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The inner Cauchy horizon of axisymmetric and

stationary black holes with surrounding matter

in Einstein-Maxwell theory: study in terms of

soliton methods

Jörg Hennig and Marcus Ansorg

Abstract. We use soliton methods in order to investigate the interior elec-
trovacuum region of axisymmetric and stationary, electrically charged black
holes with arbitrary surrounding matter in Einstein-Maxwell theory. These
methods can be applied since the Einstein-Maxwell vacuum equations permit
the formulation in terms of the integrability condition of an associated linear
matrix problem. We find that there always exists a regular inner Cauchy hori-
zon inside the black hole, provided the angular momentum J and charge Q of
the black hole do not vanish simultaneously. Moreover, the soliton methods
provide us with an explicit relation for the metric on the inner Cauchy horizon
in terms of that on the event horizon. In addition, our analysis reveals the
remarkable universal relation (8πJ)2 + (4πQ2)2 = A+A−, where A+ and A−

denote the areas of event and inner Cauchy horizon respectively.

1. Introduction

The single rotating, electrically charged, axisymmetric and stationary Kerr-New-
man black hole in electrovacuum is characterised by the existence of two different
so-called Cauchy horizons H±. One of these horizons is the well-known event
horizon H+ which can be considered as a boundary of the exterior electrovacuum
world. Outside the event horizon, the Einstein-Maxwell equations take an elliptic
form which is related to the fact that in this regime the two Killing vectors ηi and
ξi, describing axisymmetry and stationarity respectively, can be combined linearly
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to form a timelike vector, i.e.1

η[iξj]η
iξj < 0. (1)

In contrast, on the event horizon any linear combination of the two Killing vectors
is either space-like or null,

η[iξj]η
iξj = 0, (2)

i.e. the horizon is a so-called Killing horizon:

χiχi = 0, χi = ξi + ω+ηi, (3)

where ω+ denotes the constant angular velocity of the black hole’s event horizon.
This Killing horizon condition leads to specific boundary conditions valid on the
event horizon. While in this manner a well-defined elliptic boundary problem of the
Einstein-Maxwell equations emerges, it is possible to extend its solution beyond
the event horizon into the electrovacuum interior of the black hole. Entering this
region, one recognizes that now for the two Killing vectors

η[iξj]η
iξj > 0 (4)

holds, meaning that any non-trivial linear combination of the two Killing vectors
is space-like. As a consequence, the Einstein-Maxwell vacuum equations are hyber-
bolic in an inner vicinity of H+. Taking the boundary values on H+ as ‘initial data’
for this hyperbolic system, one can ‘evolve’ the vacuum solution regularly further
into the black hole’s interior. In this manner one finds, for the Kerr-Newman black
holes, a ‘future boundary’ of this hyperbolic region, that is the future boundary of
the domain of dependence of the event horizon, i.e. the inner Cauchy horizon H−.

Remarkably, the two horizons of the Kerr-Newman black holes exhibit an
interesting relation, which becomes apparent through the equality

(8πJ)2 + (4πQ2)2 = A+A−, (5)

where J and Q are angular momentum and charge of the black hole and A±

denote the surface areas of the horizons H±. Note that for the Kerr-Newman
black holes H− is regular if and only if the left hand side of the above formula is
strictly positive, i.e. if J and Q do not vanish simultaneously. Then the black hole
singularity is located further inside, that is inside H−. In the limit J → 0, Q→ 0
the singularity approaches the inner Cauchy horizon, i.e. H− becomes singular in
this limit.

In pure Einsteinian gravity (i.e. without Maxwell field), these observations
have been generalized in [2]. It was shown that for axisymmetric and stationary
black holes with arbitrary surrounding matter there exists a regular inner Cauchy
horizon if and only if J 6= 0 holds. Moreover it was possible to identify a general
relation between the two horizons H± through which the metric on H− is expressed

1In the formulae (1) and (4) and the corresponding discussion in the text, we exclude points
located on the symmetry axis (the ‘rotation axis’). Note that the Killing vector ηi vanishes
identically on this axis which implies η[iξj]η

iξj = 0 there.
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explicitly in terms of that on H+. As a consequence of this explicit formula it
turned out that all such black holes satisfy relation (5) (with Q = 0).

It is the aim of this paper to carry this result over to the situation in which
electromagnetic fields are included, i.e. to show that for axisymmetric and station-
ary, electrically charged black holes with arbitrary surrounding matter in Einstein-
Maxwell theory

1. there exists a regular inner Cauchy horizon H− if and only if angular mo-
mentum J and charge Q of the black hole do not vanish simultaneously,

2. there is an explicit relation between the metric and electromagnetic quantities
on the two horizons H±,

3. the universal formula (5) is valid.

Thus, this paper provides a detailed description of the work presented in [9].

For the derivation of the pure Einsteinian results in [2] a particular soliton
method was used – the so-called Bäcklund transformation. It was possible to apply
this method because the axisymmetric and stationary Einstein vacuum equations
can be written in terms of the integrability condition of an associated linear ma-
trix problem. The Bäcklund transformation utilizes this structure and creates a
new solution from a previously known one. In [2] this procedure was the essential
ingredient in writing an arbitrary regular axisymmetric, stationary black hole so-
lution in terms of another solution, which describes a spacetime without a black
hole, but with a completely regular central vacuum region. As a consequence of the
symmetries of this regular solution, the desired relation between the two horizons
was found.

Proceeding to the Einstein-Maxwell fields, we find that the applicability of the
Bäcklund method seems limited. In particular, it is not straightforward to create
in this manner the Kerr-Newman solutions from the flat Minkowski space, see [10].
Consequently, in this paper we treat the combined Einstein-Maxwell situation in
a different way.

