
Earth Syst. Dynam., 4, 79–93, 2013
www.earth-syst-dynam.net/4/79/2013/
doi:10.5194/esd-4-79-2013
© Author(s) 2013. CC Attribution 3.0 License.

EGU Journal Logos (RGB)

Advances in 
Geosciences

O
pen A

ccess

Natural Hazards 
and Earth System 

Sciences

O
pen A

ccess

Annales  
Geophysicae

O
pen A

ccess

Nonlinear Processes 
in Geophysics

O
pen A

ccess

Atmospheric 
Chemistry

and Physics

O
pen A

ccess

Atmospheric 
Chemistry

and Physics

O
pen A

ccess

Discussions

Atmospheric 
Measurement

Techniques

O
pen A

ccess

Atmospheric 
Measurement

Techniques
O

pen A
ccess

Discussions

Biogeosciences

O
pen A

ccess

O
pen A

ccess

Biogeosciences
Discussions

Climate 
of the Past

O
pen A

ccess

O
pen A

ccess

Climate 
of the Past

Discussions

Earth System 
Dynamics

O
pen A

ccess

O
pen A

ccess

Earth System 
Dynamics

Discussions

Geoscientific
Instrumentation 

Methods and
Data Systems

O
pen A

ccess

Geoscientific
Instrumentation 

Methods and
Data Systems

O
pen A

ccess

Discussions

Geoscientific
Model Development

O
pen A

ccess

O
pen A

ccess

Geoscientific
Model Development

Discussions

Hydrology and 
Earth System

Sciences

O
pen A

ccess

Hydrology and 
Earth System

Sciences

O
pen A

ccess

Discussions

Ocean Science

O
pen A

ccess

O
pen A

ccess

Ocean Science
Discussions

Solid Earth

O
pen A

ccess

O
pen A

ccess

Solid Earth
Discussions

The Cryosphere

O
pen A

ccess

O
pen A

ccess

The Cryosphere
Discussions

Natural Hazards 
and Earth System 

Sciences

O
pen A

ccess

Discussions

Detecting hotspots of atmosphere–vegetation interaction via
slowing down – Part 2: Application to a global climate model

S. Bathiany1, M. Claussen1,2, and K. Fraedrich1,2

1Max Planck Institute for Meteorology, KlimaCampus Hamburg, Germany
2Meteorologisches Institut, Universität Hamburg, KlimaCampus Hamburg, Germany

Correspondence to:S. Bathiany (sebastian.bathiany@zmaw.de)

Received: 27 June 2012 – Published in Earth Syst. Dynam. Discuss.: 20 July 2012
Revised: 8 December 2012 – Accepted: 5 February 201 – Published: 26 February 2013

Abstract. Early warning signals (EWS) have become a pop-
ular statistical tool to infer stability properties of the climate
system. In Part 1 of this two-part paper we have presented a
diagnostic method to find the hotspot of a sudden transition
as opposed to regions that experience an externally induced
tipping as a mere response. Here, we apply our method to
the atmosphere–vegetation model PlanetSimulator (PlaSim)
– VECODE using a regression model. For each of two veg-
etation collapses in PlaSim-VECODE, we identify a hotspot
of one particular grid cell. We demonstrate with additional
experiments that the detected hotspots are indeed a particu-
larly sensitive region in the model and give a physical expla-
nation for these results. The method can thus provide infor-
mation on the causality of sudden transitions and may help
to improve the knowledge on the vulnerability of certain sub-
systems in climate models.

1 Introduction

The phenomenon of slowing down, an increase in a sys-
tem’s relaxation time resulting from a loss in stability, has
been studied for a long time in various systems (for exam-
ple Collins and Teh, 1973; Wissel, 1984; Wolff , 1990). The
effect is often illustrated with the prototype example of a
one-dimensional potential whose shape determines the sys-
tem’s deterministic dynamics, and a ball which characterises
its state (Fraedrich, 1979; Scheffer et al., 2001). The deter-
ministic system is supposed to approach an equilibrium (in
terms of dynamical systems, a stable fixed point), determined
by a minimum in the potential. If by varying an external
control parameter the potential becomes flatter, the return

time to the equilibrium increases and the eigenvalue as de-
termined by a linear stability analysis increases towards 0 (in
a time-continuous system).

As the underlying dynamics are rarely known in complex
systems, it has been suggested to infer stability changes of a
current equilibrium from statistical indicators. If the system’s
state is subject to external random perturbations (usually as-
sumed as white noise of constant noise level), a loss in sta-
bility will lead to an increase in autocorrelation and (at least
if the noise is additive) variance. These changes can be mea-
sured if the change in external conditions is slow enough to
allow a sufficiently precise sampling of the statistical indica-
tors. Assuming that the existence of a non-linear threshold, in
the extreme case a catastrophic bifurcation point, is known,
then an attempt can be made to predict when a sudden transi-
tion will occur (Thompson and Sieber, 2011a,b). For this rea-
son, statistical indicators of slowing down have been referred
to as early warning signals (EWS;Scheffer et al., 2009).

The generality of the concept has recently inspired the
search for slowing down and EWS in various contexts such
as ecological models (Carpenter and Brock, 2006; van Nes
and Scheffer, 2007; Guttal and Jayaprakash, 2008; Contamin
and Ellison, 2009), living populations in laboratories (Drake
and Griffen, 2010; Veraart et al., 2012) and real ecosystems
(Carpenter et al., 2011), geological climate records (Dakos
et al., 2008; Ditlevsen and Johnsen, 2010), and climate mod-
els (Kleinen et al., 2003; Held and Kleinen, 2004; Livina and
Lenton, 2007; Lenton et al., 2009; Lenton, 2011).

However, most of these studies address the problem within
the one-dimensional framework explained above and thereby
considerably reduce the spatial complexity of real systems.
Palaeoclimate records are inherently one-dimensional and
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80 S. Bathiany et al.: Detecting hotspots via slowing down – Part 2

generally yield spatially integrated information. In ocean cir-
culation models, integrated mass fluxes are often a useful
quantity to characterise large-scale changes. For example,
Held and Kleinen(2004) study a collapse of the meridional
overturning circulation and obtain a single time series by pro-
jecting on the critical mode of the transition (“degenerate fin-
gerprinting”).

