with surround-

ing matter and find that there exists always a regular inner Cauchy horizon inside the black hole, provided

the angular momentum J and charge Q of the black hole do not vanish simultaneously. In particular, we

derive an explicit relation for the metric on the Cauchy horizon in terms of that on the event horizon.

Moreover, our analysis reveals the remarkable universal relation ð8�JÞ2 þ ð4�Q2Þ2 ¼ AþA�, where Aþ

and A� denote the areas of event and Cauchy horizon, respectively.
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Introduction.—In the interior of a single rotating, electri-
cally charged, axisymmetric, and stationary black hole in
electrovacuum (described by the Kerr-Newman family of
solutions) there exists a Cauchy horizonH�, which is the
future boundary of the domain of dependence of the event
horizon Hþ. The presence of this Cauchy horizon is
related to the fact that, in Boyer-Lindquist coordinates,
the axisymmetric and stationary Einstein-Maxwell vacuum
equations are hyperbolic within an interior vicinity of
Hþ. The two horizons Hþ and H� represent the past
and future boundary of this hyperbolic region. Interest-
ingly, for the Kerr-Newman family the areas A� of the
horizons H� are related by

ð8�JÞ2 þ ð4�Q2Þ2 ¼ AþA�; (1)

where J and Q are the angular momentum and charge of
the black hole, respectively.

In pure Einsteinian gravity (i.e., without Maxwell field),
these observations have been generalized in [1]. It was
shown that for axisymmetric and stationary black holes
with surrounding matter there always exists a regular inner
Cauchy horizon, provided that J � 0 holds. It was also
shown that such black holes satisfy relation (1) (with
Q ¼ 0) in general.

In this Letter, we investigate axisymmetric and station-
ary black holes with surrounding matter and include elec-
tromagnetic fields. For our analysis, we will make use of a
linear matrix problem, whose integrability conditions are
equivalent to the Einstein-Maxwell equations in vacuum
(see [2]). The existence of such a linear problem (LP)
permits the application of so-called soliton methods (e.g.
the ‘‘inverse scattering method’’) through which particular
solutions of the field equations in question can be found
(see, e.g., [3,4]).

Here we integrate the LP along the boundaries of the
hyperbolic region inside the black hole and obtain in this
manner useful relations between the field quantities at
these boundaries. In particular, we are able to calculate
the metric and electromagnetic potentials onH� in terms

of those on Hþ. Moreover, we find that from these
relations Eq. (1) can be deduced; i.e., Eq. (1) turns out to
be valid for arbitrary axisymmetric and stationary black
holes with surrounding matter in Einstein-Maxwell theory.
A detailed description of the calculations sketched be-

low will be given in a forthcoming paper.
Coordinate systems and Einstein-Maxwell equations.—

In the following, we study an electrovacuum vicinity of the
black hole’s event horizon. (Note that for a stationary
spacetime, the immediate vicinity of a black hole event
horizon must be electrovacuum; see [5,6].) In this vicinity,
we introduceWeyl coordinates (%, � ,’, t) in which the line
element reads as follows

ds2 ¼ e�2U½e2kðd%2 þ d�2Þ þ %2d’2�
� e2Uðdtþ ad’Þ2; (2)

where the metric potentials U, k, and a are functions of %
and � alone. As sketched in Fig. 1 (left panel), the event
horizon Hþ is located on the interval �2rh � � � 2rh,
rh ¼ const, of the �-axis. The remaining part j�j> 2rh of
the �-axis corresponds to the rotation axis.
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FIG. 1. Sketch of a part of a black hole spacetime in Weyl
coordinates (left panel) and Boyer-Lindquist type coordinates
(right panel). Aþ and A� denote upper and lower parts of the
symmetry axis and Hþ and H� denote event and Cauchy
horizons. In the Letter we will integrate the linear problem for
the Einstein-Maxwell equations along the closed dashed line.
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In order to investigate the interior of the black hole,
which is characterized by negative values of %2, we also
introduce Boyer-Lindquist-type coordinates (R, �,’, t) via

%2 ¼ 4ðR2 � r2hÞsin2�; � ¼ 2R cos�: (3)

In these coordinates, the event horizon Hþ and the inner
Cauchy horizon H� are located at R ¼ rh and R ¼ �rh
respectively; see Fig. 1 (right panel).