A feature common to both the pure Einstein and the combined Einstein-
Maxwell cases is the existence, already mentioned, of an associated linear matrix
problem whose integrability condition is equivalent to the field equations in vac-
uum, see [10]. The Bäcklund transformation is merely one of several solution tech-
niques (another one is the so-called ‘inverse scattering method’, see [14]) whose
applicability results from the existence of this linear problem (LP). As will be
described below, in the full Einstein-Maxwell situation the integration of the LP
along the boundaries of the inner hyperbolic region yields sufficient information
to derive the above statements 1–3.

The paper is organized as follows. In Sec. 2, we introduce appropriate co-
ordinates which are adapted to the subsequent analysis. We write the Einstein-
Maxwell equations in terms of the Ernst formulation [7] for which the LP can be
introduced. Moreover we list necessary horizon boundary and axis regularity con-
ditions. In Sec. 3, we describe the LP and, moreover, show that a similar LP can
be found in a rotating frame of reference. The relation of the solution of the LP
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in the original to that in the rotating frame is derived explicitly. Then, in Sec. 4,
we determine the solution of the LP along the boundaries of the inner hyperbolic
region, including the two horizons H±. For this treatment, the known event hori-
zon boundary conditions are taken into account. The derivation of corresponding
formulae in the two rotating frames of reference completes the analysis. In this
way, an explicit formula relating metric and elctromagnetic potentials on H− to
those on H+ arises, see Sec. 5. As a further consequence of our study of the LP, we
show in Sec. 6 the validity of Eq. (5) for axisymmetric and stationary, electrically
charged black holes with arbitrary surrounding matter in Einstein-Maxwell theory.
Finally, in Sec. 7, we conclude with a discussion.

2. Coordinate systems and Einstein-Maxwell equations

2.1. Weyl coordinates and Boyer-Lindquist-type coordinates

We consider axisymmetric and stationary spacetimes, consisting of an electrically
charged central black hole and surrounding matter in Einstein-Maxwell theory.
The immediate vicinity of the black hole event horizon must be electrovacuum,
see [4] and [3]. In the following, we investigate the metric and electromagnetic
potentials in such an electrovacuum region both inside and outside the black hole.

In the exterior electrovacuum vicinity we introduce Weyl coordinates
(̺, ζ, ϕ, t) in which the line element reads as follows:

ds2 = e−2U
[

e2k(d̺2 + dζ2) + ̺2dϕ2
]

− e2U (dt+ adϕ)2. (6)

The metric potentials U , k, and a are functions of ̺ and ζ alone. As sketched
in Fig. 1 (left panel), the event horizon H+ is located on the interval −2rh ≤
ζ ≤ 2rh, rh = constant, of the ζ-axis. The remaining part |ζ| > 2rh of the ζ-axis
corresponds to the rotation axis. In particular, we denote with A+ and A− the
axis sections where ζ ≥ 2rh and ζ ≤ −2rh respectively.

The form (6) of the line element does not characterize uniquely a specific
coordinate system. More precisely, if in our ‘original’ system, denoted by Σ, the
metric reads as in (6), then in any frame Σ′, that rotates at a constant angular
velocity ω0 with respect to Σ, the line element will assume the same structure.
Note that in Σ′ the coordinates read (̺, ζ, ϕ′, t), with the only new coordinate
given by

ϕ′ = ϕ− ω0t. (7)

We will make use of this freedom and choose appropriate coordinate systems Σ
and Σ′ in order to achieve the results of this paper, that is the statements 1–3 in
Sec. 1. In particular, we will place ourselves in such an original system Σ in which
both the event and inner Cauchy horizon angular velocities ω± do not vanish.
More details on this choice are presented in Sec. 3.1.

In order to investigate the interior of the black hole, which is character-
ized by negative values of ̺2, we also introduce Boyer-Lindquist-type coordinates
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̺

ζ

0

0

R

θ

H+ H+H−

A+ A+

A+ A− A−

A−

−2rh

2rh

−rh rh

π

matter matter

Figure 1. Sketch of a part of a black hole spacetime in Weyl co-
ordinates (left panel) and Boyer-Lindquist type coordinates (right
panel). A+ and A− denote upper and lower parts of the symme-
try axis and H+ and H− denote event and inner Cauchy horizons.
In Sec. 4 we will integrate the linear problem for the Einstein-
Maxwell equations along the closed dashed line (figure taken from
[9]).

(R, θ, ϕ, t) via

̺2 = 4(R2 − r2h) sin2θ, ζ = 2R cos θ. (8)

(Note that, in the case of the Kerr-Newman black hole, these coordinates are
closely related to Boyer-Lindquist coordinates (r, θ, ϕ, t), where the only different
coordinate is r = 2R+M with M denoting the ADM mass of the spacetime.)

In the coordinates (R, θ, ϕ, t), the event horizon H+ is located at R = rh.
As we shall see below, the inner Cauchy horizon H− is characterized through
R = −rh, see Fig. 1 (right panel). It is the aim of this paper to show that both
metric and electromagnetic quantities are regular in terms of R and cos θ within
the interior vacuum region described by −rh ≤ R ≤ rh (including H−), provided
that J and Q do not both vanish.

For convenience, we introduce new metric functions that are, for a regular
black hole, analytic in terms of R and cos θ in the black hole vicinity, see [3],

µ̂ := 4e2k−2U (R2 − r2h cos2θ), (9a)

û := 4(R2 − r2h)e−2U − a2

sin2θ
e2U , (9b)

ω :=
ae4U

4(R2 − r2h) sin2θ − a2e4U
. (9c)
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Moreover, µ̂ and û are strictly positive in that regime. In terms of these functions,
the Boyer-Lindquist-type line element is given by

ds2 = µ̂

(

dR2

R2 − r2h
+ dθ2

)

+ û sin2θ (dϕ− ωdt)2 − 4

û
(R2 − r2h)dt2. (10)

2.2. The Einstein-Maxwell equations

In the electrovacuum region, the electromagnetic field alone constitutes the energy
momentum tensor

Tij =
1

4π

(

FkiF
k
j −

1

4
gijFklF

kl

)

, (11)

where Fij is the electromagnetic field tensor. We use the Lorenz gauge, in which
Fij can be written in terms of a vector potential (Ai) = (0, 0, Aϕ, At),

Fij = Ai,j −Aj,i. (12)

Note that, like the metric quantities, Aϕ and At also depend on R and θ only.