EWS in ecological systems have recently been studied
in a spatially more explicit way (Oborny et al., 2005; Gut-
tal and Jayaprakash, 2009; Donangelo et al., 2010; Dakos
et al., 2010, 2011). However, the latter studies involve two
simplifications: first, the analysed systems involve interac-
tions which couple grid cells in a spatially homogeneous
way. Second, the grid is constructed from identical elements
with individual tipping points and the system’s boundaries
are well defined.

In this regard, the interactions between terrestrial ecosys-
tems and the atmosphere pose a more difficult problem.
Considering a global climate model, all land cells are glob-
ally coupled via the atmosphere, the spatial coupling is in-
homogeneous, and the critical region producing a tipping
point is embedded in a larger system with other dynamical
characteristics.

In such a complex setting, it is of interest not only if or
when a tipping occurs, but also where it occurs and causally
originates (hotspot). In Part 1 of this article (Bathiany et al.,
2013) we have shown that the detection of local EWS at
individual grid cells is generally not sufficient to solve this
problem. However, the hotspot as a nucleus of the abrupt
transition can potentially be identified with a degenerate fin-
gerprinting approach by determining the area which max-
imises an EWS. Here, we apply the method to Holocene
vegetation dynamics in North Africa and Southwest Asia in
the atmosphere–vegetation model PlanetSimulator (PlaSim)
– VECODE. North Africa is a region where atmosphere–
vegetation interactions have been particularly important dur-
ing the Holocene (Claussen, 1998). In a number of climate
models rapid transitions due to strong feedbacks (Claussen
et al., 1999; Renssen et al., 2003) and multiple equilib-
ria (Claussen, 1994, 1997, 1998; Zeng and Neelin, 2000;
Wang and Eltahir, 2000; Irizarry-Ortiz et al., 2003) have been
found.

In Sect.2, we briefly introduce the two models, the meth-
ods of coupling, as well as the dynamic vegetation changes
simulated by PlaSim-VECODE. In Sect.3 we discuss the
restrictions of applying EWS to time series generated by
PlaSim-VECODE, introduce a regression model, and de-
rive parameter values to match our PlaSim-VECODE re-
sults. We then apply the hotspot detection scheme to our re-
gression model in Sect.4. In Sect.5, we verify the results
with PlaSim-VECODE and give a physical explanation of
the model’s behaviour. Section6 provides our conclusions.

2 Mid-Holocene vegetation dynamics in
PlaSim-VECODE

To simulate mid-Holocene vegetation dynamics, we couple
the atmosphere model Planet Simulator (PlaSim;Fraedrich
et al., 2005; Fraedrich, 2012) to the simple dynamic global
vegetation model VECODE (Brovkin et al., 1997, 2002). The
experimental setup is identical toBathiany et al.(2012): sea
surface temperatures are prescribed from present-day obser-
vations, atmospheric CO2 is fixed at 280 ppm, and the reso-
lution is T21 with 10 vertical layers. Equilibrium vegetation
coverV ∗ in VECODE directly depends on annual precipita-
tion P :

V ∗
=



0 if P < P1

1 if P > P2

1.03−
1.03

1+ α

(
P − P1

exp(γ δ)

)2
otherwise,

(1)

with

P1 = β exp(γ δ/2)

P2 = β exp(γ δ/2) +
exp(γ δ)
√

0.03α
.

In order to allow for vegetation collapses, we implement a
steeper threshold in the equilibrium vegetation cover’s re-
sponse to precipitation by choosingα = 0.0011, β = 140,
γ = 1.7× 10−5, andδ = GDD0 − 900 K, where GDD0 are
the growing degree days above 0◦C (a function of tempera-
ture only). This version is called the modified VECODE in
Bathiany et al.(2012) (Fig. 1). VECODE distinguishes trees
and grass as the only vegetation types. The surface cover
types, trees, grass and desert, have different physical prop-
erties which are constant over time.

PlaSim and VECODE can be coupled in two ways: in a
transient mode (PlaSim-VECODE-tr), we use an annual cou-
pling, and vegetation cover fractions at each grid box ap-
proach their equilibrium according to a linear relaxation law
using a climate dependent timescale. In equilibrium mode
(PlaSim-VECODE-eq), we iteratively run PlaSim with fixed
vegetation cover for several years, and then set vegetation
cover to its new equilibrium corresponding to the multi-year
average ofP and GDD0. This mode thus corresponds to an
asynchronous coupling.

The asynchronous coupling corresponds to the limit of in-
finitely fast vegetation dynamics so that there is no timescale
separation betweenP andV anymore. In addition, the vari-
ability of P (the fast subsystem) is averaged out and replaced
by its mean response. This way, the stable deterministic equi-
libria of the slow part of the system can be identified because
the system is always very close to these equilibria. In this
sense, the interactive timescale of several years in PlaSim-
VECODE-tr and the large variability provide a more real-
istic case. However, the relationship of climate and vegeta-
tion timescale in the model is an empirical fit to observations
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Fig. 1.Conceptual stability diagram to illustrate multiple equilibria
in the atmosphere–vegetation system.P : annual precipitation,V :
vegetation cover fraction. Green line: equilibrium vegetation cover
V ∗(P ) as in the modified VECODE (Eq.1) with δ = 9100. Blue
lines: dependency ofP on V , here assumed to be linear. As orbital
forcing causes background precipitationPd to decrease, the system
reaches a bifurcation point (here at approx.Pd = 55 where the green
equilibrium disappears and the system would have to fall into the
remaining desert state).

from different ecosystems that may not be directly transfer-
able to changes in time at one and the same location. As it
is our aim to investigate the stability properties of PlaSim-
VECODE rather than its realism, we accept this limitation as
a side-effect of the model’s simplicity.

