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Abstract. We use soliton methods in order to investigate the interior
electrovacuum region of axisymmetric and stationary, electrically charged
black holes with arbitrary surrounding matter in Einstein—-Maxwell theory.
These methods can be applied since the Einstein—-Maxwell vacuum equations
permit the formulation in terms of the integrability condition of an associ-
ated linear matrix problem. We find that there always exists a regular inner
Cauchy horizon inside the black hole, provided the angular momentum J and
charge @ of the black hole do not vanish simultaneously. Moreover, the soliton
methods provide us with an explicit relation for the metric on the inner Cau-
chy horizon in terms of that on the event horizon. In addition, our analysis
reveals the remarkable universal relation (87J)% + (47Q?)® = AT A~ where
AT and A~ denote the areas of event and inner Cauchy horizon, respectively.

1. Introduction

The single rotating, electrically charged, axisymmetric and stationary Kerr—
Newman black hole in electrovacuum is characterized by the existence of two
different so-called Cauchy horizons H*. One of these horizons is the well-known
event horizon H* which can be considered as a boundary of the exterior electro-
vacuum world. Outside the event horizon, the Einstein-Maxwell equations take an
elliptic form which is related to the fact that in this regime the two Killing vectors
n' and ¢!, describing axisymmetry and stationarity, respectively, can be combined
linearly to form a timelike vector, i.e.!

1 In the formulae (1) and (4) and the corresponding discussion in the text, we exclude points
located on the symmetry axis (the ‘rotation axis’). Note that the Killing vector 1" vanishes
identically on this axis which implies n[ifjmi{j = 0 there.
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nu&m'é < 0. (1)

In contrast, on the event horizon any linear combination of the two Killing vectors
is either space-like or null,

nu&n'€ =0, (2)
i.e. the horizon is a so-called Killing horizon:
X'xi =0, x'=¢&+uwhy, (3)

where w™ denotes the constant angular velocity of the black hole’s event horizon.
This Killing horizon condition leads to specific boundary conditions valid on the
event horizon. While in this manner a well-defined elliptic boundary problem of the
Einstein—-Maxwell equations emerges, it is possible to extend its solution beyond
the event horizon into the electrovacuum interior of the black hole. Entering this
region, one recognizes that now for the two Killing vectors

na&m'e? >0 (4)

holds, meaning that any non-trivial linear combination of the two Killing vec-
tors is space-like. As a consequence, the FEinstein—-Maxwell vacuum equations are
hyberbolic in an inner vicinity of H*. Taking the boundary values on H™ as
‘initial data’ for this hyperbolic system, one can ‘evolve’ the vacuum solution reg-
ularly further into the black hole’s interior. In this manner one finds, for the Kerr—
Newman black holes, a ‘future boundary’ of this hyperbolic region, that is the
future boundary of the domain of dependence of the event horizon, i.e. the inner
Cauchy horizon H~.

Remarkably, the two horizons of the Kerr-Newman black holes exhibit an
interesting relation, which becomes apparent through the equality

(87J)* + (4rQ*)? = ATA™, (5)

where J and @ are angular momentum and charge of the black hole and A* denote
the surface areas of the horizons H*. Note that for the Kerr-Newman black holes
‘H~ is regular if and only if the left hand side of the above formula is strictly
positive, i.e. if J and @ do not vanish simultaneously. Then the black hole singu-
larity is located further inside, that is inside H~. In the limit J — 0,Q — 0 the
singularity approaches the inner Cauchy horizon, i.e. H~ becomes singular in this
limit.

In pure Einsteinian gravity (i.e. without Maxwell field), these observations
have been generalized in [2]. It was shown that for axisymmetric and station-
ary black holes with arbitrary surrounding matter there exists a regular inner
Cauchy horizon if and only if J # 0 holds. Moreover it was possible to iden-
tify a general relation between the two horizons H* through which the metric on
'H~ is expressed explicitly in terms of that on H*. As a consequence of this explicit
formula it turned out that all such black holes satisfy relation (5) (with @ = 0).
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It is the aim of this paper to carry this result over to the situation in which
electromagnetic fields are included, i.e. to show that for axisymmetric and sta-
tionary, electrically charged black holes with arbitrary surrounding matter in
Einstein—-Maxwell theory

1. there exists a regular inner Cauchy horizon H~ if and only if angular momen-
tum J and charge @ of the black hole do not vanish simultaneously,

2. there is an explicit relation between the metric and electromagnetic quantities
on the two horizons H=,

3. the universal formula (5) is valid.

Thus, this paper provides a detailed description of the work presented in [3].

For the derivation of the pure Einsteinian results in [2] a particular soliton
method was used—the so-called Backlund transformation. It was possible to apply
this method because the axisymmetric and stationary Einstein vacuum equations
can be written in terms of the integrability condition of an associated linear matrix
problem. The Béacklund transformation utilizes this structure and creates a new
solution from a previously known one. In [2] this procedure was the essential ingre-
dient in writing an arbitrary regular axisymmetric, stationary black hole solution
in terms of another solution, which describes a spacetime without a black hole,
but with a completely regular central vacuum region. As a consequence of the
symmetries of this regular solution, the desired relation between the two horizons
was found.