We introduce the complex electromagnetic potential Φ and the complex Ernst
potential E [7, 15] by

Φ = At + iβ, E = e2U − |Φ|2 + ib, (13)

where the imaginary parts b and β are related to metric and vector potentials via

a,̺ = ̺e−4U
[

b,ζ − i(Φ̄Φ,ζ − ΦΦ̄,ζ)
]

, (14a)

a,ζ = −̺e−4U
[

b,̺ − i(Φ̄Φ,̺ − ΦΦ̄,̺)
]

, (14b)

β,̺ =
e2U

̺
(aAt,ζ −Aϕ,ζ), (14c)

β,ζ = −e2U

̺
(aAt,̺ −Aϕ,̺), (14d)

or, in terms of R and θ,

a,R = −2 sin θ e−4U
[

b,θ − i(Φ̄Φ,θ − ΦΦ̄,θ)
]

, (15a)

a,θ = 2(R2 − r2h) sin θ e−4U
[

b,R − i(Φ̄Φ,R − ΦΦ̄,R)
]

, (15b)

β,R = − e2U

2(R2 − r2h) sin θ
(aAt,θ −Aϕ,θ), (15c)

β,θ =
e2U

2 sin θ
(aAt,R −Aϕ,R). (15d)

In this formulation, the Einstein-Maxwell equations in electrovacuum are
equivalent to the two complex Ernst equations [7]

e2U △ E = ∇E · (∇E + 2Φ̄∇Φ), (16a)

e2U △ Φ = ∇Φ · (∇E + 2Φ̄∇Φ). (16b)
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Here, △ and ∇ denote Laplace and nabla operators in flat cylindrical coordinates
(̺, ζ, ϕ). In terms of R and θ, these equations take the form

e2U
[

(R2 − r2h)E,RR + 2RE,R + E,θθ + cot θ E,θ

]

= (R2 − r2h)(E,R + 2Φ̄Φ,R)E,R + (E,θ + 2Φ̄Φ,θ)E,θ , (17a)

e2U
[

(R2 − r2h)Φ,RR + 2RΦ,R + Φ,θθ + cot θΦ,θ

]

= (R2 − r2h)(E,R + 2Φ̄Φ,R)Φ,R + (E,θ + 2Φ̄Φ,θ)Φ,θ . (17b)

Note that these equations are elliptic for |R| > rh but degenerate at R = ± rh.
Only in the interior region −rh < R < rh are these equations hyperbolic, i.e. in
these coordinates the inner Cauchy horizon H−, R = −rh is a ‘future boundary’
of this hyperbolic vacuum region, that is the future boundary of the domain of
dependence of the event horizon H+, R = + rh, see Fig. 1 (right panel).

2.3. Boundary and regularity conditions

In this section we summarize particular horizon boundary and axis regularity
conditions, which are essential in the forthcoming analysis. At H± the following
conditions are satisfied (cf. [3]):

ω = −1

a
= constant = ω± 6= 0, (18a)

2rh√
µ̂û

= constant = ±κ± > 0, (18b)

φ = constant = φ±. (18c)

Here ω± and κ± denote the constant horizon angular velocities and horizon surface
gravities respectively, and the comoving electric potential φ is defined by

φ = At + ωAϕ. (19)

As mentioned already, we choose a coordinate frame Σ in which both horizon
angular velocities ω± do not vanish (see discussion in Sec. 3.1).

The surface gravities are required to be different from zero, since, in this
paper, we exclude degenerate black holes for which H− and H+ coincide and the
hyperbolic region disappears, i.e. we assume rh > 0.

‘North pole’ and ‘south pole’ of the two horizons H± are characterized by
R = ± rh, θ = 0 and R = ±rh, θ = π respectively. At these points, the horizons
meet the rotational axis and the following regularity conditions hold:

µ̂±

N = µ̂±

S = û±N = û±S = ±2rh
κ±

, e2U = 0. (20)

The notation (·)N and (·)S discriminates between the values at north and south
pole.

In addition to these conditions, on the portions of the axis A±, we have

Aϕ = 0, a = 0, E,θ = 0, Φ,θ = 0. (21)
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3. The linear problem

The Ernst equations (16) belong to a remarkable class of physically relevant non-
linear partial differential equations, which are characterized by the existence of
an associated linear problem (LP) whose integrability conditions are equivalent to
the differential equation in question2. A careful study of this LP will provide us
with the information needed to derive the statements 1–3 listed in Sec. 1.

For the formulation of the LP, which is associated with the Ernst equations
(16), we introduce the complex coordinates

z = ̺+ iζ, z̄ = ̺− iζ (22)

as well as the function

λ(K, z, z̄) =

√

K − iz̄

K + iz
, (23)

which depends on the spectral parameter K ∈ C. For fixed values z, z̄, equation
(23) describes a spectral mapping C → C, K 7→ λ from a two-sheeted Riemann
surface (K-plane) onto the complex λ-plane. ‘Upper’ and ‘lower’K-sheets (defined
by λ = ±1 for K = ∞) are connected at the two branch points K1 = iz̄ (λ = 0)
and K2 = −iz (λ = ∞).

The LP is a system of first order differential equations for a 3 × 3 matrix
pseudopotential Ω = Ω(K, z, z̄), which reads [10]

Ω,z = MΩ, Ω,z̄ = NΩ, (24)

where

M =





B1 0 E1

0 A1 0
−F1 0 1

2 (A1 +B1)



 + λ





0 B1 0
A1 0 −E1

0 −F1 0



 ,

N =





B2 0 E2

0 A2 0
−F2 0 1

2 (A2 +B2)



 +
1

λ





0 B2 0
A2 0 −E2

0 −F2 0



 .