When running PlaSim-VECODE-tr with orbital forcing
from 9 k (k is kiloyears before present) to 2 k, we obtain two
vegetation collapses in different regions at different times
(Bathiany et al., 2012). The spatial and temporal features of
these transitions are presented in Figs.2 and3. From 9 k to
6 k, almost all land cells are at least partly covered by vegeta-
tion and cover fractions show large fluctuations due to natural
climate variability but almost no trend. Around 5.5 k, vege-
tation cover in large parts of northern Africa and southwest-
ern Asia collapses and thereafter stays in desert-like condi-
tions. Interestingly, the timing of this collapse corresponds
to palaeoclimate time series from a sediment core (deMeno-
cal et al., 2000) and earlier model studies (Claussen et al.,
1999), despite differences in the models and our modifica-
tions to the vegetation model. Around 3.5 k, a similar abrupt
event occurs in a more confined region in the Sahel region.
In the following, we refer to these two sudden transitions as
collapse 1 (5.5 k event) and collapse 2 (3.5 k event).

The two vegetation collapses are related to the large
atmosphere–vegetation feedback in the model which can al-
low for multiple equilibria. In PlaSim-VECODE-eq, multiple
steady states in the region of collapse 1 can be found until
approx. 7 k., and in the region of collapse 2 at 4.5 k–5 k (see

7k 6k 

5k 3k 

1 
2 

1 
2 

1 
2 

1 
2 

3 4 3 4 

3 4 3 4 

5 5 

5 5 

Fig. 2. Mean vegetation cover fractions (trees + grass) in % in the
transient PlaSim-VECODE experiment from 9 k to 2 k. Vegetation
cover is averaged over 200 yr starting from the indicated year (7 k,
6 k, 5 k, and 3 k, respectively). Numbers 1 to 5 denote the individual
grid cells referred to in the text. The red region encloses the 52 grid
cells considered in RM1, the purple region encloses the 8 grid cells
considered in RM2.

Figs. 6, 7 and Table 2 inBathiany et al., 2012). For each of
these orbital forcings, starting from a forest world leads to
a partly vegetated state (in the following called the “green
equilibrium”), while starting from desert conditions leads
to a dry state (“desert equilibrium”) in PlaSim-VECODE-
eq. However, due to the large climate variability and non-
linearities in the model formulation, a noise-induced transi-
tion (Horsthemke and Lefever, 1984) can occur and multi-
ple steady states are not found in PlaSim-VECODE-tr, where
natural variability is large. The collapses presented in Figs.2
and3, although a result of the intrinsic multiple equilibria in
the system, thus do not exactly coincide with the determinis-
tic bifurcation points, but rather result from a sudden change
in the system’s probability density function.

3 A stochastic model for EWS analysis

3.1 Idealised model setup

To further analyse the stability properties of the modified
PlaSim-VECODE and to find hotspots in the model, we
apply our hotspot detection method.

Following our algorithm for hotspot detection presented
in Part 1, we first generate a number of time slices for fixed
orbital forcing. To analyse collapse 1, we choose orbital forc-
ings corresponding to 9 k, 8.5 k, 8 k, 7.5 k, 7 k, 6.5 k and 6 k
(dashed red lines in Fig.3, top); to analyse collapse 2 we
choose 5.5 k, 5 k, 4.5 k, 4 k, and 3.6 k (dashed red lines in
Fig. 3, bottom). As any year is associated with a particular
orbital forcing we refer to this forcing as an orbit year. Each

www.earth-syst-dynam.net/4/79/2013/ Earth Syst. Dynam., 4, 79–93, 2013
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1 

2 

Fig. 3. Vegetation cover fraction in the transient PlaSim-VECODE
experiment from 9 k to 2 k. Two single grid cells are shown, in-
dicated as grid cells 1 and 2 in Fig.2. The vertical dashed lines
indicate theB values of the 20 000 yr long stationary PlaSim-
VECODE-tr simulations used to construct RM1 (top) and RM2
(bottom).

time slice simulation consists of 20 000 yr in transient cou-
pling mode.

However, a direct application of the hotspot detection
scheme to these time series is not adequate for the following
three reasons:

1. Due to the distinction of cases in Eq. (1), vegetation
cover fractionV does not always show free variations
but is often exactly 0 or 1. The application of EWS is
not suited for such a case as the stability properties of
the equilibrium cannot be sampled properly. For exam-
ple, before reaching a desert state, the vegetation cover
fraction shows an exponential decay after a particularly
wet year and stays constant afterwards (Fig.3). More
importantly, the same phenomenon occurs at the other
limit of phase space,V = 1. EWS like autocorrelation
or variance then depend on the frequency of such cutoff
events, which are not related to the stability of a climate
state.

2. The timescaleτ of dynamic vegetation cover change
in VECODE depends on the system’s state and thus
contaminates the signal of slowing down. In particular,
τ is large for dry regimes and small for wet regimes
(see Fig. 3 inBathiany et al., 2012). When background
precipitation is reduced, an increased timescale will be
reflected in an increased autocorrelation. This state-
dependent slowing down is not necessarily related to
any change in stability and thus distorts the signal.

3. Atmospheric variability in PlaSim-VECODE-tr is too
large to justify the small noise approximation. As ex-
plained above, the two collapses cannot be expected
to coincide with a vanishing eigenvalue because they
result from non-linear interactions between the ampli-
tude of the multiplicative noise and the system’s state
(Bathiany et al., 2012).