Proceeding to the Einstein—Maxwell fields, we find that the applicability of
the Béacklund method seems limited. In particular, it is not straightforward to
create in this manner the Kerr—-Newman solutions from the flat Minkowski space,
see [10]. Consequently, in this paper we treat the combined Einstein-Maxwell sit-
uation in a different way.

A feature common to both the pure Einstein and the combined Einstein—
Maxwell cases is the existence, already mentioned, of an associated linear matrix
problem whose integrability condition is equivalent to the field equations in vac-
uum, see [10]. The Bécklund transformation is merely one of several solution tech-
niques (another one is the so-called ‘inverse scattering method’; see [12]) whose
applicability results from the existence of this linear problem (LP). As will be
described below, in the full Einstein—-Maxwell situation the integration of the LP
along the boundaries of the inner hyperbolic region yields sufficient information
to derive the above statements 1-3.

The paper is organized as follows. In Sect. 2, we introduce appropriate coor-
dinates which are adapted to the subsequent analysis. We write the Einstein—
Maxwell equations in terms of the Ernst formulation [8] for which the LP can be
introduced. Moreover we list necessary horizon boundary and axis regularity con-
ditions. In Sect. 3, we describe the LP and, moreover, show that a similar LP can
be found in a rotating frame of reference. The relation of the solution of the LP
in the original to that in the rotating frame is derived explicitly. Then, in Sect. 4,
we determine the solution of the LP along the boundaries of the inner hyperbolic
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region, including the two horizons H*. For this treatment, the known event horizon
boundary conditions are taken into account. The derivation of corresponding for-
mulae in the two rotating frames of reference completes the analysis. In this way,
an explicit formula relating metric and elctromagnetic potentials on H~ to those
on H* arises, see Sect. 5. As a further consequence of our study of the LP, we
show in Sect. 6 the validity of Eq. (5) for axisymmetric and stationary, electri-
cally charged black holes with arbitrary surrounding matter in Einstein—-Maxwell
theory. Finally, in Sect. 7, we conclude with a discussion.

2. Coordinate Systems and Einstein—-Maxwell Equations

2.1. Weyl Coordinates and Boyer—Lindquist-Type Coordinates

We consider axisymmetric and stationary spacetimes, consisting of an electrically
charged central black hole and surrounding matter in Einstein—-Maxwell theory.
The immediate vicinity of the black hole event horizon must be electrovacuum,
see [4,5]. In the following, we investigate the metric and electromagnetic potentials
in such an electrovacuum region both inside and outside the black hole.

In the exterior electrovacuum vicinity we introduce Weyl coordinates
(0,¢, ,t) in which the line element reads as follows:

ds? =e 2V [e% (do® + d¢®) + 0°de?] — 2V (dt + adp)?. (6)

The metric potentials U, k, and a are functions of g and ¢ alone. As sketched
in Fig. 1 (left panel), the event horizon H™ is located on the interval —2r, <
¢ < 2ry, r, = constant, of the (-axis. The remaining part |¢| > 27, of the (-axis
corresponds to the rotation axis. In particular, we denote with AT and A~ the
axis sections where ( > 2ry, and ¢ < —2ry,, respectively.

The form (6) of the line element does not characterize uniquely a specific
coordinate system. More precisely, if in our ‘original’ system, denoted by X, the
metric reads as in (6), then in any frame ', that rotates at a constant angular
velocity wg with respect to 3, the line element will assume the same structure.
Note that in ¥’ the coordinates read (g, ¢, ¢’,t), with the only new coordinate
given by

¢ = — wot. (7)

We will make use of this freedom and choose appropriate coordinate systems X

and X’ in order to achieve the results of this paper, that is the statements 1-3 in

Sect. 1. In particular, we will place ourselves in such an original system ¥ in which

both the event and inner Cauchy horizon angular velocities w® do not vanish.
More details on this choice are presented in Sect. 3.1.

In order to investigate the interior of the black hole, which is character-

ized by negative values of ¢?, we also introduce Boyer-Lindquist-type coordinates
(R,0,0,t) via

0? = 4(R? — r})sin®0, ¢ =2Rcosh. (8)
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FicURE 1. Sketch of a part of a black hole spacetime in Weyl
coordinates (left panel) and Boyer—Lindquist type coordinates
(right panel). AT and A~ denote upper and lower parts of the
symmetry axis and HT and H~ denote event and inner Cauchy
horizons. In Sect. 4 we will integrate the linear problem for the
Einstein—-Maxwell equations along the closed dashed line (figure
taken from [3]).

(Note that, in the case of the Kerr-Newman black hole, these coordinates are
closely related to Boyer—Lindquist coordinates (r, 0, ¢, t), where the only different
coordinate is r = 2R + M with M denoting the ADM mass of the spacetime.)

In the coordinates (R,0,p,t), the event horizon HT is located at R = ry,.
As we shall see below, the inner Cauchy horizon H~ is characterized through
R = —ry, see Fig. 1 (right panel). It is the aim of this paper to show that both
metric and electromagnetic quantities are regular in terms of R and cos 6 within
the interior vacuum region described by —ry < R < 7y, (including H ™), provided
that J and @ do not both vanish.

