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Abstract: The current status of ‘Mathieu Moonshine’, the idea that the Mathieu group
M24 organises the elliptic genus of K3, is reviewed. While there is a consistent decomposi-
tion of all Fourier coefficients of the elliptic genus in terms of MathieuM24 representations,
a conceptual understanding of this phenomenon in terms of K3 sigma-models is still miss-
ing. In particular, it follows from the recent classification of the automorphism groups of
arbitrary K3 sigma-models that (i) there is no single K3 sigma-model that has M24 as an
automorphism group; and (ii) there exist ‘exceptional’ K3 sigma-models whose automor-
phism group is not even a subgroup of M24. Here we show that all cyclic torus orbifolds
are exceptional in this sense, and that almost all of the exceptional cases are realised as
cyclic torus orbifolds. We also provide an explicit construction of a Z5 torus orbifold that
realises one exceptional class of K3 sigma-models.

1 Introduction

In 2010, Eguchi, Ooguri and Tachikawa observed that the elliptic genus of K3 shows signs
of an underlying Mathieu M24 group action [1]. In particular, they noted (see section 2
below for more details) that the Fourier coefficients of the elliptic genus can be written
as sums of dimensions of irreducible M24 representations.† This intriguing observation
is very reminiscent of the famous realisation of McKay and Thompson who noted that
the Fourier expansion coefficients of the J-function can be written in terms of dimensions
of representations of the Monster group [2, 3]. This led to a development that is now
usually referred to as ‘Monstrous Moonshine’, see [4] for a nice review. One important

∗Partially based on talk given by M.R.G. at the conference ‘Conformal Field Theory, Automorphic
Forms and Related Topics’, Heidelberg, 19-23 September 2011.

†Actually, they did not just look at the Fourier coefficients themselves, but at the decomposition of
the elliptic genus with respect to the elliptic genera of irreducible N = 4 superconformal representations.
They then noted that these expansion coefficients (and hence in particular the usual Fourier coefficients)
are sums of dimensions of irreducible M24 representations.
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upshot of that analysis was that the J-function can be thought of as the partition function
of a self-dual conformal field theory, the ‘Monster conformal field theory’ [5, 6], whose
automorphism group is precisely the Monster group. The existence of this conformal field
theory explains many aspects of Monstrous Moonshine although not all — in particular,
the genus zero property is rather mysterious from this point of view.

In the Mathieu case, the situation is somewhat different compared to the early days of
Monstrous Moonshine. It is by construction clear that the underlying conformal field the-
ory is a K3 sigma-model (describing string propagation on the target space K3). However,
this does not characterise the corresponding conformal field theory uniquely as there are
many inequivalent such sigma-models — in fact, there is an 80-dimensional moduli space
of such theories, all of which lead to the same elliptic genus. The natural analogue of
the ‘Monster conformal field theory’ would therefore be a special K3 sigma-model whose
automorphism group coincides with M24. Unfortunately, as we shall review here (see sec-
tion 3), such a sigma-model does not exist: we have classified the automorphism groups
of all K3 sigma-models, and none of them contains M24 [7]. In fact, not even all automor-
phism groups are contained in M24: the exceptional cases are the possibilities (ii), (iii)
and (iv) of the theorem in section 3 (see [7]), as well as case (i) for nontrivial G′. Case
(iii) was already shown in [7] to be realised by a specific Gepner model that is believed
to be equivalent to a torus orbifold by Z3. Here we show that also cases (ii) and (iv) are
realised by actual K3s — the argument in [7] for this relied on some assumption about
the regularity of K3 sigma-models — and in both cases the relevant K3s are again torus
orbifolds. More specifically, case (ii) is realised by an asymmetric Z5 orbifold of T4 (see
section 5),‡ while for case (iii) the relevant orbifold is by Z3 (see section 6).