Insofar, the prerequisites for an application of EWS-based
analysis are in conflict with the case of PlaSim-VECODE-tr.
We therefore use the regression model introduced in Part 1 of
our study. In this stochastic model, precipitationP at any grid
cell i is described as a linear function of the vegetation cover
fractionsVj at all cells, following the concept ofBrovkin
et al.(1998), Wang(2004), andLiu et al. (2006):

P t
i = P0i

+ siB +

N∑
n=1

kij V t
j + σP ηt

i . (2)

Vegetation dynamics are represented by the simple dynamic
equation

V t+1
i = V t

i +
V ∗

i (P t
i ) − V t

i

τ
+ σV ηt

i , (3)

with t as the discrete time and a time step of one year.
The bifurcation parameterB is the time (in kiloyears before
present) that corresponds to a certain orbital forcing. De-
creasingB implies an orbital forcing that evolves forward
in time. This in turn tends to decreaseP during the late
Holocene due to the impact of orbital forcing on Northern
Hemisphere summer insolation and thus convective precipi-
tation. Spatial interactions are captured by matrixk, and cli-
mate variability is accounted for by a Gaussian white noise
processηi , which is also uncorrelated in space.

In contrast to PlaSim-VECODE, the three caveats listed
above can be resolved within the framework of this regres-
sion model:

1. We remove the second condition in Eq. (1), thereby al-
lowing for V > 1 which corresponds to an extrapola-
tion of the empiricalP(V ) relation obtained in PlaSim-
VECODE. As a maximum ofV = 1.03 is still not ex-
ceeded, we accept the unphysical nature of cover frac-
tions larger than 1 in the regression model.

2. We fix the dynamic timescaleτ to a the climate-
independent value of 5 yr in agreement withLiu et al.
(2006) andBathiany et al.(2012).

Earth Syst. Dynam., 4, 79–93, 2013 www.earth-syst-dynam.net/4/79/2013/
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Fig. 4. Relation between precipitation (P ), vegetation cover fraction (V ) and orbital forcing from the stationary simulations with PlaSim-
VECODE-tr. The indices ofP andV refer to the specific grid cells labelled in Fig.2 (for example,P3 vs.V4 showsP at cell 3 versusV at
cell 4 for all years and simulations). The four lower panels show the relation betweenP and orbital forcing. Left: simulations used to derive
RM1, right: simulations used to derive RM2. The slope of the red lines corresponds to parameterskij andsi as obtained from the multiple
regression, the intersects have been obtained by assuming mean conditions for all other predictor variables.

3. We prescribe a particularly small and constant noise
level of σV = 0.00013 withσP = 0 (additive noise) or
σP = 2 with σV = 0 (multiplicative noise).

We refer to this model as regression model 1 (RM1) when
studying collapse 1, and as regression model 2 (RM2) when
studying collapse 2. Both models only differ in the number
of grid cells and the parameter values.

To keep the regression models as simple as possible, we
only include grid cells in northern Africa and southwestern
Asia which show substantial fluctuations in vegetation cover.
Grid cells with V permanently close to 1 or 0 in all time
slices are static elements of the system under consideration
and can thus be interpreted as external conditions which are
indirectly reflected in the constantsP0i

. For RM1, we include
all grid cells whereV averaged over time and all time slices

www.earth-syst-dynam.net/4/79/2013/ Earth Syst. Dynam., 4, 79–93, 2013
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Fig. 5.Characteristics of RM1 (left) and RM2 (right), depending on parameterB. Top: Equilibrium vegetation cover at all elements (greenest
solution). The elements identified as hotspots are dashed. Some elements are dotted only to be better distinguishable from others. Bottom: real
part of eigenvalues characterising the linear stability of the corresponding solution of the time-continuous system. The vertical dashed lines
indicate theB values of the stationary simulations used for the hotspot detection (red: bifurcation 1 in RM1 and RM2, orange: bifurcation 2
in RM1).

is between 0.1 and 0.96 (red area in Fig.2). For RM2 we se-
lect the 8 grid cells in the south-west which show substantial
collapse at 3.5 k (purple area in Fig.2).

Besides precipitation, growing degree days GDD0 are also
a space and time dependent variable of the system which af-
fectsV ∗ (Eq.1). However, by choosingγ = 1.7× 10−5, the
sensitivity ofV ∗ to changes in GDD0 is very small in the
modified VECODE. Differentiation ofV ∗ with respect toδ
as well as a graphical analysis reveals that shifts inP direc-
tion do not exceed some mm for typical changes inδ. As
plants in arid regions are limited by water rather than tem-
perature, the neglect of temperature fluctuations seems rea-
sonable. Typical spatial differences in GDD0 (time means
are between 7000 and 12 000) exceed the temporal vari-
ability in North Africa (approx. 1000 at most grid cells)
in PlaSim-VECODE-tr. Therefore, we prescribe a constant
value of GDD0 (and therebyδ) at each grid cell of our re-
gression models. Each value corresponds to the average over
all years and time slices (9 k–6 k for RM1, 5.5 k–3.6 k for
RM2). Hence, the functionV ∗

i (P ) very slightly depends on
the particular grid cell i, but is constant in time.

It remains to determine suitable parameter values ofP0i
,

si , andkij to reproduce the stability properties of PlaSim-
VECODE with the regression models. To this aim, we fit

these parameters to our stationary PlaSim-VECODE-tr sim-
ulations using a multivariate linear regression:

First, we extend the vectorVi at every year from PlaSim-
VECODE-tr by one additional dimension, assigned with the
orbit year corresponding to each time slice. AlthoughV ac-
tually consists of trees and grass cover in VECODE, we can
safely neglect this distinction, as tree cover is always close
to 0 in the grid cells we consider. Using the extended vec-
tor as a predictor and the corresponding PlaSim-VECODE-tr
time series ofPi as responses, we calculate regression coef-
ficients using the MATLAB functionmvregress. EachP0i

is
then obtained as the constant offset of the regression line,si
is its slope with regard to orbit year, andkij are its slopes
with regard toVj (Fig. 4).

3.2 Robustness and stability properties of the regression
models

To investigate the stability properties of the two regression
models over a range ofB, we numerically determine deter-
ministic equilibria and the eigenvalues of these equilibria as
obtained from a linear stability analysis (Fig.5). To obtain
the eigenvalues, we derive the Jacobian of the correspond-
ing time-continuous deterministic system (for which a bi-
furcation is indicated by an eigenvalue approaching 0) and

Earth Syst. Dynam., 4, 79–93, 2013 www.earth-syst-dynam.net/4/79/2013/
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calculate its properties by inserting the numerically obtained
equilibrium. For the first value ofB (8.8 k for RM1, and 6 k
for RM2), we useVi = 1 as an initial condition and run the
model to equilibrium. For all subsequent steps ofB, we insert
the previously obtained equilibrium as an initial condition
(which always results in the same solution as usingVi = 1
for anyB in our two regression models).