For convenience, we introduce new metric functions that are, for a regular
black hole, analytic in terms of R and cos 6 in the black hole vicinity, see [4],

fi = 4e**2U(R? — 1} cos®0), (9a)
2
0= 4(R? — rd)e 2V — %ew, (9b)
sin“0
aetlU

= . 9c

4(R2 — r})sin®0 — a2etU (9c)

Moreover, i and @ are strictly positive in that regime. In terms of these functions,

the Boyer—Lindquist-type line element is given by
dRr?

ds? = (2 + d92> + asin?6 (dyp — wdt)? —

2 2 2
s (R —rd)dt®.  (10)

S
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2.2. The Einstein—-Maxwell Equations

In the electrovacuum region, the electromagnetic field alone constitutes the energy
momentum tensor
1

1
Tij = = (Fkag - 491‘ijle1>’ (11)

where Fj; is the electromagnetic field tensor. We use the Lorenz gauge, in which

F;j can be written in terms of a vector potential (4;) = (0,0, Ay, A),
Fj=A4,;,—A (12)

Note that, like the metric quantities, A, and A; also depend on R and 6 only.

We introduce the complex electromagnetic potential ® and the complex Ernst
potential £ [8,13] by

(] Jite

d=A+ip, E=e*V —|®? +ib, (13)
where the imaginary parts b and 3 are related to metric and vector potentials via
a,,=ge Y [b,g — (PP — @@74)] , (14a)
ac=—0e Y [b,—i(®D,— 2D ,)], (14b)
02U
B = 7(0At,c — Ap ) (14c)
02U
B¢ = _?(aAt,g — Ay o), (14d)
or, in terms of R and 6,
apr=—2sin0e Y [by—i(PDy— DD )], (15a)
ag=2(R*—rl)sinfe 'V [br—i(®P g — 2D r)|, (15b)
02U
=———————(aAyyg— A 15
Por 2(R? —r})sinf (adyg #0): (15¢)
02U
Bo = m(aAt,R - A¢,R)~ (15d)

In this formulation, the Einstein—-Maxwell equations in electrovacuum are
equivalent to the two complex Ernst equations [8]

UNE=VE (VE+20VD), (16a)
VAD =V (VE+20VD). (16b)

Here, A and V denote Laplace and nabla operators in flat cylindrical coordinates
(0,¢, ). In terms of R and 6, these equations take the form

UI(R? = 1) rr + 2RE R + E o + cot 0 E o]

= (R* —1})(ER+20D R)ER + (Eg + 20D 4)E p, (17a)
UI(R? = r2)® rr + 2R® g+ © g9 + cot § @ o]

=(R* —1})(ER+20D )P g + (Ep + 20D 5)D 4. (17b)
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Note that these equations are elliptic for |R| > 7, but degenerate at R = +ry.
Only in the interior region —r, < R < 7, are these equations hyperbolic, i.e. in
these coordinates the inner Cauchy horizon H™, R = —ry is a ‘future boundary’
of this hyperbolic vacuum region, that is the future boundary of the domain of
dependence of the event horizon H, R = + ry,, see Fig. 1 (right panel).

2.3. Boundary and Regularity Conditions

In this section we summarize particular horizon boundary and axis regularity
conditions, which are essential in the forthcoming analysis. At H* the following
conditions are satisfied (cf. [4]):

1
w = —= = constant = w* # 0, (18a)
a
2rh +
— = constant = £k~ > 0, (18b)
Vi
¢ = constant = ¢=. (18¢)

Here w® and k% denote the constant horizon angular velocities and horizon surface
gravities, respectively, and the comoving electric potential ¢ is defined by

As mentioned already, we choose a coordinate frame ¥ in which both horizon
angular velocities w® do not vanish (see discussion in Sect. 3.1).

The surface gravities are required to be different from zero, since, in this
paper, we exclude degenerate black holes for which H~ and H™T coincide and the
hyperbolic region disappears, i.e. we assume 71, > 0.

‘North pole’ and ‘south pole’ of the two horizons H* are characterized by
R=+ry,0 =0 and R = +r,,0 = m, respectively. At these points, the horizons
meet the rotational axis and the following regularity conditions hold:

ZH

2
i T e S} (20)

ﬂ [{:‘:7

The notation (-)y and (-)g discriminates between the values at north and south
pole.
In addition to these conditions, on the portions of the axis A*, we have

A, =0, a=0, £g=0, ®y=0. (21)

3. The Linear Problem

The Ernst equations (16) belong to a remarkable class of physically relevant non-
linear partial differential equations, which are characterized by the existence of
an associated LP whose integrability conditions are equivalent to the differential
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equation in question.? A careful study of this LP will provide us with the
information needed to derive the statements 1-3 listed in Sect. 1.

For the formulation of the LP, which is associated with the Ernst equa-
tions (16), we introduce the complex coordinates

z=04+i(, z=p—iC (22)
as well as the function
K —iz
MK, z,2) = 23
( 7Z’Z) K+iz7 ( )

which depends on the spectral parameter K € C. For fixed values z, z, Eq. (23)
describes a spectral mapping C — C, K — \ from a two-sheeted Riemann sur-
face (K-plane) onto the complex A-plane. ‘Upper’ and ‘lower’ K-sheets (defined
by A = £1 for K = o) are connected at the two branch points K7 =iz (A = 0)
and Ky = —iz (A = 00).