Cyclic torus orbifolds are rather special K3s since they always possess a quantum
symmetry whose orbifold leads back to T4. Using this property of cyclic torus orbifolds,
we show (see section 4) that the group of automorphisms of K3s that are cyclic torus
orbifolds is always exceptional; in particular, the quantum symmetry itself is never an
element of M24. Although some ‘exceptional’ automorphism groups (contained in case
(i) of the classification theorem) can also arise in K3 models that are not cyclic torus
orbifolds, our observation may go a certain way towards explaining why only M24 seems
to appear in the elliptic genus of K3.

We should mention that Mathieu Moonshine can also be formulated in terms of a mock
modular form that can be naturally associated to the elliptic genus of K3 [1, 9, 10, 11];
this point of view has recently led to an interesting class of generalisations [12]. There are
also indications that, just as for Monstrous Moonshine, Mathieu Moonshine can possibly
be understood in terms of an underlying Borcherds-Kac-Moody algebra [13, 14, 15, 16].

2 Mathieu Moonshine

Let us first review the basic idea of ‘Mathieu Moonshine’. We consider a conformal field
theory sigma-model with target space K3. This theory has N = (4, 4) superconformal
symmetry on the world-sheet. As a consequence, the space of states can be decomposed
into representations of the N = 4 superconformal algebra, both for the left- and the

‡Since the orbifold action is asymmetric, this evades various no-go-theorems (see e.g. [8]) that state
that the possible orbifold groups are either Z2, Z3, Z4, or Z6.
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right-movers. (The left- and right-moving actions commute, and thus we can find a
simultaneous decomposition.) The full space of states takes then the form

H =
⊕

i,j

NijHi ⊗ H̄j , (2.1)

where i and j label the different N = 4 superconformal representations, and Nij ∈ N0

denote the multiplicities with which these representations appear. The N = 4 algebra
contains, apart from the Virasoro algebra Ln at c = 6, four supercharge generators, as
well as an affine ŝu(2)1 subalgebra at level one; we denote the Cartan generator of the
zero mode subalgebra su(2) by J0.

The full partition function of the conformal field theory is quite complicated, and is
only explicitly known at special points in the moduli space. However, there exists some
sort of partial index that is much better behaved. This is the so-called elliptic genus that
is defined by

φK3(τ, z) = TrRR

(

qL0− c
24 yJ0 (−1)F q̄L̄0− c̄

24 (−1)F̄
)

≡ φ0,1(τ, z) . (2.2)

Here the trace is only taken over the Ramond-Ramond part of the spectrum (2.1), and
the right-moving N = 4 modes are denoted by a bar. Furthermore, q = exp(2πiτ) and
y = exp(2πiz), F and F̄ are the left- and right-moving fermion number operators, and
the two central charges equal c = c̄ = 6. Note that the elliptic genus does not actually
depend on τ̄ , although q̄ = exp(−2πiτ̄ ) does; the reason for this is that, with respect to the
right-moving algebra, the elliptic genus is like a Witten index, and only the right-moving
ground states contribute. To see this one notices that states that are not annihilated by
a supercharge zero mode appear always as a boson-fermion pair; the contribution of such
a pair to the elliptic genus however vanishes because the two states contribute with the
opposite sign (as a consequence of the (−1)F̄ factor). Thus only the right-moving ground
states, i.e. the states that are annihilated by all right-moving supercharge zero modes,
contribute to the elliptic genus, and the commutation relations of the N = 4 algebra
then imply that they satisfy (L̄0 − c̄

24
)φground = 0; thus it follows that the elliptic genus is

independent of τ̄ . Note that this argument does not apply to the left-moving contributions
because of the yJ0 factor. (The supercharges are ‘charged’ with respect to the J0 Cartan
generator, and hence the two terms of a boson-fermion pair come with different powers
of y. However, if we also set y = 1, the elliptic genus does indeed become a constant,
independent of τ and τ̄ .)