In the electrovacuum region, the electromagnetic field
alone constitutes the energy momentum tensor

Tij ¼ 1

4�

�
FkiF

k
j �

1

4
gijFklF

kl

�
; (4)

where Fij is the electromagnetic field tensor. We use the

Lorenz gauge, in which Fij can be written in terms of a

vector potential ðAiÞ ¼ ð0; 0; A’; AtÞ,

Fij ¼ Ai;j � Aj;i: (5)

Note that, like the metric quantities, A’ and At also depend

on R and � only.
We introduce the complex electromagnetic potential �

and the complex Ernst potential E [7,8] by

� ¼ At þ i�; E ¼ e2U � j�j2 þ ib; (6)

where the imaginary parts b and� are related to metric and
vector potentials via

a;% ¼ %e�4U½b;� � ið ���;� �� ��;� Þ�; (7a)

a;� ¼ �%e�4U½b;% � ið ���;% �� ��;%Þ�; (7b)

�;% ¼ e2U

%
ðaAt;� � A’;� Þ; (7c)

�;� ¼ � e2U

%
ðaAt;% � A’;%Þ: (7d)

In this formulation (the bar denotes complex conjuga-
tion), the Einstein-Maxwell equations in electrovacuum
are equivalent to the two complex Ernst equations [7]

e2U�E ¼ rE � ðrE þ 2 ��r�Þ; (8a)

e2U�� ¼ r� � ðrE þ 2 ��r�Þ: (8b)

Here, � and r denote Laplace and nabla operators in flat
cylindrical coordinates (%, � , ’).
The linear problem.—As mentioned in the introduction,

the existence of the LP, whose integrability conditions are
equivalent to (8), is crucial for our analysis. For its for-
mulation we introduce the complex coordinates z ¼ %þ
i� , �z ¼ %� i� and the function

�ðK; z; �zÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K � i�z

K þ iz

s
; (9)

which depends on a spectral parameter K 2 C. For fixed
values z, �z, Eq. (9) describes a spectral mapping C ! C,
K � � from a two-sheeted Riemann surface (K-plane)
onto the complex �-plane. The two K sheets are connected
at the two branch points K1 ¼ i�z (� ¼ 0) and K2 ¼ �iz
(� ¼ 1).
The LP is a system of first order equations for a 3� 3

matrix pseudopotential � ¼ �ðK; z; �zÞ, which reads [2]

�;z ¼
B1 0 E1

0 A1 0

�F1 0 1
2 ðA1 þ B1Þ

0
BB@

1
CCAþ �

0 B1 0

A1 0 �E1

0 �F1 0

0
BB@

1
CCA

2
664

3
775�; (10a)

�;�z ¼
B2 0 E2

0 A2 0

�F2 0 1
2 ðA2 þ B2Þ

0
BB@

1
CCAþ 1

�

0 B2 0

A2 0 �E2

0 �F2 0

0
BB@

1
CCA

2
664

3
775�; (10b)

where

A1 ¼ 1
2e

�2UðE;z þ 2 ���;zÞ; E1 ¼ ie�U�;z; (11a)

B1 ¼ 1
2e

�2Uð �E;z þ 2� ��;zÞ; F1 ¼ ie�U ��;z: (11b)

Analogous expressions for A2, B2, E2, and F2 can be
obtained from (11) by replacing z with �z.

If � is a solution of the LP (10), then �CðKÞ is also a
solution for every 3� 3 matrix function CðKÞ. We can
always find a CðKÞ to bring � into the form

�>ðK;z; �zÞ ¼
c>

1 ðK;z; �zÞ c<
1 ðK;z; �zÞ 0

c>
2 ðK;z; �zÞ �c<

2 ðK;z; �zÞ 0
c>

3 ðK;z; �zÞ c<
3 ðK;z; �zÞ 0

0
@

1
A; (12)

which depends on three functions c 1, c 2, c 3. Here, the

superscripts ‘‘>’’ or ‘‘<’’ indicate whether the functions
are evaluated in the upper (� ¼ 1 for K ¼ 1) or lower
(� ¼ �1 for K ¼ 1) sheet of the two-sheeted Riemann K
surface. By interchanging ‘‘>’’ and ‘‘<’’ in (12), we

obtain a similar equation for �<. Obviously, � in the

form (12) is not invertible. Nevertheless, we will see that
it still contains sufficient information about E and �.
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For our analysis of the LP it is also useful to study the
situation in a frame of reference that rotates with a constant
angular velocity !0 with respect to our original frame. In

this coordinate system (%, � , ’0, t), the only new coordi-
nate reads ’0 ¼ ’�!0t. Note that line element, Ernst
equations and LP preserve their form in this rotating frame.
The transformed pseudopotential �0 can be obtained from
� via