The LP is a system of first order differential equations for a 3 x 3 matrix
pseudopotential @ = Q(K, z, ), which reads [10]

Q.=MQ, Q.=NgQ, (24)
where
By 0 FEr 0 B 0
M = 0 Ay 0 + A A 0 —F; s
“F 0 YA +B) 0 —F 0
B2 0 E2 1 0 BQ 0
N = 0 As 0 + — | Ay 0 —FEs

B 0 YA+By)) *\o -m 0

The matrix elements of M and N are functions of z and Z. In terms of the poten-
tials £ and @ they are given by

A = %efw(az +20¢ ), E;=ie Y, (25a)

B, = %efo(g’z +203.), F=ieUd., (25b)

Ay = %e_zU(E’E +200 ), Ey=ie Y, (25¢)

By = %e—QU(ég +200;), F,=ie Vd, (25d)
where €2V can be calculated from £ and ®,

V' = RE + @
From the integrability condition

Q,zé = Q,Ez

2 Other examples of such equations are the Korteweg—de Vries equation, the sine-Gordon equa-
tion and the nonlinear Schrédinger equation.
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of the LP (24) one derives equations that are equivalent to the FErnst
equations (16).

The pseudopotential € is not uniquely determined by (24). If © is a solu-
tion, then QC(K) is also a solution for every 3 x 3 matrix function C(K'). We can
always find a C(K) to bring Q into the form

U7 (K, 2,2) Y7(K,z,2) 0
Q7 (K,z,z) = | ¥5(K,z,2) —¢5(K,z2)

V3 (K, z,2) 5 (K, z,2)

o

(26a)

o

and
Ur(K,2,2) Y7(K,z2) 0
Q<(K,z,z)= | v5(K,z,2) —v5(K,z,2) 0], (26D)
U5 (K, 2,2) ¢5(K,2,2) 0

which depends on three functions 11, 12, ¥3. Here, the superscript ‘>’ or ‘<’ indi-
cates whether the functions are evaluated in the upper (A = 1 for K = o) or lower
(A = =1 for K = 00) sheet of the two-sheeted Riemann K-surface. Obviously, Q2 of
this form is not invertible. Nevertheless, we will see that it still contains sufficient
information about £ and ®.

3.1. Rotating Frames of Reference

It turns out that the analysis of the LP, performed alone in the coordinate sys-
tem ¥ with coordinates (g, ¢, ¢,t), does not give sufficient information about the
relation of the potentials at the two horizons. However, the missing information
can be obtained by studying the situation in the two frames X% of reference which
rotate with the constant horizon angular velocities w™ (cf. (18)) with respect to X.
Since for the complete investigation ¥ needs to be different from %%, we assume
w* #£ 0, a choice that can always be made because of the freedom with respect to
our original system X, see discussion in Sect. 2. Hence, in the formulae appearing
below we can safely divide by w®.

As discussed in Sect. 2, in the coordinate system X/ with coordinates (o, ¢,
@', 1) (see (7)) and rotating at the constant angular velocity wq, the line element
possesses again the structure (6). In particular, the corresponding potentials U’,
a’, and k' are given in terms of U, a, and k by

e?V'= [(1+ woa)® — wio®e V] e, (27a)
1 _ 2,—4U
a' = a( i woag) wggge_4U ) (27b)
(14 wpa)? — wio?e
o2 = [(1+ woa)? — wSQQe_4U] o2k, (27¢)
The components of the vector potential in the rotating system read
A:D =A,, A=A +wid,. (28)
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As a consequence, the metric and electromagnetic potentials in ¥’ again satisfy
the Ernst equations (16) (in terms of corresponding potentials £’ and ®’). Hence
an associated LP of the form (24) can be found (with matrices ', M’ and N’).
From (14) and (27) it follows that the components of the matrices M’, N’ read as

A —
g ehzd e e (29a)
c_ c_
_By+d _
B ==t [ (29b)
Cy Ct
_As+d _
AIZ = &7 Eé = iEQv (29C)
Cy+ Cyt
By —d
By= 2 B= 2R, (294)
c_ c_
with
cy i=1+wy(atpe™?), d:= %e_w. (30)

The pseudopotential €' in ¥ arises as the solution of the LP (24), written in
terms of M’ and N’. It is, however, possible to establish a direct relation between
Q' and Q. As an ansatz, we write

Q' =TQ, (31)

where T is an unknown transformation matrix. Combining (24) and the corre-
sponding equations for the LP written in X', we conclude that T has to obey the
equations

T.+TM—-MT =0, (32a)
T.+TN-NT=0. (32b)
A solution, which yields via (31) a pseudopotential €’ that possesses again the
special structure (26), turns out to be
c. 0 0 -1 =X 0
T=|0 c; 0 +i(K +iz)wee 2V [ X 1 0. (33)
0 0 /cyeo 0 0 O

Note that this transformation matrix T is a generalization of a corresponding
expression given in [11,12] in pure Einsteinian gravity (without Maxwell field).