The matrix elements of M and N are functions of z and z̄. In terms of the potentials
E and Φ they are given by

A1 = 1
2e−2U (E,z + 2Φ̄Φ,z), E1 = ie−UΦ,z, (25a)

B1 = 1
2e−2U (Ē,z + 2ΦΦ̄,z), F1 = ie−U Φ̄,z, (25b)

A2 = 1
2e−2U (E,z̄ + 2Φ̄Φ,z̄), E2 = ie−UΦ,z̄, (25c)

B2 = 1
2e−2U (Ē,z̄ + 2ΦΦ̄,z̄), F2 = ie−U Φ̄,z̄, (25d)

2Other examples of such equations are the Korteweg-de Vries equation, the sine-Gordon equation
and the nonlinear Schrödinger equation.
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where e2U can be calculated from E and Φ,

e2U = ℜE + |Φ|2.
From the integrability condition

Ω,zz̄ = Ω,z̄z

of the LP (24) one derives equations that are equivalent to the Ernst equations
(16).

The pseudopotential Ω is not uniquely determined by (24). If Ω is a solution,
then ΩC(K) is also a solution for every 3×3 matrix function C(K). We can always
find a C(K) to bring Ω into the form

Ω
>(K, z, z̄) =





ψ>
1 (K, z, z̄) ψ<

1 (K, z, z̄) 0
ψ>

2 (K, z, z̄) −ψ<
2 (K, z, z̄) 0

ψ>
3 (K, z, z̄) ψ<

3 (K, z, z̄) 0



 (26a)

and

Ω
<(K, z, z̄) =





ψ<
1 (K, z, z̄) ψ>

1 (K, z, z̄) 0
ψ<

2 (K, z, z̄) −ψ>
2 (K, z, z̄) 0

ψ<
3 (K, z, z̄) ψ>

3 (K, z, z̄) 0



, (26b)

which depends on three functions ψ1, ψ2, ψ3. Here, the superscript ‘>’ or ‘<’
indicates whether the functions are evaluated in the upper (λ = 1 for K = ∞)
or lower (λ = −1 for K = ∞) sheet of the two-sheeted Riemann K-surface.
Obviously, Ω of this form is not invertible. Nevertheless, we will see that it still
contains sufficient information about E and Φ.

3.1. Rotating frames of reference

It turns out that the analysis of the LP, performed alone in the coordinate system Σ
with coordinates (̺, ζ, ϕ, t), does not give sufficient information about the relation
of the potentials at the two horizons. However, the missing information can be
obtained by studying the situation in the two frames Σ± of reference which rotate
with the constant horizon angular velocities ω± (cf. (18)) with respect to Σ. Since
for the complete investigation Σ needs to be different from Σ±, we assume ω± 6= 0,
a choice that can always be made because of the freedom with respect to our
original system Σ, see discussion in Sec. 2. Hence, in the formulae appearing below
we can safely divide by ω±.

As discussed in Sec. 2, in the coordinate system Σ′ with coordinates (̺, ζ, ϕ′, t)
(see (7)) and rotating at the constant angular velocity ω0, the line element pos-
sesses again the structure (6). In particular, the corresponding potentials U ′, a′,
and k′ are given in terms of U , a, and k by

e2U ′

=
[

(1 + ω0a)
2 − ω2

0̺
2e−4U

]

e2U , (27a)

a′ =
a(1 + ω0a) − ω0̺

2e−4U

(1 + ω0a)2 − ω2
0̺

2e−4U
, (27b)

e2k′

=
[

(1 + ω0a)
2 − ω2

0̺
2e−4U

]

e2k. (27c)
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The components of the vector potential in the rotating system read

A′
ϕ = Aϕ, A′

t = At + ω0Aϕ. (28)

As a consequence, the metric and electromagnetic potentials in Σ′ again satisfy
the Ernst equations (16) (in terms of corresponding potentials E ′ and Φ′). Hence
an associated LP of the form (24) can be found (with matrices Ω

′,M′ and N
′).

From (14) and (27) it follows that the components of the matrices M
′, N

′ read as

A′
1 =

c+A1 − d

c−
, E′

1 =

√

c+
c−
E1, (29a)

B′
1 =

c−B1 + d

c+
, F ′

1 =

√

c−
c+
F1, (29b)

A′
2 =

c−A2 + d

c+
, E′

2 =

√

c−
c+
E2, (29c)

B′
2 =

c+B2 − d

c−
, F ′

2 =

√

c+
c−
F2, (29d)

with
c± := 1 + ω0(a± ̺e−2U ), d :=

ω0

2
e−2U . (30)

The pseudopotential Ω
′ in Σ′ arises as the solution of the LP (24), written in

terms of M
′ and N

′. It is, however, possible to establish a direct relation between
Ω

′ and Ω. As an ansatz, we write

Ω
′ = TΩ. (31)

where T is an unknown transformation matrix. Combining (24) and the corre-
sponding equations for the LP written in Σ′, we conclude that T has to obey the
equations

T,z + TM − M
′
T = 0, (32a)

T,z̄ + TN − N
′
T = 0. (32b)

A solution, which yields via (31) a pseudopotential Ω
′ that possesses again the

special structure (26), turns out to be

T =





c− 0 0
0 c+ 0
0 0

√
c+c−



 + i(K + iz)ω0e
−2U





−1 −λ 0
λ 1 0
0 0 0



 . (33)

Note that this transformation matrix T is a generalization of a corresponding
expression given in [13, 14] in pure Einsteinian gravity (without Maxwell field).