It follows from general string considerations that the elliptic genus defines a weak
Jacobi form of weight zero and index one [17]. Recall that a weak Jacobi form of weight
w and index m is a function [18]

φw,m : H+ × C→ C , (τ, z) 7→ φw,m(τ, z) (2.3)

that satisfies

φw,m

(aτ + b

cτ + d
,

z

cτ + d

)

= (cτ + d)w e2πim
cz2

cτ+d φw,m(τ, z)

(

a b
c d

)

∈ SL(2,Z) , (2.4)

φ(τ, z + ℓτ + ℓ′) = e−2πim(ℓ2τ+2ℓz)φ(τ, z) ℓ, ℓ′ ∈ Z , (2.5)
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and has a Fourier expansion

φ(τ, z) =
∑

n≥0, ℓ∈Z
c(n, ℓ)qnyℓ (2.6)

with c(n, ℓ) = (−1)wc(n,−ℓ). Weak Jacobi forms have been classified, and there is only
one weak Jacobi form with w = 0 and m = 1. Up to normalisation φK3 must therefore
agree with this unique weak Jacobi form φ0,1, which can explicitly be written in terms of
Jacobi theta functions as

φ0,1(τ, z) = 8
∑

i=2,3,4

ϑi(τ, z)
2

ϑi(τ, 0)2
. (2.7)

Note that the Fourier coefficients of φK3 are integers; as a consequence they cannot change
continuously as one moves around in the moduli space of K3 sigma-models, and thus φK3

must be actually independent of the specific K3 sigma-model that is being considered, i.e.
independent of the point in the moduli space. Here we have used that the moduli space
is connected. More concretely, it can be described as the double quotient

MK3 = O(Γ4,20) \ O(4, 20) / O(4)×O(20) . (2.8)

We can think of the Grassmannian on the right

O(4, 20) / O(4)×O(20) (2.9)

as describing the choice of a positive-definite 4-dimensional subspace Π ⊂ R4,20, while the
group on the left, O(Γ4,20), leads to discrete identifications among them. Here O(Γ4,20)
is the group of isometries of a given fixed unimodular lattice Γ4,20 ⊂ R4,20. (In physics
terms, the lattice Γ4,20 can be thought of as the D-brane charge lattice of string theory
on K3.)

Let us denote by H(0) ⊂ HRR the subspace of (2.1) that consists of those RR states
for which the right-moving states are ground states. (Thus H(0) consists of the states
that contribute to the elliptic genus.) H(0) carries an action of the left-moving N = 4
superconformal algebra, and at any point in moduli space, its decomposition is of the
form

H(0) = 20 · Hh= 1
4
,j=0 ⊕ 2 · Hh= 1

4
,j= 1

2
⊕

∞
⊕

n=1

DnHh= 1
4
+n,j= 1

2
, (2.10)

where Hh,j denotes the irreducible N = 4 representation whose Virasoro primary states
have conformal dimension h and transform in the spin j representation of su(2). The
multiplicities Dn are not constant over the moduli space, but the above argument shows
that

An = TrDn(−1)F̄ (2.11)

are (where Dn is now understood not just as a multiplicity, but as a representation of the
right-moving (−1)F̄ operator that determines the sign with which these states contribute
to the elliptic genus). In this language, the elliptic genus then takes the form

φK3(τ, z) = 20 · χh= 1
4
,j=0(τ, z)− 2 · χh= 1

4
,j= 1

2
(τ, z) +

∞
∑

n=1

An · χh= 1
4
+n,j= 1

2
(τ, z) , (2.12)
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where χh,j(τ, z) is the ‘elliptic’ genus of the corresponding N = 4 representation,

χh,j(τ, z) = TrHh,j

(

qL0− c
24 yJ0(−1)F

)

, (2.13)

and we have used that (−1)F̄ takes the eigenvalues +1 and−1 on the 20- and 2-dimensional
multiplicity spaces of the first two terms in (2.10), respectively.