4. Solution of the Linear Problem

As we derive in detail below, the relations of the metric and electromagnetic field
quantities at the inner Cauchy horizon H™~ to those at the event horizon H* emerge
from the integration of the LP along the dashed lines in Fig. 1 (right panel). This
integration path contains the parts (—r, < R < r,,sinf = 0) of the axis AT as
well as the two horizons H*. We are able to perform this integration given that
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& and @ are analytic with respect to R and cos in an exterior vicinity of H™
(including H™). Then, £ and ® can be expanded into an interior vicinity of HT.
Now, with regular data on a slice inside the black hole, a theorem by Chrusciel
(theorem 6.3 in [6]®) can be applied. Although this theorem is formulated in pure
Einsteinian gravity, the arguments presented in [6] permit a generalization to the
Einstein-Maxwell case considered here [7]. The theorem assures that & and ® exist
and are regular for all values

(R,cos0) € (—ryp,rn] x [—-1,1],

i.e. in the entire inner region between the horizons (see Fig. 1), only excluding, for
the time being, the inner Cauchy horizon H™.

Along the entire integration path we have ¢ = 0, cf. (8). We study the LP
for A = 1, that is in the upper sheet of the K-plane.* Then, the LP reduces to an
ODE with the general solution [10]

E+2(07 1 )
Q= & -1 —-o | C(K). (34)
—2ieV 0 —ieY

Here, C is a 3 x 3 matrix which depends on K only. Respecting the gauge (26),
the third column of C vanishes.

It turns out that the regularity of the potentials £ and ® in (R, cosf) €
(—=7y, ma] % [~1, 1] enables us perform the integration of the LP along A* and H*.
Moreover, a careful study of the LP for points on the integration path in the vicin-
ities of the north and south poles of H™ reveals that the pseudopotentials possess
specific continuity conditions there. In this way it becomes possible to derive the
pseudopotentials on HT™ and A~ in terms of expressions valid at AT. Proceeding
now to H~ one finds that again the LP exhibits the explicit solution (34) and, most
importantly, permits a continuous link of this solution to the pseudopotentials at
the two axes sections A%, which are joined to H~ at the inner Cauchy horizon’s
north and south poles. As a result, the regularity of the potentials £ and ® at
‘H~ emerges, and their values can be found entirely in terms of those at H*. This
procedure breaks down only if a specific parameter combination B (see Eq. (49))
becomes infinite, which in turn happens if and only if both angular momentum J
and charge () vanish.

We discuss the solutions of the LP on the various sections of the integra-
tion path and show that they can be expressed in terms of the three functions
C1(K),Cy(K) and C3(K), which are introduced in Sect. 4.1 as ‘integration con-
stants’ of the LP. Moreover, specific north and south pole boundary values of the
potentials as well as the constants w® (# 0) appear in the integration procedure. In
the course of the investigation we find that these values satisfy specific relations.

3 We obtain Chruéciels form of the line element by substituting R = 7, cos T' and 6 = ).
4 With the gauge (26), the solution of the LP in the lower sheet (in which A = —1) can easily be
obtained from that in the upper sheet.
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In particular, values at H~ can be written completely in terms of those at H™. It
thus becomes possible to express the inner Cauchy horizon potentials entirely in
terms of the event horizon potentials, see Sect. 5.

4.1. Solution on A7

As expressions valid on H* become more concise if they are expressed in terms of
those at an axis portion that joins the two horizons, we start our considerations
of the solution of the LP on AT.

The gauge (26) does not completely fix the solution of the LP. We obtain a
unique solution by imposing the normalization conditions’

Yv1=1v, =1, P3=0 (35)
with
V= (K? —4r})? (36)
at some point ¢ = (o on AT in the lower sheet of the K-plane (A = —1). As a con-
sequence of (34), the normalization conditions (35) are then satisfied everywhere
on AT in the lower sheet, and the solution of the LP on A" in the upper sheet
(with A = 1) reads
E+20®@? 1 ) C1(K) 0 0
Q= & -1 -9 Cy(K) %(K) 0. (37)
—2ieV® 0 —ieV C3(K) 0 0
Here the three ‘integration constants’ Cy, Cy, C3 (depending on K') appear.
Necessary additional information can be gathered by solving the LP for the
corresponding pseudopotentials in the two rotating frames of reference with wy =

w® # 0 (see Sect. 3.1). With ¢ = 0 and a = 0 at A" (cf. (18)) we obtain from
(31), (33), and (37)

E42|1®? — 2wt (K —¢) 1 ) Ci(K) 0 0
Q = €+ 2wt (K — () -1 o Co(K) 9(K) 0. (38)
—2ieV @ 0 —ieV C3(K) 0 0

4.2. Solution on H™*

On the event horizon, the solution of the LP yields in the upper sheet, i.e. for
A=1:

E+2@? 1 P D1(K) D4(K) 0
Q= & -1 - Dy(K) Ds(K) 0 (39)
—2ie’® 0 —ieV D3(K) De(K) 0
with ‘integration constants’ D1, ..., Ds.