4. Solution of the linear problem

As we derive in detail below, the relations of the metric and electromagnetic field
quantities at the inner Cauchy horizon H− to those at the event horizon H+ emerge
from the integration of the LP along the dashed lines in Fig. 1 (right panel). This
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integration path contains the parts (−rh ≤ R ≤ rh, sin θ = 0) of the axis A± as
well as the two horizons H±. We are able to perfom this integration given that
E and Φ are analytic with respect to R and cos θ in an exterior vicinity of H+

(including H+). Then, E and Φ can be expanded into an interior vicinity of H+.
Now, with regular data on a slice inside the black hole, a theorem by Chruściel
(theorem 6.3 in [5]3) can be applied. Although this theorem is formulated in pure
Einsteinian gravity, the arguments presented in [5] permit a generalisation to the
Einstein-Maxwell case considered here [6]. The theorem assures that E and Φ exist
and are regular for all values

(R, cos θ) ∈ (−rh, rh] × [−1, 1],

i.e. in the entire inner region between the horizons (see Fig. 1), only excluding, for
the time being, the inner Cauchy horizon H−.

Along the entire integration path we have ̺ = 0, cf. (8). We study the LP
for λ = 1, that is in the upper sheet of the K-plane4. Then, the LP reduces to an
ODE with the general solution

Ω =





Ē + 2|Φ|2 1 Φ
E −1 −Φ

−2ieUΦ̄ 0 −ieU



C(K). (34)

Here, C is a 3 × 3 matrix which depends on K only. Respecting the gauge (26),
the third column of C vanishes.

It turns out that the regularity of the potentials E and Φ in (R, cos θ) ∈
(−rh, rh]× [−1, 1] enables us perform the integration of the LP along A± and H+.
Moreover, a careful study of the LP for points on the integration path in the vicini-
ties of the north and south poles of H+ reveals that the pseudopotentials possess
specific continuity conditions there. In this way it becomes possible to derive the
pseudopotentials on H+ and A− in terms of expressions valid at A+. Proceeding
now to H− one finds that again the LP exhibits the explicit solution (34) and,
most importantly, permits a continuous link of this solution to the pseudopoten-
tials at the two axes sections A±, which are joined to H− at the inner Cauchy
horizon’s north and south poles. As a result, the regularity of the potentials E
and Φ at H− emerges, and their values can be found entirely in terms of those
at H+. This procedure breaks down only if a specific parameter combination B
(see Eq. (49) below) becomes infinite, which in turn happens if and only if both
angular momentum J and charge Q vanish.

We discuss the solutions of the LP on the various sections of the integra-
tion path and show that they can be expressed in terms of the three functions
C1(K), C2(K) and C3(K), which are introduced in Sec. 4.1 as ‘integration con-
stants’ of the LP. Moreover, specific north and south pole boundary values of the
potentials as well as the constants ω±(6= 0) appear in the integration procedure. In

3We obtain Chruściels form of the line element by substituting R = rh cosT and θ = ψ.
4With the gauge (26), the solution of the LP in the lower sheet (in which λ = −1) can easily be
obtained from that in the upper sheet.
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the course of the investigation we find that these values satisfy specific relations.
In particular, values at H− can be written completely in terms of those at H+. It
thus becomes possible to express the inner Cauchy horizon potentials entirely in
terms of the event horizon potentials, see Sec. 5.

4.1. Solution on A+

As expressions valid on H± become more concise if they are expressed in terms of
those at an axis portion that joins the two horizons, we start our considerations
of the solution of the LP on A+.

The gauge (26) does not completely fix the solution of the LP. We obtain a
unique solution by imposing the normalization conditions5

ψ1 = ψ, ψ2 = ψ, ψ3 = 0 (35)

with

ψ := (K2 − 4r2h)3 (36)

at some point ζ = ζ0 on A+ in the lower sheet of the K-plane (λ = −1). As a con-
sequence of (34), the normalization conditions (35) are then satisfied everywhere
on A+ in the lower sheet, and the solution of the LP on A+ in the upper sheet
(with λ = 1) reads

Ω =





Ē + 2|Φ|2 1 Φ
E −1 −Φ

−2ieU Φ̄ 0 −ieU









C1(K) 0 0
C2(K) ψ(K) 0
C3(K) 0 0



 . (37)

Here the three ‘integration constants’ C1, C2, C3 (depending on K) appear.
Necessary additional information can be gathered by solving the LP for the

corresponding pseudopotentials in the two rotating frames of reference with ω0 =
ω± 6= 0 (see Sec. 3.1). With ̺ = 0 and a = 0 at A+ (cf. (18)) we obtain from (31),
(33), and (37)

Ω
′ =





Ē + 2|Φ|2 − 2iω±(K − ζ) 1 Φ
E + 2iω±(K − ζ) −1 −Φ

−2ieUΦ̄ 0 −ieU









C1(K) 0 0
C2(K) ψ(K) 0
C3(K) 0 0



 . (38)

4.2. Solution on H+

On the event horizon, the solution of the LP yields in the upper sheet, i.e. for
λ = 1:

Ω =





Ē + 2|Φ|2 1 Φ
E −1 −Φ

−2ieU Φ̄ 0 −ieU









D1(K) D4(K) 0
D2(K) D5(K) 0
D3(K) D6(K) 0



 (39)

with ‘integration constants’ D1, . . . , D6.

5Note that the conditions (35) are chosen in accordance with regular solvability of the LP along
the entire integration path in a complex vicinity of the interval [−2rh, 2rh] of the real K-axis. As
in our analysis only values at K = ζ ∈ [−2rh, 2rh] will be considered, such a vicinity is sufficient,
see Sec. 5 and, in particular, Eq. (52).
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In the rotating system with ω0 = ω+ 6= 0 we obtain (respecting ̺ = 0 and
a = −1/ω+ on H+)

Ω
′ = 2iω+(K − ζ)





−D1(K) −D4(K) 0
D1(K) D4(K) 0

0 0 0



 , (40)

see (30), (31) and (33).