� 0 ¼
c� 0 0
0 cþ 0
0 0

ffiffiffiffiffiffiffiffiffiffiffiffi
cþc�

p

0
B@

1
CAþ �

�1 �� 0
� 1 0
0 0 0

0
@

1
A

2
64

3
75�

(13)

with

c� :¼ 1þ!0ða� %e�2UÞ; � :¼ iðK þ izÞ!0e
�2U:

(cf. [4,9] for the corresponding transformation valid in pure
gravity, i.e., without electromagnetic field.)

Solution of the linear problem.—We are able to integrate
the LP along the dashed line in Fig. 1 (right panel) since the
metric inside the entire hyperbolic region (excluding H�
for the time being) is regular. This regularity is a con-
sequence of the requirement that the metric potentials be
analytic functions of R and cos� in an exterior vicinity
of Hþ, including Hþ, see theorem 6.3 in [10]. Note
that with the arguments presented there, this theorem can
be carried over to the Einstein-Maxwell case considered
here [11].

On the entire integration path, the Weyl coordinate %
vanishes, see (3), leading to � ¼ �1. For % ¼ 0 and � ¼ 1
the LP reduces to an ODE with the general solution

� ¼
�E þ 2j�j2 1 �

E �1 ��
�2ieU �� 0 �ieU

0
B@

1
CACðKÞ: (14)

Here, C is a 3� 3 matrix that depends on K only.
Respecting the gauge (12), the third column of C vanishes.

On all four parts of our integration path,� has the form
(14), but with different ‘‘integration constants’’ C. We

denote these with C on Aþ, ~C on A�, D on Hþ, and
~D on H�. Moreover, we can normalize � such that

C ðKÞ ¼
C1ðKÞ 0 0
C2ðKÞ c ðKÞ 0
C3ðKÞ 0 0

0
@

1
A; c :¼ ðK2 � 4r2hÞ3;

(15)

holds for the integration constant on Aþ.
From (14), we also calculate the pseudopotentials in the

two different rotating frames of reference with !0 ¼ !�
cf. (13), where !� ¼ !jR¼�rh ¼ const denotes the angu-

lar velocities of the horizons H�. In particular, !� and
the metric potential a are related by the horizon boundary
conditions a ¼ �1=!� valid on H�. Note that a ¼ 0 on
A�. Now, the pseudopotentials� and�0 (in both rotating
frames of reference) are continuous at the north and south

poles of the horizons H�. This leads us to an algebraic

system of equations for the elements of ~C, D, and ~D in
terms of C. From the solution of this system we are able to
derive the solution of the LP on the entire integration path,
expressed in terms of the three functions C1ðKÞ, C2ðKÞ,
and C3ðKÞ.
Potentials on the Cauchy horizon.—From the pseudo-

potential �, we now calculate the potentials E and � on
H�. In a first step, we express C1, C2, and C3 in terms of
the event horizon potentials.
At the branch points K1 ¼ i�z and K2 ¼ �iz, � is

unique; i.e., the values in both K sheets coincide. In
particular, for % ¼ 0 (where K1 ¼ K2 ¼ �) we have

c>
i ¼ c<

i ; i ¼ 1; 2; 3; for K ¼ �: (16)

Considering these conditions at Hþ, it follows that

C1ð�Þ ¼ n½ �E þ 2�þ
N
��� 2i!þð� � 2rhÞ þ Eþ

N �; (17a)

C2ð�Þ ¼ c þ n½ðEþ
N þ 2j�þ

N j2Þð �E þ 2�þ
N
��þ Eþ

N Þ
þ 2i!þð� � 2rhÞ �E�; (17b)