5 Note that the conditions (35) are chosen in accordance with regular solvability of the LP along
the entire integration path in a complex vicinity of the interval [—2ry, 2ry] of the real K-axis. As
in our analysis only values at K = ¢ € [—2ry, 2ry] will be considered, such a vicinity is sufficient,
see Sect. 5 and, in particular, Eq. (52).



Vol. 10 (2009) The Inner Black Hole Cauchy Horizon 1087

In the rotating system with wy = w™ # 0 we obtain (respecting ¢ = 0 and
a=—1/w" on HT)

1 1 0
Q =2t (K- | DiE) DiE) o], (40)
0

see (30), (31), and (33).

We now derive six equations that provide us with Dq,..., Dg in terms of
C1,C5,C3. These equations follow from the thorough discussion of the LP for
points on the integration path in the vicinities of the north and south poles of
H*. In particular, we find that both @ and Q' (i.e. 11, V2, 13 as well as 1],
Wh, %) are continuous there. One might expect that the continuity of € alone
suffices for this investigation, since £ has, in general, six non-trivial components
(7 and ¥, i = 1,2,3, see (26)). However, since €? = 0 at the north and south
poles, the LP degenerates there and as a consequence we obtain only two indepen-
dent equations. Hence, we have to supply this study with further information. We
obtain two further independent equations by requiring the continuity of €2’. But
as another two equations are needed in order to complete the analysis, we finally
consider the continuity of the two expressions e~U1)5 and e~Y45 at the north
and south poles which again arises as a consequence of the LP. In this manner we

gather six independent equations, which allow us to express D1, ..., Dg in terms
of Cl, CQ, 031
ETC, — Oy — B C4
D =, —iN N 41
1= O I T R — o (41a)
+ ) (I>+ 2 + _ o (I>+
Dy = Cy — i(EN +2| N| )(chl & NC3)’ (41b)
2wt (K — 2ry)
_LEFC = Oy — B Cy
_ B+ EN N
D3 = Cs5 +idy T (K —2m) (41c)
i
Dy=— —— 41d
YT 2wt (K = 2m) (41d)
5+ + 2|¢,+‘2
D- = 14+i—N = 2PN 41
° 77/}( Jr12u)‘*‘(K—27“h)> (41e)
oF
Dg = —it) N (41f)

wH(K —2m,)’

4.3. Solution on A~
For the section A~ we write
E+2/02 1 )
Q= & -1 -9 |C (42)
—2ie’® 0 —ieV
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for the pseudopotential in the upper sheet (A = 1). Here

Ci(K) Cu(K) 0
C(K)=| Cy(K) Cs5(K) 0. (43)
> 0

Cs(K)  Co(K)
In the rotating system with wy = w® # 0 (cf. Sect. 3.1) we have

E 42|10 - 2wt (K —¢) 1 P
Q = & + 2wt (K — () -1 —® | C(K). (44)
—2ieV @ 0 —ieV

As continuity properties valid at the south pole of HT follow from the LP again, we

are able to express the ‘integration constants’ Cf, . .. , Ce. At first, C1, ..., Cq can
be found in terms of Dy, ..., Dg. Then, via (41), the C4, ..., Cg arise as functions
of 01, 02, C3.

4.4. Solution on H™

The solution of the LP on H ™ is again given by the general structure (34). Hence
we may write

E42002 1 @ Di(K) D4(K) 0
Q= £ -1 -® Dy(K) Ds(K) 0 (45)
—2ieV® 0 —ieV ) \ Dy(K) Dg(K) 0

for the pseudopotential in the upper sheet (A = 1) at the inner Cauchy horizon
‘H~. In the rotating system with wy = w™ # 0 (cf. Sect. 3.1) we have

—Dy(K) —Dy(K) 0
=2iw (K- | Di(K) DuK) 0]. (46)
0 0 0

As we cannot assume from the outset that the pseudopotential is regular at H~
and in particular at its north pole, we carefully study whether the LP can be
solved on the integration path in the vicinity of this point. We find that this is
indeed the case and that, moreover, specific continuity properties can be fulfilled
which hold at the pole. These properties are similar to those valid on the poles of
H*, see discussion in Sect. 4.2. As a consequence, the quantities Dy, ..., Dg can
be derived in terms of C, Cy, C3. Note that the expressions for D; are of the form
(41), with r, and the superscript ‘4’ replaced by —ry, and ‘—’, respectively.

In a similar manner we may calculate the D; from continuity conditions stud-
ied at the south pole of H~. Consequently, we obtain two different systems for the
D;, and the requirement of equality of these two sets leads us to the following
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relations
w” =wh(1-2A4B), (47a)
by = b5 — [(0F —b5)A — (8% + BB — 53)°] B, (47b)
by = b + [(0F =) A+ (B3 + B8 (B — 53)°] B, (47¢)
A7 = A + (8% - 59)°B, (47d)
By =By — (8% — BI)AB, (47e)
Bs =B + (8% — BS)AB, (475)

with
A= bl — b+ 8wty + 247 (BF — B3, (48)
Swtry

B = A2+(ﬂf\?—ﬂ§_)47 (49)
AF = AL = A (50)

In other words, we are able to express the above boundary values at H~ com-
pletely in terms of those on HT. These relations are essential for expressing the
inner Cauchy horizon potentials entirely in terms of the event horizon potentials,
see Sect. 5.