We now derive six equations that provide us with D1, . . . , D6 in terms of
C1, C2, C3. These equations follow from the thorough discussion of the LP for
points on the integration path in the vicinities of the north and south poles of H+.
In particular, we find that both Ω and Ω

′ (i.e. ψ1, ψ2, ψ3 as well as ψ′
1 ψ

′
2, ψ

′
3)

are continuous there. One might expect that the continuity of Ω alone suffices for
this investigation, since Ω has, in general, six non-trivial components (ψ>

i and ψ<
i ,

i = 1, 2, 3, see (26)). However, since e2U = 0 at the north and south poles, the LP
degenerates there and as a consequence we obtain only two independent equations.
Hence, we have to supply this study with further information. We obtain two
further independent equations by requiring the continuity of Ω

′. But as another
two equations are needed in order to complete the analysis, we finally consider
the continuity of the two expressions e−Uψ>

3 and e−Uψ<
3 at the north and south

poles which again arises as a consequence of the LP. In this manner we gather six
independent equations, which allow us to expressD1, . . . , D6 in terms of C1, C2, C3:

D1 = C1 − i
E+
NC1 − C2 − Φ+

NC3

2ω+(K − 2rh)
, (41a)

D2 = C2 − i
(E+

N + 2|Φ+
N|2)(E+

NC1 − C2 − Φ+
NC3)

2ω+(K − 2rh)
, (41b)

D3 = C3 + iΦ̄+
N

E+
NC1 − C2 − Φ+

NC3

ω+(K − 2rh)
, (41c)

D4 =
iψ

2ω+(K − 2rh)
, (41d)

D5 = ψ

(

1 + i
E+
N + 2|Φ+

N|2
2ω+(K − 2rh)

)

, (41e)

D6 = −iψ
Φ̄+

N

ω+(K − 2rh)
. (41f)

4.3. Solution on A−

For the section A− we write

Ω =





Ē + 2|Φ|2 1 Φ
E −1 −Φ

−2ieU Φ̄ 0 −ieU



 C̃ (42)
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for the pseudopotential in the upper sheet (λ = 1). Here

C̃(K) =





C̃1(K) C̃4(K) 0

C̃2(K) C̃5(K) 0

C̃3(K) C̃6(K) 0



 . (43)

In the rotating system with ω0 = ω± 6= 0 (cf. Sec. 3.1) we have

Ω
′ =





Ē + 2|Φ|2 − 2iω±(K − ζ) 1 Φ
E + 2iω±(K − ζ) −1 −Φ

−2ieU Φ̄ 0 −ieU



 C̃(K). (44)

As continuity properties valid at the south pole of H+ follow from the LP again, we
are able to express the ‘integration constants’ C̃1, . . . , C̃6. At first, C̃1, . . . , C̃6 can
be found in terms of D1, . . . , D6. Then, via (41), the C̃1, . . . , C̃6 arise as functions
of C1, C2, C3.

4.4. Solution on H−

The solution of the LP on H− is again given by the general structure (34). Hence
we may write

Ω =





Ē + 2|Φ|2 1 Φ
E −1 −Φ

−2ieU Φ̄ 0 −ieU









D̃1(K) D̃4(K) 0

D̃2(K) D̃5(K) 0

D̃3(K) D̃6(K) 0



 (45)

for the pseudopotential in the upper sheet (λ = 1) at the inner Cauchy horizon
H−. In the rotating system with ω0 = ω− 6= 0 (cf. Sec. 3.1) we have

Ω
′ = 2iω−(K − ζ)





−D̃1(K) −D̃4(K) 0

D̃1(K) D̃4(K) 0
0 0 0



 . (46)

As we cannot assume from the outset that the pseudopotential is regular at H−

and in particular at its north pole, we carefully study whether the LP can be
solved on the integration path in the vicinity of this point. We find that this is
indeed the case and that, moreover, specific continuity properties can be fulfilled
which hold at the pole. These properties are similar to those valid on the poles of
H+, see discussion in Sec. 4.2. As a consequence, the quantities D̃1, . . . , D̃6 can be
derived in terms of C1, C2, C3. Note that the expressions for D̃i are of the form
(41), with rh and the superscript ‘+’ replaced by −rh and ‘−’ respectively.

In a similar manner we may calculate the D̃i from continuity conditions
studied at the south pole of H−. Consequently, we obtain two different systems
for the D̃i, and the requirement of equality of these two sets leads us to the
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following relations

ω− = ω+(1 − 2AB), (47a)

b−N = b+N −
[

(b+N − b+S )A− (β+
N + β+

S )(β+
N − β+

S )3
]

B, (47b)

b−S = b+S +
[

(b+N − b+S )A+ (β+
N + β+

S )(β+
N − β+

S )3
]

B, (47c)

A−

t = A+
t + (β+

N − β+
S )3B, (47d)

β−

N = β+
N − (β+

N − β+
S )AB, (47e)

β−

S = β+
S + (β+

N − β+
S )AB, (47f)

with

A := b+N − b+S + 8ω+rh + 2A+
t (β+

N − β+
S ), (48)

B :=
8ω+rh

A2 + (β+
N − β+

S )4
, (49)

A±

t := At|±N = At|±S . (50)

In other words, we are able to express the above boundary values at H− completely
in terms of those on H+. These relations are essential for expressing the inner
Cauchy horizon potentials entirely in terms of the event horizon potentials, see
Sec. 5.

Note that the agreements in (50),

At|+N = At|+S , At|−N = At|−S
emerge as a consequence of (18) and (21).

In Sec. 6 we will derive expressions for angular momentum J and charge Q
which show that B can be rewritten as

B =
8π2rh

(ω+)3[(8πJ)2 + (4πQ2)2]
, (51)

i.e. B — and therefore the quantities in (47) — are well-defined as long as J and
Q do not both vanish (remember ω+ 6= 0, rh > 0).