In both models the obtained equilibria are stable fixed
points, as indicated by the negative real parts of all eigen-
values. Before a sudden transition to a different equilibrium
occurs due to a saddle-node bifurcation, one eigenvalue ap-
proaches 0. A reversed scanning of theB range with our nu-
meric approach to find equilibria indeed results in a static
hysteresis (not shown). The equilibria coincide well with the
green and desert equilibria found with PlaSim-VECODE-eq
(Bathiany et al., 2012) which indicates that the regression
model is of sufficient quality.

In RM1, there are several bifurcations along the forward
branch, two in theB range of interest: at approx. 8 k, grid
cell 3 (marked in Fig.2) collapses. At around 6.7 k, most
other grid cells collapse in a second bifurcation.

This second bifurcation clearly corresponds to the disap-
pearance of the green equilibrium in PlaSim-VECODE-eq
(Bathiany et al., 2012). Considering that the variability which
is still present to some extent in PlaSim-VECODE-eq pre-
vents a detection of the green equilibrium close to the bi-
furcation point, the timing of the bifurcation also coincides
well. However, the collapse of grid cell 3 at 8 k only occurs
in RM1, whereas in PlaSim-VECODE-eq vegetation cover is
gradually reduced over time.

Figure 4 indicates that the relation between a certainPi

andVj is generally rather weak. However, the large varia-
tions can partly be explained with the influence of the other
52 predictor variables which are not taken into account in
Fig. 4. As the residuals of our regression are not Gaussian
distributed and their variance depends on the predictors (het-
eroscedasticity), we refrain from calculations of errors or
confidence intervals. Instead, we test the robustness of our
results towards changes in the predictor variables: exclud-
ing certain time slices from PlaSim-VECODE-tr (e.g. 9 k,
8.5 k and 8 k at the same time) and/or including the 5.5 k
experiment to determine the regression parameters for RM1
leads to similar results with regard to the system’s stabil-
ity properties. Also, slight changes in the selected grid cells
to build RM1 (for example, excluding the rather stationary
cells near the mediterranean and the 4 most northern grid
cells) do not alter the properties of the regression model
substantially. This even holds true if we replace the origi-
nal PlaSim-VECODE time series by a set of 20 000 boot-
strapped pairs ofP and V (Efron, 1979). However, some
of these alternative regression models show additional bi-
furcations in RM1. Nonetheless, the main bifurcation point
at which most elements of the system collapse in synchrony
always occurs. The tendency of RM1 to show more bifurca-
tions than PlaSim-VECODE may result from intrinsic limi-

tations of our linear fit. For example, orbital forcing and its
impact on annual precipitation does not change linearly over
time.

In contrast, RM2 behaves more robustly as its 8 elements
(80 coefficients) allow a more reliable regression than the 52
elements of RM1 (2808 coefficients). All elements in RM2
collapse in synchrony, regardless of the choice of time slices
or the realisation in our bootstrapping experiments.

Altogether, the regression models therefore cannot repro-
duce the PlaSim-VECODE results in every aspect but qual-
itatively show many similarities and provide a simple and
appropriate framework for EWS analysis.

The emergence of multiple equilibria from the noisy
PlaSim-VECODE-tr time series provides further evidence
that multiple deterministic equilibria are present in the mod-
ified PlaSim-VECODE but do not become apparent in prob-
ability density functions due to a noise-induced transition
(Bathiany et al., 2012). Using an interactive noise level and
an interactive vegetation timescale, as inBathiany et al.
(2012), leads to similar transitions as in PlaSim-VECODE-tr
but in contrast toBathiany et al.(2012) in a spatially explicit
way (not shown).

4 Hotspot detection in the regression models

We can now answer the question from where each tipping in
Fig.5originates by applying our hotspot detection algorithm:

1. We generate time slices of 100 000 yr each with RM1
and RM2. The chosen values ofB for these time slices
are again depicted as dashed vertical lines in Fig.5. Two
time series are generated for each forcing, one with ad-
ditive noise and one with multiplicative noise.

2. As the noise level is small, some grid cells in RM1
are already unvegetated and thus can be discarded
as hotspot candidates (the desert cells in PlaSim-
VECODE-eq). We therefore do not consider grid cells
whereV falls below 0.004 at any time step in any time
slice.

3. To the rest of the grid cells, we apply the hotspot detec-
tion scheme presented in Part 1 of our study: in short, we
repeatedly apply degenerate fingerprinting (Held and
Kleinen, 2004) to a random selection of grid cells and
each time determine an EWS. During this analysis we
successively remove grid cells which contribute least to
the signal and finally identify a hotspot from the result-
ing signal list.

The detection algorithm developed in Part 1 requires some
parameters and options, in particular the definition of a sig-
nal (SD 1 or 2), the choice of an elimination rule (ER 1 or 2),
the construction of the EOFs from covariance or correlation
matrices and the use of autocorrelation or relative variance as
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Fig. 6. Contribution of grid cells (weights) to the increasing auto-
correlation as obtained with the hotspot detection algorithm,(a) in
RM1; tipping point 1,(b) RM1; tipping point 2,(c) RM2. The
noise in all time series is additive, hotspot detection is applied with
nmax= 3, elimination rule 1, and covariance-based EOFs. Numbers
1 to 5 denote the individual grid cells referred to in the text. The
coloured areas are the areas of our perturbation experiments ex-
plained in Sect.5.2.

an EWS (relative to the first value most distant from the tip-
ping point). Here, we test all possible combinations of these
options which are discussed in Part 1 of our article. To keep
the algorithm sufficiently fast, the system under analysis is
repeatedly divided into parts with a maximum number of el-
ements prescribed bynmax. Here, we use values of 3, 5 and 8
for nmax. For the successive removal of elements during the
procedure, a relative threshold is applied which starts at an
initial value tini and is increased in steps oftinc. For both pa-
rameters we use the standard values from Part 1:tini = 5%
andtinc = 5%.