Note that the agreements in (50),

Atm = At|§a At|1?1 = At|§

emerge as a consequence of (18) and (21).
In Sect. 6 we will derive expressions for angular momentum J and charge @
which show that B can be rewritten as
_ 8m3ry,
= @) + (47 Q7)]
i.e. B—and therefore the quantities in (47)—are well-defined as long as J and Q
do not both vanish (remember w™ # 0,7, > 0).

(51)

5. Ernst Potential and Electromagnetic Potential on the Cauchy
Horizon

From the pseudopotential €2, we now calculate the potentials £ and ® on H~. In
a first step, we express C1, Cy, and (5 in terms of the event horizon potentials.

At the branch points K; = iz and Ky = —iz, € is unique, i.e. the values in
both K-sheets coincide. In particular, for o = 0 (where K7 = K3 = () we have
W =¢F, i=1,2,3, for K=C( (52)

Considering these conditions at H™, it follows that (cf. (39))

(€ +2|@[*) D1(C) + D2(¢) + ®D3(¢)
= (€ +2/2[*)D4(¢) + Ds(¢) + ®Ds(¢), (53a)
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ED1(C) — D2(¢) — ®D3(C) = —ED4(C) + D5(¢) + @ D5 (), (53b)
20D (C) + D3(¢) = 28D4(¢) + Ds(¢), (53c)

where £ = £(¢) and ® = ®({) are the potentials taken on H*. Using (41), we
obtain a linear system of equations for C(¢), C2(¢), C3(¢) with ¢ € [—2ry, 2ry).
The corresponding solution reads

Ci(¢) = n [E+205d — 2iwt (¢ — 2m) + &% (54a)
Co(Q) = (C* —4rp)® +n [(EF +21B%*)(€ + 20 + &)

+2iwt (¢ —2m)€ ], (54b)
C3(¢) = —2n [®F(E + 2050 + &) — 2wt (¢ —2m,) @ |, (54c)

with
_ (C—=2m)(C+2m)°

A(wt)2e2U

[+ 203 + 2iwt (¢ —2ry) — EF — 2|9 %] . (55)

Now, we evaluate (52) on H~. Similarly to (53), we obtain

(€ +2|2*) D1 (¢ )+ D (¢) +2D3(¢)

= (€ +2|®*)Da(¢) + Ds(¢) + ©Ds (¢), (56a)

ED1(¢) = Da(¢) — @D3(¢) = —ED4(¢) + Ds(¢) + 2 Dg(¢), (56b)

26D, (¢) + D3(¢) = 28D4(¢) + Ds(€), (56¢)

where £ = £(¢) and ® = ®(¢) now denote the potentials on H~. We solve (56)

for the two potentials and get
_ . Dg(¢) - D3(C)
T NSNSk

= D5(¢) = D1(¢)

£(¢) = m (57b)

Finally, using the expressions for D; in terms of C; and Eq. (54), we obtain the
potentials on H~ in terms of the potentials on HT. We arrive at

(57a)

_on i (0)EF (1 —0) + ax(0)2F (1 — 0) + a3(6)
& (9) B Cl(Q)EJF(’]T — 9) —+ 02(0)(p+(71— _ 0) + 03(9) ) (58&)
> (0) 1 (0)EF (T —0) + c2(0)DT (1 — 0) + c3(0) (58b)

in which the inner Cauchy horizon potentials are given with respect to the
Boyer—Lindquist-type coordinate 6. As before, the superscripts ‘+’ and ‘—’ indi-
cate quantities on H* and H~, respectively. The functions a;, b;, ¢;, i = 1,2, 3,



Vol. 10 (2009) The Inner Black Hole Cauchy Horizon 1091

are given by

ap = 16wt w ™ rf sin?0 — diwr, Fy (14 cos0) — diw™ ry By (1 — cos ) — Fy E,

az = =2 [4iwTr, @G Fy (1 4 cos8) + diw ™ ry @G F (1 — cos§) + Y FY E],

az = —4iwtr & Fy (14 cos0) — 4iw™ rnEL By (1 — cos ) — EF PR E,

by = diwTrp @y (1 + cos0) + diw rp @3 (1 — cos ) + P E,

by = 2 [8wTw™rf sin®@ + diw™ r, |5 |* (1 4 cos 6)

+4iw ™| * (1 — cos 0) + LR E]

by = diwTrpEQ Py (1 4 cos0) + 4iw™ rp & DY (1 — cos ) + EF PR E,

c1 = 4iwTry (1 + cos ) + 4iw rp(1 — cosf) + E,

ez = 2 [4iwtry® (1 + cos ) + diw™ r, @ (1 — cos ) + DL E]

e = 16wTw ™ sin®0 + diwTrp &5 (1 4 cos 0) + diw™ &Y (1 — cos0) + EF E,
where

E =&l — &y +208 (R — @), FY =&x +2/05]%

Note that we have taken only (56a) and (56¢) to obtain (57). However, using
(58), we find that (56b) is satisfied as well.