5. Ernst potential and electromagnetic potential on the Cauchy

horizon

From the pseudopotential Ω, we now calculate the potentials E and Φ on H−. In
a first step, we express C1, C2, and C3 in terms of the event horizon potentials.

At the branch points K1 = iz̄ and K2 = −iz, Ω is unique, i.e. the values in
both K-sheets coincide. In particular, for ̺ = 0 (where K1 = K2 = ζ) we have

ψ>
i = ψ<

i , i = 1, 2, 3, for K = ζ. (52)
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Considering these conditions at H+, it follows that (cf. (39))

(Ē + 2|Φ|2)D1(ζ) +D2(ζ) + ΦD3(ζ)

= (Ē + 2|Φ|2)D4(ζ) +D5(ζ) + ΦD6(ζ), (53a)

ED1(ζ) −D2(ζ) − ΦD3(ζ) = −ED4(ζ) +D5(ζ) + ΦD6(ζ), (53b)

2Φ̄D1(ζ) +D3(ζ) = 2Φ̄D4(ζ) +D6(ζ), (53c)

where E = E(ζ) and Φ = Φ(ζ) are the potentials taken on H+. Using (41), we
obtain a linear system of equations for C1(ζ), C2(ζ), C3(ζ) with ζ ∈ [−2rh, 2rh].
The corresponding solution reads

C1(ζ) = n
[

Ē + 2Φ+
NΦ̄ − 2iω+(ζ − 2rh) + E+

N

]

, (54a)

C2(ζ) = (ζ2 − 4r2h)3 + n
[

(E+
N + 2|Φ+

N|2)(Ē + 2Φ+
NΦ̄ + E+

N )

+2iω+(ζ − 2rh)Ē
]

, (54b)

C3(ζ) = −2n
[

Φ̄+
N(Ē + 2Φ+

NΦ̄ + E+
N ) − 2iω+(ζ − 2rh)Φ̄

]

, (54c)

with

n :=
(ζ − 2rh)(ζ + 2rh)

3

4(ω+)2e2U

[

E + 2Φ̄+
NΦ + 2iω+(ζ − 2rh) − E+

N − 2|Φ+
N|2

]

. (55)

Now, we evaluate (52) on H−. Similarly to (53), we obtain

(Ē + 2|Φ|2)D̃1(ζ) + D̃2(ζ) + ΦD̃3(ζ)

= (Ē + 2|Φ|2)D̃4(ζ) + D̃5(ζ) + ΦD̃6(ζ), (56a)

ED̃1(ζ) − D̃2(ζ) − ΦD̃3(ζ) = −ED̃4(ζ) + D̃5(ζ) + ΦD̃6(ζ), (56b)

2Φ̄D̃1(ζ) + D̃3(ζ) = 2Φ̄D̃4(ζ) + D̃6(ζ), (56c)

where E = E(ζ) and Φ = Φ(ζ) now denote the potentials on H−. We solve (56)
for the two potentials and get

Φ̄(ζ) =
D̃6(ζ) − D̃3(ζ)

2[D̃1(ζ) − D̃4(ζ)]
, (57a)

Ē(ζ) =
D̃5(ζ) − D̃2(ζ)

D̃1(ζ) − D̃4(ζ)
. (57b)

Finally, using the expressions for D̃i in terms of Ci and Eq. (54), we obtain the
potentials on H− in terms of the potentials on H+. We arrive at

E−(θ) =
a1(θ)E+(π − θ) + a2(θ)Φ

+(π − θ) + a3(θ)

c1(θ)E+(π − θ) + c2(θ)Φ+(π − θ) + c3(θ)
, (58a)

Φ−(θ) =
b1(θ)E+(π − θ) + b2(θ)Φ

+(π − θ) + b3(θ)

c1(θ)E+(π − θ) + c2(θ)Φ+(π − θ) + c3(θ)
, (58b)
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in which the inner Cauchy horizon potentials are given with respect to the Boyer-
Lindquist-type coordinate θ. As before, the superscripts ‘+’ and ‘−’ indicate quan-
tities on H+ and H−, respectively. The functions ai, bi, ci, i = 1, 2, 3, are given
by

a1 = 16ω+ω−r2h sin2θ − 4iω+rhF
−

N (1 + cos θ) − 4iω−rhF
+
N (1 − cos θ) − F−

N E,

a2 = −2
[

4iω+rhΦ̄−

NF
−

N (1 + cos θ) + 4iω−rhΦ̄+
NF

+
N (1 − cos θ) + Φ̄+

NF
−

N E
]

,

a3 = −4iω+rhĒ−

NF
−

N (1 + cos θ) − 4iω−rhĒ+
NF

+
N (1 − cos θ) − Ē+

NF
−

N E,

b1 = 4iω+rhΦ−

N(1 + cos θ) + 4iω−rhΦ+
N(1 − cos θ) + Φ−

NE,

b2 = 2
[

8ω+ω−r2h sin2θ + 4iω+rh|Φ−

N |2(1 + cos θ)

+4iω−rh|Φ+
N|2(1 − cos θ) + Φ̄+

NΦ−

NE
]

,

b3 = 4iω+rhĒ−

N Φ−

N(1 + cos θ) + 4iω−rhĒ+
N Φ+

N(1 − cos θ) + Ē+
N Φ−

NE,

c1 = 4iω+rh(1 + cos θ) + 4iω−rh(1 − cos θ) + E,

c2 = 2
[

4iω+rhΦ̄−

N(1 + cos θ) + 4iω−rhΦ̄+
N(1 − cos θ) + Φ̄+

NE
]

,

c3 = 16ω+ω−r2h sin2θ + 4iω+rhĒ−

N (1 + cos θ) + 4iω−rhĒ+
N (1 − cos θ) + Ē+

NE,

where

E := Ē+
N − Ē−

N + 2Φ+
N(Φ̄+

N − Φ̄−

N), F±

N := Ē±

N + 2|Φ±

N |2.