The key observation of Eguchi, Ooguri & Tachikawa (EOT) [1] was that the An are
sums of dimensions of M24 representation, in striking analogy to the original Monstrous
Moonshine conjecture of [3]; the first few terms are

A1 = 90 = 45+ 45 (2.14)

A2 = 462 = 231+ 231 (2.15)

A3 = 1540 = 770+ 770 , (2.16)

whereN denotes a representation ofM24 of dimension N . Actually, they guessed correctly
the first six coefficients; from A7 onwards the guesses become much more ambiguous
(since the dimensions of the M24 representations are not that large) and they actually
misidentified the seventh coefficient in their original analysis. (We will come back to the
question of why and how one can be certain about the ‘correct’ decomposition shortly,
see section 2.2.) The alert reader will also notice that the first two coefficients in (2.10),
namely 20 and −2, are not directly M24 representations; the correct prescription is to
introduce virtual representations and to write

20 = 23− 3 · 1 , −2 = −2 · 1 . (2.17)

Recall that M24 is a sporadic finite simple group of order

|M24| = 210 · 33 · 5 · 7 · 11 · 23 = 244 823 040 . (2.18)

It has 26 conjugacy classes (which are denoted by 1A, 2A, 3A, . . ., 23A, 23B, where the
number refers to the order of the corresponding group element) — see eqs. (2.19) and
(2.20) below for the full list — and therefore also 26 irreducible representations whose
dimensions range from N = 1 to N = 10395. The Mathieu group M24 can be defined as
the subgroup of the permutation group S24 that leaves the extended Golay code invariant;
equivalently, it is the quotient of the automorphism group of the su(2)24 Niemeier lattice,
divided by the Weyl group. Thought of as a subgroup of M24 ⊂ S24, it contains the
subgroup M23 that is characterised by the condition that it leaves a given (fixed) element
of {1, . . . , 24} invariant.

2.1 Classical symmetries

The appearance of a Mathieu group in the elliptic genus of K3 is not totally surprising
in view of the Mukai theorem [19, 20]. It states that any finite group of symplectic
automorphisms of a K3 surface can be embedded into the Mathieu group M23. The
symplectic automorphisms of a K3 surface define symmetries that act on the multiplicity
spaces of the N = 4 representations, and therefore explain part of the above findings.
However, it is also clear from Mukai’s argument that they do not even account for the
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full M23 group. Indeed, every symplectomorphism of K3 has at least five orbits on the
set {1, . . . , 24}, and thus not all elements of M23 can be realised as a symplectomorphism.
More specifically, of the 26 conjugacy classes of M24, 16 have a representative in M23,
namely

repr. in M23:
1A, 2A, 3A, 4B, 5A, 6A, 7A, 7B, 8A (geometric)
11A, 14A, 14B, 15A, 15B, 23A, 23B (non-geometric) ,

(2.19)

where ‘geometric’ means that a representative can be (and in fact is) realised by a geomet-
ric symplectomorphism (i.e. that the representative has at least five orbits when acting on
the set {1, . . . , 24}), while ‘non-geometric’ means that this is not the case. The remaining
conjugacy classes do not have a representative in M23, and are therefore not accounted
for geometrically via the Mukai theorem

no repr. in M23: 2B, 3B, 4A, 4C, 6B, 10A, 12A, 12B, 21A, 21B . (2.20)

The classical symmetries can therefore only explain the symmetries in the first line of
(2.19). Thus an additional argument is needed in order to understand the origin of the
other symmetries; we shall come back to this in section 3.