6. A Universal Equality

Equation (5) contains the following black hole quantities: (i) angular momentum J,
(ii) electric charge @, and (iii) the two horizon surface areas A*. While the expres-
sions for @ and A* are defined unambiguously, the introduction of the angular
momentum J requires a bit of explanation.

The total angular momentum of the spacetime is composed of matter, electro-
magnetic field and black hole contributions. While clearly the matter part should
be excluded for the definition of the local black hole’s angular momentum, both
a Komar integral and an appropriate electromagnetic event horizon integral must
be taken into account, in order to find a measure for which Eq. (5) turns out to
be true. A more thorough discussion of this issue is given in [1], at the beginning
of Sect. 4, and we here adapt the corresponding expression for the local black hole
angular momentum J given there.

In terms of the quantities 4, w, A, and ¢ we thus obtain (cf. [1])

1 -
J— L 7{ (7 + 20* A, F9)dS,
8m

H+
s

ks . .
/u quﬁ sin0 — A, (¢,r — Aww,R)} )H+ sin 0 d6, (59a)
0

1
4
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1 - 1 T
Q = _E f Fﬂdsij = _Z/ﬁ(¢,R _A‘waR)|’}—(+ sin9d9, (59]:))
Ht 0
AT = 27r/ V], . sin6 df = 4miy, (59c¢)
0

where we have used conditions (18) and (20). As in Sect. 1, n’ is the Killing vector
with respect to axisymmetry.

In order to show the validity of Eq. (5), we express at first .J, @, and AT
in terms of the complex potentials £ and ®. Using (9), (15), and (19), we can
perform the integrations in (59a) and (59b), i.e. we find expressions depending
only on values on the north and south poles of the horizons H*:

1

J = ST [bd — bt — 8wt + 245 (65 - 5], (60a)
1

Q= %ﬁ(ﬁﬁ - Bd), (60D)
A* = g 92 (60c)

eQU,R’N

where

1

wh =2+ 248 R - BALR)N (61)

arises from (9), (15), and (18).
In order to calculate eQU, RE\?, we use the solution of the LP on A™T. Evaluation
of the conditions in (52), considered on A™, leads us to

(€ +2|2*)C1(¢) + Ca(C) + PC5(¢) = (Q), (62a)
EC1(C) = C2(¢) — 2C3(C) = ¥(C), (62b)
2001 (¢) + C3(¢) = 0. (62¢)
Summing up the first two of these equations we get
2V (¢) = gl(é)) on At (63)

With the explicit expression (54a) for C;(¢), we thus obtain both areas AT in
terms of values on the event horizon’s north pole:

AT = - (jf)z e oal (64a)
Am = - (B - B (64b)

2(wt)? erﬁe‘;\;

+ (0 — b — 8wt + 247 (85 - B))°] - (64c)
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Here, we have used that
2U + _ 20 |t
e oo |5 = €*Y oolg

and
1
Wt = f[b’ge +2(AiB.00 — BAL 00,
Th

which can be derived from (20) and regularity conditions, that result from the
Ernst equations (17), studied at the north and south poles of H™.

As both the product ATA™ as well as J and @ can be expressed in terms of
the same north pole quantities (cf. (64), (60a), (60b)), the validity of the relation
(5) in question can easily be seen.

7. Discussion

We have investigated the interior hyperbolic region of axisymmetric and station-
ary black holes with surrounding matter in Einstein—-Maxwell theory. With the
help of the LP for the corresponding Ernst equations, we have found the explicit
relation (58) for the complex metric and electromagnetic potentials £ and ¢ on
the inner Cauchy horizon H~ in terms of those on the event horizon H+.

A discussion of (58) reveals that with potentials that are regular on H*, the
potentials on H™ are also regular, provided that J and @ do not both vanish. In
the limit of vanishing J and @, the potentials £~ and &~ diverge (cf. the remark
at the end of Sect. 4.4).

As an additional result, we have proved a remarkable universal equality for
such black holes. Combining our work with a closely related inequality obtained
in [9], we arrive at the following.

Theorem 7.1. Every regular azisymmetric and stationary Einstein—Mazwell black
hole with surrounding matter has a regular inner Cauchy horizon if and only if
the angular momentum J and charge QQ do not both vanish. Then the universal
relation

(87J)% + (4mQ?*)* = AT A~

is satisfied where AY and A~ denote the areas of event and inner Cauchy horizon,
respectively. If in addition the black hole is sub-extremal (i.e. if there exist trapped
surfaces in every sufficiently small interior vicinity of the event horizon), then the
following inequalities hold:

A™ < /(87J)2 + (47Q2)% < AT.

Note that in the degenerate limit the above equality becomes identical with
the aforementioned inequalities. As indicated in Sect. 2.3, the black hole degen-
erates if the coordinate radius 7, tends to zero. In this limit the hyperbolic
region disappears and the two horizons H* become identical which in turn means
AT = A~. Then the two formulae in theorem 7.1 yield the known relation for
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degenerate axisymmetric and stationary black holes with surrounding matter in
Einstein-Maxwell theory, see [1].
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