Note that we have taken only (56a) and (56c) to obtain (57). However, using
(58), we find that (56b) is satisfied as well.

6. A universal equality

Eqn. (5) contains the following black hole quantities: (i) angular momentum J , (ii)
electric charge Q, and (iii) the two horizon surface areas A±. While the expres-
sions for Q and A± are defined unambiguously, the introduction of the angular
momentum J requires a bit of explanation.

The total angular momentum of the spacetime is composed of matter, electro-
magnetic field and black hole contributions. While clearly the matter part should
be excluded for the definition of the local black hole’s angular momentum, both
a Komar integral and an appropriate electromagnetic event horizon integral must
be taken into account, in order to find a measure for which Eqn. (5) turns out to
be true. A more thorough discussion of this issue is given in [1], at the beginning
of Sec. 4, and we here adapt the corresponding expression for the local black hole
angular momentum J given there.
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In terms of the quantities û, ω, Aϕ and φ we thus obtain (cf. [1])

J =
1

8π

∮

H+

(ηi;j + 2ηkAkF
ij)dSij

= −1

4

π
∫

0

û
[ û

4
ω,R sin2θ −Aϕ(φ,R −Aϕω,R)

]∣

∣

∣

H+
sin θ dθ, (59a)

Q = − 1

4π

∮

H+

F ijdSij = −1

4

π
∫

0

û(φ,R −Aϕω,R)
∣

∣

H+ sin θ dθ, (59b)

A± = 2π

π
∫

0

√

µ̂û
∣

∣

H± sin θ dθ = 4πû±N, (59c)

where we have used conditions (18) and (20). As in Sec. 1, ηi is the Killing vector
with respect to axisymmetry.

In order to show the validity of Eqn. (5), we express at first J , Q, and A±

in terms of the complex potentials E and Φ. Using (9), (15), and (19), we can
perform the integrations in (59a) and (59b), i.e. we find expressions depending
only on values on the north and south poles of the horizons H±:

J =
1

8(ω+)2
[

b+S − b+N − 8ω+rh + 2A+
t (β+

S − β+
N )

]

, (60a)

Q =
1

2ω+
(β+

N − β+
S ), (60b)

A± = ± 32πrh

e2U
,R

∣

∣

±

N

, (60c)

where

ω+ =
1

4
[b,R + 2(Atβ,R − βAt,R)]

+
N (61)

arises from (9), (15), and (18).

In order to calculate e2U
,R

∣

∣

±

N
, we use the solution of the LP on A+. Evaluation

of the conditions in (52), considered on A+, leads us to

(Ē + 2|Φ|2)C1(ζ) + C2(ζ) + ΦC3(ζ) = ψ(ζ), (62a)

EC1(ζ) − C2(ζ) − ΦC3(ζ) = ψ(ζ), (62b)

2Φ̄C1(ζ) + C3(ζ) = 0. (62c)

Summming up the first two of these equations we get

e2U (ζ) =
ψ(ζ)

C1(ζ)
on A+. (63)
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With the explicit expression (54a) for C1(ζ), we thus obtain both areas A± in
terms of values on the event horizon’s north pole:

A+ = − 2π

(ω+)2
e2U

,θθ

∣

∣

+

N
(64a)

A− = − π

2(ω+)2 e2U
,θθ

∣

∣

+

N

[

(β+
N − β+

S )4 (64b)

+
(

b+S − b+N − 8ω+rh + 2A+
t (β+

S − β+
N )

)2
]

. (64c)

Here, we have used that

e2U
,θθ

∣

∣

+

N
= e2U

,θθ

∣

∣

+

S

and

ω+ =
1

4rh
[b,θθ + 2(Atβ,θθ − βAt,θθ)]

+
N,

which can be derived from (20) and regularity conditions, that result from the
Ernst equations (17), studied at the north and south poles of H+.

As both the product A+A− as well as J and Q can be expressed in terms of
the same north pole quantities (cf. (64), (60a), (60b)), the validity of the relation
(5) in question can easily be seen.

7. Discussion

We have investigated the interior hyperbolic region of axisymmetric and stationary
black holes with surrounding matter in Einstein-Maxwell theory. With the help of
the LP for the corresponding Ernst equations, we have found the explicit relation
(58) for the complex metric and electromagnetic potentials E and Φ on the inner
Cauchy horizon H− in terms of those on the event horizon H+.

A discussion of (58) reveals that with potentials that are regular on H+, the
potentials on H− are also regular, provided that J and Q do not both vanish. In
the limit of vanishing J and Q, the potentials E− and Φ− diverge (cf. the remark
at the end of Sec. 4.4).

As an additional result, we have proved a remarkable universal equality for
such black holes. Combining our work with a closely related inequality obtained
in [8], we arrive at the following.

Theorem 7.1. Every regular axisymmetric and stationary Einstein-Maxwell black
hole with surrounding matter has a regular inner Cauchy horizon if and only if
the angular momentum J and charge Q do not both vanish. Then the universal
relation

(8πJ)2 + (4πQ2)2 = A+A−

is satisfied where A+ and A− denote the areas of event and inner Cauchy horizon
respectively. If in addition the black hole is sub-extremal (i.e. if there exist trapped
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surfaces in every sufficiently small interior vicinity of the event horizon), then the
following inequalities hold:

A− <
√

(8πJ)2 + (4πQ2)2 < A+.

Note that in the degenerate limit the above equality becomes identical with
the aforementioned inequalities. As indicated in Sec. 2.3, the black hole degen-
erates if the coordinate radius rh tends to zero. In this limit the hyperbolic re-
gion disappears and the two horizons H± become identical which in turn means
A+ = A−. Then the two formulae in theorem 7.1 yield the known relation for
degenerate axisymmetric and stationary black holes with surrounding matter in
Einstein-Maxwell theory, see [1].
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