2.2 Evidence for Moonshine

As was already alluded to above, in order to determine the ‘correct’ decomposition of the
An multiplicity spaces in terms of M24 representations, we need to study more than just
the usual elliptic genus. By analogy with Monstrous Moonshine, the natural objects to
consider are the analogues of the McKay Thompson series [21]. These are obtained from
the elliptic genus upon replacing

An = dimRn → TrRn(g) , (2.21)

where g ∈ M24, and Rn is the M24 representation whose dimension equals the coefficient
An; the resulting functions are then (compare (2.12))

φg(τ, z) = Tr23−3·1(g)χh= 1
4
,j=0(τ, z)−2Tr1(g)χh= 1

4
,j= 1

2
(τ, z)+

∞
∑

n=1

TrRn(g)χh= 1
4
+n,j= 1

2
(τ, z) .

(2.22)
The motivation for this definition comes from the observation that if the underlying vector
spaceH(0), see eq. (2.10), of states contributing to the elliptic genus were to carry an action
of M24, φg(τ, z) would equal the ‘twining elliptic genus’, i.e. the elliptic genus twined by
the action of g

φg(τ, z) = TrH(0)

(

g qL0− c
24 yJ0 (−1)F q̄L̄0− c̄

24 (−1)F̄
)

. (2.23)

Obviously, a priori, it is not clear what the relevant Rn in (2.21) are. However, we have
some partial information about them:

(i) For any explicit realisation of a symmetry of a K3 sigma-model, we can calculate
(2.23) directly. (In particular, for some symmetries, the relevant twining genera had
already been calculated in [22].)
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(ii) The observation of EOT determines the first six coefficients explicitly.

(iii) The twining genera must have special modular properties.

Let us elaborate on (iii). Assuming that the functions φg(τ, z) have indeed an interpre-
tation as in (2.23), they correspond in the usual orbifold notation of string theory to the
contribution

φg(τ, z) ←→ e

g (2.24)

where e is the identity element of the group. Under a modular transformation it is believed
that these twining and twisted genera transform (up to a possible phase) as

h





a b
c d





−−−−−−−−→ hdgc

g gahb

(2.25)

The twining genera (2.24) are therefore invariant (possibly up to a phase) under the
modular transformations with

gcd(a, o(g)) = 1 and c = 0 mod o(g), (2.26)

where o(g) is the order of the group element g and we used that for gcd(a, o(g)) = 1,
the group element ga is in the same conjugacy class as g or g−1. (Because of reality, the
twining genus of g and g−1 should be the same.) Since ad− bc = 1, the second condition
implies the first, and we thus conclude that φg(τ, z) should be (up to a possible multiplier
system) a weak Jacobi form of weight zero and index one under the subgroup of SL(2,Z)

Γ0(N) =

{(

a b
c d

)

∈ SL(2,Z) : c = 0 mod (N)

}

, (2.27)

where N = o(g). This is a relatively strong condition, and knowing the first few terms
(for a fixed multiplier system) determines the function uniquely. In order to use this
constraint, however, it is important to know the multiplier system. An ansatz (that
seems to work, see below) was made in [23]

φg

(aτ + b

cτ + d
,

z

cτ + d

)

= e
2πicd
Nh e

2πi cz2

cτ+d φg(τ, z) ,

(

a b
c d

)

∈ Γ0(N) , (2.28)

where N is again the order of g and h| gcd(N, 12). The multiplier system is trivial (h = 1)
if and only if g contains a representative in M23 ⊂ M24. For the other conjugacy classes,
the values are tabulated in table 1. It was noted in [10] that h equals the length of the
shortest cycle (when interpreted as a permutation in S24, see table 1 of [10]).

Using this ansatz, explicit expressions for all twining genera were determined in [23];
independently, the same twining genera were also found (using guesses based on the cycle
shapes of the corresponding S24 representations) in [24]. (Earlier partial results had been
obtained in [9] and [25].)
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Class 2B 3B 4A 4C 6B 10A 12A 12B 21AB
h 2 3 2 4 6 2 2 12 3

Table 1: Value of h for the conjugacy classes in (2.28).