In order to illustrate the hotspots geographically, we in-
dicate an element’s weight at its corresponding grid cell
(Fig. 6). As a weight we define the sum of signals a certain
element contributes to, as illustrated by Table 3 in Part 1 of
our article. It must be noted though that the random sampling
and the systematic removal of elements during the hotspot
detection algorithm only allows qualitative conclusions like
the position of the hotspot. The quantitative differences be-
tween the grid cells in Fig.6 should therefore not be over-
interpreted. The significance of the coloured areas will be
explained in Sect.5.2.

We find that before the collapse of grid cell 3 in RM1,
this grid cell is detected as a hotspot of the transition. This
is of course not surprising as this grid cell is the only one
showing a collapse. In the more complex case of collapse 2 in
RM1, its neighbouring grid cell 4 is identified as the hotspot
of the transition. The collapse of the eight grid cells in RM2
is detected to be initiated by the most western grid cell (cell
5). Hence, each collapse in our regression models originates
at one single grid cell.

To investigate the robustness of these results, we compare
the results for all possible combinations of our parameter op-
tions as listed above (SD, ER, EOFs, EWS,nmax). We find
that the determined hotspots are always the same for all com-
binations of these parameter settings. Furthermore, omitting
time slices or using bootstrapped versions of our regression
models as explained in Sect.3.2yields the same hotspots de-
spite the uncertainty in the regression parameters.

When reducing the length of the time series we generate
with the regression models the hotspots clearly emerge from
the noise until a total length of several 1000 yr in case of au-
tocorrelations and several 100–1000 yr in case of variances.
RM2 is even more robust: 100 yr of each time series are suf-
ficient to detect the hotspot when using relative variance as
an EWS.

In summary, our detected hotspots are a very robust char-
acteristic of PlaSim-VECODE. In the following section we
document that they are also meaningful, in the sense that
they yield information on the stability properties of PlaSim-
VECODE.

5 Evaluation of results with PlaSim-VECODE

To verify the detected hotspots we seek evidence for their
existence in PlaSim-VECODE and an explanation in terms of
the model’s physics. As we apply PlaSim-VECODE with low
resolution, present-day SSTs and a quite crude representation
of physical surface parameters, the model cannot be expected
to provide a very realistic climate of the mid-Holocene.

Despite these limitations, the large-scale features of the
North African summer circulation are captured reasonably.
We here focus on the conditions during July to September
because in the model most precipitation in northern Africa
and southwestern Asia occurs during these months. The
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Fig. 7.Vertically integrated horizontal moisture fluxes (arrows) and vegetation cover (colours) in PlaSim-VECODE-eq. Left column (a, c, e):
8 k conditions; right column (b, d, f): 4.5 k conditions.(a)–(d): green equilibrium;(e)–(f): difference between green and desert equilibrium.
(a)–(b): moisture fluxes are integrated over the two lowest atmosphere levels only;(c)–(f): moisture fluxes are integrated over the whole
atmospheric column. Vegetation cover fractions in(a) and(c) as well as in(b) and(d) are the same. Fluxes are in kg/(ms), vegetation cover
fractions in %. Numbers 4 and 5 denote the individual grid cells referred to in the text.

south-westerly monsoon flow is confined to the lowest model
levels and advects moisture over the North African continent
towards the heat low in central northwestern Africa (Fig.7a,
b). The intertropical front is very prominently indicated by a
surface convergence and a strong jump in specific moisture
around 15–20◦ N. To the north of this front, the north-easterly
trades advect dry air from the Mediterranean region.

As in observations, easterly winds prevail in all tropo-
spheric levels above the shallow monsoon flow. Due to the
low model resolution, the African easterly jet (AEJ), tropi-
cal easterly jet (TEJ) and the low-level westerly jet (Patricola
and Cook, 2007) cannot be captured well and the horizon-
tal gradients in zonal wind are small. Since precipitation in
the Sahel is related to the strength and position of these jets
(Nicholson, 2009), the model cannot capture the small-scale
nature of precipitation events. The seasonal migration of the
rain belt and its northward shift during the mid-Holocene
are nonetheless captured by PlaSim-VECODE. However, the
zonal structure of the rainfall pattern is in conflict with ob-
servations. While the eastern Sahel is drier than the west in

present-day observations (Andersson et al., 2010), precipita-
tion in PlaSim-VECODE strongly increases towards the east.
There, the south-westerly flow becomes even stronger and
advects moisture from central Africa. This azonal structure
is present in the complete Holocene.

5.1 Collapse 2

The west to east gradient in precipitation and the advection of
moisture are also the key to understanding why the western-
most grid cell (grid cell 5) is a hotspot in RM2. The substan-
tial precipitation gradient is reflected in the regression param-
etersP0i

. In addition, the interaction matrixk reveals that the
impact of grid cell 5 on other cells is exceedingly large for
reasons explained below. When orbital forcing evolves, the
precipitation pattern shifts towards the east. Therefore, grid
cell 5 is the driest element in RM2. Its influence on its east-
erly neighbors due to moisture advection keeps the system
green for a long time. When precipitation in cell 5 finally
is too low for vegetation to be sustained, precipitation in the
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Fig. 8. The five equilibria of Eqs. (1), (2), and (3) for 4.5 k con-
ditions as obtained in Sect.5.1. The regression involves the 8 grid
cells enclosed in the purple box; cover fractions outside this area
are set to mean conditions in PlaSim-VECODE-eq.

other cells also decreases below the critical threshold. Hence,
these other elements experience an induced tipping and the
hotspot is to be found at cell 5.