C3ð�Þ ¼ �2n½ ��þ
N ð �E þ 2�þ

N
��þ Eþ

N Þ
� 2i!þð� � 2rhÞ ���; (17c)

where E and � denote the potentials on Hþ and with

n :¼ E þ 2 ��þ
N�þ 2i!þð� � 2rhÞ � Eþ

N � 2j�þ
N j2

4ð!þÞ2ð� � 2rhÞ2e2U
c :

(18)

Here, we have introduced the notations ð�Þ�N and ð�Þ�S for

values at the north pole (� ¼ 0) and the south pole (� ¼ �)
of the horizons H� (R ¼ �rh), respectively.
Now, we evaluate (16) on H� and solve the resulting

conditions for E and �. In terms of the Boyer-Lindquist-
type coordinate �, we obtain the remarkable explicit rela-
tions

E �ð�Þ ¼ a1ð�ÞEþð�� �Þ þ a2ð�Þ�þð�� �Þ þ a3ð�Þ
c1ð�ÞEþð�� �Þ þ c2ð�Þ�þð�� �Þ þ c3ð�Þ ;

��ð�Þ ¼ b1ð�ÞEþð�� �Þ þ b2ð�Þ�þð�� �Þ þ b3ð�Þ
c1ð�ÞEþð�� �Þ þ c2ð�Þ�þð�� �Þ þ c3ð�Þ ;

(19)

between the potentials on H� (superscript ‘‘�’’) and on
Hþ (superscript ‘‘þ’’). The functions ai, bi, ci, i ¼ 1, 2,
3, are specific polynomials in cos� which will be given
explicitly in [12].
A thorough discussion of (19) reveals that the regularity

of the potentials on Hþ implies that of the potentials on
H�, provided that J andQ do not both vanish. In the limit
of vanishing J and Q, the potentials E� and �� diverge.
A universal equality.—In this section, we derive that (1)

is true for arbitrary axisymmetric and stationary black
holes with surrounding matter in Einstein-Maxwell theory.
As in pure Einsteinian gravity (cf. [1]) it is possible to
express J, Q, and A� in terms of potential values at north
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and south poles of the horizons H�:

J ¼ 1

8ð!þÞ2 ½b
þ
S � bþN � 8!þrh þ 2Aþ

t ð�þ
S � �þ

N Þ�;

Q ¼ 1

2!þ ð�þ
N � �þ

S Þ; A� ¼ � 32�rh
e2U;Rj�N

; (20)

with !þ ¼ 1
4 ½b;R þ 2ðAt�;R � �At;RÞ�þN .

In order to calculate e2U;Rj�N , we use the solution of the

LP on Aþ. Evaluation of the conditions (16) leads us to
the simple relation

e2U ¼ c ð�Þ
C1ð�Þ on Aþ: (21)

The explicit expression (17a) for C1ð�Þ and the potential
horizon boundary conditions atHþ, together with a care-
ful study of the Einstein-Maxwell equations at the north
and south pole of Hþ, yields

Aþ ¼ � 2�

ð!þÞ2 e
2U

;��jþN (22a)

A� ¼ � �

2ð!þÞ2e2U;��jþN
½ð�þ

N � �þ
S Þ4

þ ðbþS � bþN � 8!þrh þ 2Aþ
t ð�þ

S � �þ
N ÞÞ2�: (22b)

Hence with the above expressions for J, Q and A� we
conclude that Eq. (1) is satisfied.

Finally, combining our results with a closely related
inequality obtained in [13], we arrive at the following.

Theorem. 1.—Every regular axisymmetric and station-
ary Einstein-Maxwell black hole with surrounding matter
has a regular inner Cauchy horizon if and only if the
angular momentum J and charge Q do not both vanish.
Then the universal relation

ð8�JÞ2 þ ð4�Q2Þ2 ¼ AþA�

is satisfied, where Aþ and A� denote the areas of event and

inner Cauchy horizon, respectively. If, in addition, the
black hole is subextremal (i.e., if there exist trapped sur-
faces in every sufficiently small interior vicinity of the
event horizon), then the following inequalities hold:

A� <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð8�JÞ2 þ ð4�Q2Þ2

q
< Aþ:
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