These explicit expressions for the twining genera then allow for a very non-trivial
check of the EOT proposal. As is clear from their definition in (2.22), they determine the
coefficients

TrRn(g) for all g ∈M24 and all n ≥ 1. (2.29)

This information is therefore sufficient to determine the representations Rn, i.e. to calcu-
late their decomposition into irreducible M24 representations, for all n. We have worked
out the decompositions explicitly for the first 500 coefficients, and we have found that
each Rn can be written as a direct sum of M24 representations with non-negative integer
multiplicities [23]. (Subsequently [24] tested this property for the first 600 coefficients,
and apparently Tachikawa has also checked it for the first 1000 coefficients.) Terry Gan-
non has informed us that this information is sufficient to prove that the same will then
happen for all n [26]. In some sense this then proves the EOT conjecture.

3 Symmetries of K3 models

While the above considerations establish in some sense the EOT conjecture, they do not
offer any insight into why the elliptic genus of K3 should exhibit an M24 symmetry. This
is somewhat similar to the original situation in Monstrous Moonshine, after Conway and
Norton had found the various Hauptmodules by somewhat similar techniques. Obviously,
in the case of Monstrous Moonshine, many of these observations were subsequently ex-
plained by the construction of the Monster CFT (that possesses the Monster group as its
automorphism group) [5, 6]. So we should similarly ask for a microscopic explanation of
these findings.

In some sense it is clear what the analogue of the Monster CFT in the current context
should be: we know that the function in question is the elliptic genus of K3. However,
there is one problem with this. As we mentioned before, there is not just one K3 sigma-
model, but rather a whole moduli space (see eq. (2.8)) of such CFTs. So the simplest
explanation of the EOT observation would be if there is (at least) one special K3 sigma-
model that has M24 as its automorphism group. Actually, the relevant symmetry group
should commute with the action of the N = (4, 4) superconformal symmetry (since it
should act on the multiplicity spaces in H(0), see eq. (2.10)). Furthermore, since the two
N = 4 representations with h = 1

4
and j = 1

2
are singlets — recall that the coefficient

−2 transforms as −2 = −2 · 1, see (2.17) — the automorphism must act trivially on the
4 RR ground states that transform in the (2, 2) representation of the su(2)L × su(2)R
subalgebra of N = (4, 4). Note that these four states generate the simultaneous half-unit
spectral flows in the left- and the right-moving sector; the requirement that the symmetry
leaves them invariant therefore means that spacetime supersymmetry is preserved.

Recall from (2.8) that the different K3 sigma-models are parametrised by the choice of
a positive-definite 4-dimensional subspace Π ⊂ R4,20, modulo some discrete identifications.
Let us denote by GΠ the group of symmetries of the sigma-model described by Π that
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commute with the action of N = (4, 4) and preserve the RR ground states in the (2, 2)
(see above). It was argued in [7] that GΠ is precisely the subgroup of O(Γ4,20) consisting
of those elements that leave Π pointwised fixed. The possible symmetry groups GΠ can
then be classified following essentially the paradigm of the Mukai-Kondo argument for
the symplectomorphisms of K3 surfaces [19, 20]. The outcome of the analysis can be
summarised by the following theorem [7]:

Theorem: Let G be the group of symmetries of a non-linear sigma-model on K3 pre-
serving the N = (4, 4) superconformal algebra as well as the spectral flow operators. One
of the following possibilities holds:

(i) G = G′.G′′, where G′ is a subgroup of Z11
2 , and G′′ is a subgroup of M24 with at least

four orbits when acting as a permutation on {1, . . . , 24}

(ii) G = 51+2 : Z4

(iii) G = Z4
3 : A6

(iv) G = 31+4 : Z2.G
′′, where G′′ is either trivial, Z2 or Z2

2.

Here G = N.Q means that N is a normal subgroup of G, and G/N ∼= Q; when G is
the semidirect product of N and Q, we denote it by N : Q. Furthermore, p1+2n is an
extra-special group of order p1+2n, which is an extension of Z2n

p by a central element of
order p.