The non-trivial structure of interactionskij implies that
more equilibria may exist in PlaSim-VECODE than those
found by choosing global forest or desert initial conditions
as in Bathiany et al.(2012). Our conceptual model frame-
work (Eqs.1, 2, and3) is suitable to determine fixed points
of the system in a more systematic way. To dispose of the de-
ficiencies of including time in the regression model, we now

apply the regression to our 4.5 k simulation with PlaSim-
VECODE-tr only, which corresponds to dropping the term
siB in Eq. (2). Again, we consider the same line of eight grid
cells as in RM2. As it is not possible to find the fixed points
analytically, we randomy select 10 million initial conditions
and run RM2 (without noise) to a steady state. As a strat-
egy to sample the initial conditions in phase space we apply
a regular, completely random, and a latin hypercube sam-
pling (using MATLAB function lhsdesign). For every sam-
pling method we obtain the same five deterministic solutions
(Fig. 8). By reintroducing these fixed points as initial con-
ditions in PlaSim-VECODE-eq with a coupling frequency
of 30 yr we can verify the existence of all five solutions in
PlaSim-VECODE-eq.

The structure of these solutions is suggestive with regard
to the position of the hotspot: all equilibria have in common
that any green grid cell permits only green grid cells to its
east. This feature is due to the advection of moisture with
the westerly monsoon flow. In addition to this moisture recy-
cling, the enhanced evaporation affects atmospheric stability
and the circulation itself (Goessling and Reick, 2011). Also,
an impact of easterly on westerly cells exists due to albedo
induced changes in monsoon strength. In the case of grid
cell 5 both effects work in the same direction which explains
its large importance: first, it supplies additional moisture to
its eastward neighbors via recycling. Second, it enhances the
thermal low and thus the low-level south-westerly monsoon
flow which supplies the more easterly region. As this flow is
overcompensated by the export of moisture towards the west
in higher levels, the vertically integrated moisture flux is to-
wards the west (Fig.7d), but the difference between green
and desert equilibrium (Fig.7f) indicates the enhancement
of low-level westerlies due to the vegetation.

Thus, RM2 as shown in Fig.5 stays in the greenest equi-
librium for a long time, while some of the fixed points with
intermediate vegetation cover disappear. When vegetation at
the hotspot collapses, precipitation at all other grid cells be-
comes too low to sustain vegetation and the system drops into
the driest equilibrium.

5.2 Collapse 1

The zonal gradient in precipitation and its shift over time are
also present from 9 k to 6 k. Like for RM2, the grid cells with
the least precipitation are also at the western margin of the
model region. This is the reason for the collapse of grid cell
3 in RM1, which has no consequences for the rest of the sys-
tem. In contrast, our hotspot detection method identifies the
rather wet grid cell 4 as the hotspot of collapse 1 (second col-
lapse in RM1), implying a decreasing stability and thus an
increasing sensitivity to perturbations at this point. To verify
this result we initialise PlaSim-VECODE-eq with 8 k forc-
ing and a coupling frequency of 20 yr in the green and desert
equilibrium but impose a perturbation in certain test areas
(enclosed by coloured boxes in Fig.6). In case of the green
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b. Desert equilibrium 

a. Green equilibrium 

Fig. 9.Evolution of vegetation cover fraction in PlaSim-VECODE-
eq with perturbations in different areas. All vegetation cover frac-
tions are averaged over the complete region shown in Figs.10and6
(5◦ N–50◦ N, 14.6◦ W–76.5◦ E). The colours correspond to the ar-
eas marked in Fig.6, where vegetation cover is set to 0(a) or 1 (b).

equilibrium, we set the test area to desert conditions, in case
of the desert equilibrium we set it to 100 % grass cover. In
the test areas, cover fractions are kept fixed at these initial
conditions, while the dynamic vegetation is still active in all
other areas. As a result we find that the complete system can
be forced to flip into the opposing equilibrium by a pertur-
bation at grid cells 3 and 4 (area 1; Fig.9). Even a perturba-
tion in grid cell 4 only (area 2) has this effect, though after
some time in an intermediate state in the case of green initial
conditions. In contrast, the two westernmost grid cells in the
Sahara (area 3) and even the complete north-eastern half of
the model region (area 4) do not have a comparable effect on
V in the remaining system part, which remains unaffected by
the perturbations (Fig.10).

An analysis of the moisture fluxes at 8 k reveals the reason
for the model’s vulnerability at the hotspot: North Africa, as
well as Southwest Asia, are both supplied by moisture which
originates in the Atlantic and Indian oceans and then passes
over the Arabian peninsula (Fig.7a, c). There the low-level
circulation splits into an easterly part, turning back to North
Africa, and a branch that extends northward over Southwest

Asia, and joins the mid-latitude westerlies. Therefore, the
west African part of the bistable region not only receives
moisture from the direct low-level monsoon flow but also
from this moisturising of the easterlies aloft. The contribu-
tion of these two sources is most apparent in the difference
between the green and desert equilibria in PlaSim-VECODE-
eq (Fig.7e). With vegetation present, both sources are en-
hanced and contribute to the local convergence of mois-
ture. The maximum surface pressure difference is located at
the northern Red Sea, coinciding with the detected hotspot.
Hence, imposing desert conditions in this key area weakens
the heat low and the cyclonic circulation over Arabia and
thus cuts off the moisture supply to both circulation branches.
Therefore, the rest of the vegetation disappears and the re-
sulting lack of moisture convergence leads to a rapid transi-
tion to the desert equilibrium in PlaSim-VECODE.

6 Conclusions

The possibility to use indicators of slowing down to anal-
yse the climate system has been documented extensively in
recent years (Held and Kleinen, 2004; Dakos et al., 2008;
Lenton et al., 2009, 2012). In Part 1 of this two-part paper we
have proposed a new method to infer the position of hotspots
in a diagnostic way from model output. Here, we have ap-
plied our method to a regression model based on results from
a global atmosphere–vegetation model, and have identified
its hotspots.