We will give a sketch of the proof below (see section 3.1), but for the moment let us
comment on the implications of this result. First of all, our initial expectation from above
is not realised: none of these groups G ≡ GΠ contains M24. In particular, the twining
genera for the conjugacy classes 12B, 21A, 21B, 23A, 23B of M24 cannot be realised by
any symmetry of a K3 sigma-model. Thus we cannot give a direct explanation of the
EOT observation along these lines.

Given that the elliptic genus is constant over the moduli space, one may then hope
that we can explain the origin of M24 by ‘combining’ symmetries from different points in
the moduli space. As we have mentioned before, this is also similar to what happens for
the geometric symplectomorphisms of K3: it follows from the Mukai theorem that the
Mathieu group M23 is the smallest group that contains all symplectomorphisms, but there
is no K3 surface where all of M23 is realised, and indeed, certain generators of M23 can
never be symmetries, see (2.19). However, also this explanation of the EOT observation
is somewhat problematic: as is clear from the above theorem, not all symmetry groups
of K3 sigma-models are in fact subgroups of M24. In particular, none of the cases (ii),
(iii) and (iv) (as well as case (i) with G′ non-trivial) have this property, as can be easily
seen by comparing the prime factor decompositions of their orders to (2.18). The smallest
group that contains all groups of the theorem is the Conway group Co1, but as far as we
are aware, there is no evidence of any ‘Conway Moonshine’ in the elliptic genus of K3.

One might speculate that, generically, the group G must be a subgroup of M24, and
that the models whose symmetry group is not contained in M24 are, in some sense, special
or ‘exceptional’ points in the moduli space. In order to make this idea precise, it is useful
to analyse the exceptional models in detail. In [7], some examples have been provided of
case (i) with non-trivial G′ (a torus orbifold T4/Z2 or the Gepner model 24, believed to be
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equivalent to a T
4/Z4 orbifold), and of case (iii) (the Gepner model 16, which is believed

to be equivalent to a T4/Z3 orbifold, see also [27]). For the cases (ii) and (iv), only an
existence proof was given. In section 5, we will improve the situation by constructing
in detail an example of case (ii), realised as an asymmetric Z5-orbifold of a torus T

4.
Furthermore, in section 6 we will briefly discuss the Z3-orbifold of a torus and the explicit
realisation of its symmetry group, corresponding to cases (ii) and (iv) for any G′′.

Notice that all the examples of exceptional models known so far are provided by torus
orbifolds. In fact, we will show below (see section 4) that all cyclic torus orbifolds have
exceptional symmetry groups. Conversely, we will prove that the cases (ii)–(iv) of the
theorem are always realised by (cyclic) torus orbifolds. On the other hand, as we shall
also explain, some of the exceptional models in case (i) are not cyclic torus orbifolds.

3.1 Sketch of the proof of the Theorem

In this subsection, we will describe the main steps in the proof of the above theorem; the
details can be found in [7].

It was argued in [7] that the supersymmetry preserving automorphisms of the non-
linear sigma-model characterised by Π generate the group G ≡ GΠ that consists of those
elements of O(Γ4,20) that leave Π pointwise fixed. Let us denote by LG the sublattice
of G-invariant vectors of L ≡ Γ4,20, and define LG to be its orthogonal complement that
carries a genuine action of G. Since LG ⊗ R contains the subspace Π, it follows that LG

has signature (4, d) for some d ≥ 0, so that LG is a negative-definite lattice of rank 20−d.
In [7], it is proved that, for any consistent model, LG can be embedded (up to a change of
sign in its quadratic form) into the Leech lattice Λ, the unique 24-dimensional positive-
definite even unimodular lattice containing no vectors of squared norm 2. Furthermore,
the action of G on LG can be extended to an action on the whole of Λ, such that the
sublattice ΛG ⊂ Λ of vectors fixed by G is the orthogonal complement of LG in Λ. This
construction implies that G must be a subgroup of Co0 ≡ Aut(Λ) that fixes a sublattice
ΛG of rank 4 + d. Conversely, it can be shown that any such subgroup of Aut(Λ) is the
symmetry group of some K3 sigma-model.