We have thus documented that the hotspot detection
method can provide information on the causality of a tip-
ping and on the sensitivity of the model under consideration.
If the model represents reality in an adequate way, an anal-
ysis with EWS can indicate where the earth system is par-
ticularly vulnerable to perturbations. On the other hand, if
the model behaves in an unrealistic way, a hotspot detection
analysis may improve the knowledge on its shortcomings and
make its limitations more apparent. This knowledge can be
beneficial for further model development. In case of PlaSim-
VECODE, a perturbation of surface parameters at a single
grid cell can change the circulation on a regional to conti-
nental scale, and it remains doubtful if this result is realistic.
However, we have identified the Red Sea area in the model
as a crucial region for the moisture supply of Northern Africa
and Southwest Asia at 8 k.

The application of EWS to infer this information was only
possible via the somewhat technical detour of fitting a re-
gression model to PlaSim-VECODE-tr. A direct analysis of
the model output would have yielded inscrutable results as
the requirements for EWS are not met. This restriction il-
lustrates that applying EWS-based tools of analysis to data
of unknown origin is problematic. Instead, it should always
be established if the conceptual framework of analysis is
an adequate description of the processes which have gener-
ated the data. In the case of PlaSim-VECODE-tr, we have
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Fig. 10.Vegetation cover fractions (in %) in asynchronously coupled PlaSim-VECODE after initialisation in the greenest equilibrium with
no perturbation (a–c), no vegetation in area 2 (red,d–f), and no vegetation in area 4 (blue,g–i).

documented before that the large multiplicative noise is in
conflict with this concept (Bathiany et al., 2012). In partic-
ular, the small noise approximation breaks down under such
conditions: higher-order terms would become important so
that the linearisation around an equilibrium and thus the link
between EWS and local stability would not be strictly valid
anymore. Even more importantly, the multiplicative nature
of the noise leads to a noise-induced transition. The tipping
point then depends on properties of the noise and does not
coincide with the deterministic bifurcation point. Variance
would be a particularly unreliable indicator under such con-
ditions. If it depends on the forcing (directly or indirectly
through other variables), variance can decrease towards the
tipping point if these effects overcompensate the influence of
slowing down (Dakos et al., 2012).

Although the green equilibria in PlaSim-VECODE-eq dis-
appear due to an instability at the corresponding hotspot, we
therefore cannot draw a conclusion regarding the causality of
the collapses in PlaSim-VECODE-tr. There, the large vari-
ability eliminates the complex deterministic stability proper-
ties and the hotspots of the model are probably much less
focussed.

The application of a hotspot detection scheme to other
(potentially more complex) models therefore requires a thor-
ough mechanistic understanding. First, it must be established
that a sudden transition results from a destabilisation of an

equilibrium due to internal feedbacks when the forcing is var-
ied. This concept is in contrast to other possible reasons for
sudden changes such as a discontinuous response function
(not involving feedbacks) or chaotic dynamics like regime
changes or intermittency that do not require any external
parameter changes. The hotspot detection scheme therefore
cannot dispose of the task to determine the most appropriate
minimal model for explaining a sudden transition.

Second, the relation between the stability of an equilib-
rium and EWS is not a priori clear in a complex model. It
must therefore be understood how the variability arises and
how it affects the variable under consideration.

Third, the critical subsystem that is supposed to show
slowing down must be identified so that an appropriate
variable is chosen in the analysis.

The challenge for applying the hotspot detection scheme
is therefore an investigative and intellectual challenge rather
than a technical one. If the conditions for the applicability of
EWS are met, the hotspot detection scheme is easy to apply
as it is only a diagnostic tool and no changes to the model
under analysis are required.

However, one technical limitation of the hotspot detection
method is the requirement of very long time series, a condi-
tion hardly to be fulfilled by complex earth system models. In
example system 3 in Part 1 of our study, we needed time se-
ries of the order of 10 000–100 000 yr (with a relaxation time
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of 5 yr) to time steps (the dynamic system’s relaxation time
being 5) to obtain robust results. In the case of our regression
models the results are much more promising. Even in RM1
with its 52 state variables, the hotspot is detectable from sev-
eral 100 to 1000 time steps, and is basically independent of
parameter choices during the analysis. The reason is that the
hotspots consist of one single element which is well separa-
ble from the others, in contrast to our idealised setting of 9
identical elements in Part 1.

Models with higher spatial resolution could therefore pose
a more difficult challenge if hotspots consist of many grid
cells whose individual signal is hard to distinguish from oth-
ers. The demand of long time series to increase the signifi-
cance of the results would be particularly problematic regard-
ing the computing time for such higher resolution models.
However, large hotspots can still be detected if the system
is divided into larger parts (determined by parameternmax)
which would slow down the hotspot detection algorithm. As
the increase in computing time of the algorithm results from
the large number of possible combinations of elements that
are considered independently, parallel computing could be
applied to speed up the hotspot detection algorithm to some
extent.

This issue relates to the problem of finding multiple steady
states in the sense that they are difficult to identify in complex
models. Due to the vast number of variables in a global cli-
mate model, strategies like hysteresis experiments or choos-
ing different initial conditions are no fail-proof methods. It
can be speculated that this caveat is one reason why multiple
steady states have not been found in complex climate mod-
els in contrast to low-dimensional models. The detection of
different stable equilibria in PlaSim-VECODE turned out to
be possible using our regression model. However, the appli-
cability of such an approach is very limited: (1) in PlaSim-
VECODE, the variability is large enough to sufficiently sam-
ple large parts of the phase space. (2) The regression can
only be done in a limited area or for low resolution, other-
wise too many regression coefficients would need to be es-
timated. (3) We based our regression model on the knowl-
edge ofV ∗(P ). In case of a more complex vegetation model,
many more variables would be involved and the relationships
would be less clear.

Despite all these structural limitations, our method is
generic in the sense that it is independent of the physical
meaning of the model. For example, it may be applied to
fluctuations in sea ice cover close to the snowball earth bifur-
cation (Lucarini et al., 2010; Voigt and Marotzke, 2010).

It therefore seems possible that the hotspot detection
method or related approaches can yield useful information
on the susceptibility not only of climate models but also of
other systems.
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