This leaves us with characterising the possible subgroups of the finite group Co0 ≡
Aut(Λ) that stabilise a suitable sublattice; problems of this kind have been studied in the
mathematical literature before. In particular, the stabilisers of sublattices of rank at least
4 are, generically, the subgroups of Z11

2 : M24 described in case (i) of the theorem above.
The three cases (ii), (iii), (iv) arise when the invariant sublattice ΛG is contained in some
S-lattice S ⊂ Λ. An S-lattice S is a primitive sublattice of Λ such that each vector of
S is congruent modulo 2S to a vector of norm 0, 4 or 6. Up to isomorphisms, there are
only three kind of S-lattices of rank at least four; their properties are summarised in the
following table:

Name type rkS Stab(S) Aut(S)
(A2 ⊕ A2)

′(3) 2936 4 Z4
3 : A6 Z2 × (S3 × S3).Z2

A∗
4(5) 25310 4 51+2 : Z4 Z2 × S5

E∗
6(3) 227336 6 31+4 : Z2 Z2 ×W (E6) .

Here, S is characterised by the type 2p3q, which indicates that S contains p pairs of
opposite vectors of norm 4 (type 2) and q pairs of opposite vectors of norm 6 (type 3).

10



The group Stab(S) is the pointwise stabiliser of S in Co0 and Aut(S) is the quotient of
the setwise stabiliser of S modulo its pointwise stabiliser Stab(S). The group Aut(S)
always contains a central Z2 subgroup, generated by the transformation that inverts the
sign of all vectors of the Leech lattice. The lattice of type 227336 is isomorphic to the
weight lattice (the dual of the root lattice) of E6 with quadratic form rescaled by 3 (i.e.
the roots in E∗

6(3) have squared norm 6), and Aut(S)/Z2 is isomorphic to the Weyl group
W (E6) of E6. Similarly, the lattice of type 25310 is the weight lattice of A4 rescaled by
5, and Aut(S)/Z2 is isomorphic to the Weyl group W (A4) ∼= S5 of A4. Finally, the type
2936 is the 3-rescaling of a lattice (A2 ⊕ A2)

′ obtained by adjoining to the root lattice
A2 ⊕ A2 an element (e∗1, e

∗
2) ∈ A∗

2 ⊕ A∗
2, with e

∗
1 and e∗2 of norm 2/3. The latter S-lattice

can also be described as the sublattice of vectors of E∗
6(3) that are orthogonal to an A2(3)

sublattice of E∗
6(3). The group Aut(S)/Z2 is the product (S3×S3).Z2 of the Weyl groups

W (A2) = S3, and the Z2 symmetry that exchanges the two A2 and maps e∗1 to e∗2.

The cases (ii)–(iv) of the above theorem correspond to ΛG being isomorphic to A∗
4(5)

(case ii), to (A2⊕A2)
′(3) (case iii) or to a sublattice of E∗

6(3) different from (A2⊕A2)
′(3)

(case iv). In the cases (ii) and (iii), G is isomorphic to Stab(S). In case (iv), Stab(S)
is, generically, a normal subgroup of G, and G′′ ∼= G/Stab(S) is a subgroup of Aut(S) ∼=
Z2 × W (E6) that fixes a sublattice ΛG ⊆ E∗

6(3), with ΛG 6= (A2 ⊕ A2)
′(3), of rank at

least 4. The only non-trivial subgroups of Z2×W (E6) with these properties are G′′ = Z2,
which corresponds to ΛG being orthogonal to a single vector of norm 6 in E∗

6(3) (a rescaled
root), and G′′ = Z2

2, which corresponds to ΛG being orthogonal to two orthogonal vectors
of norm 6.§ If ΛG is orthogonal to two vectors v1, v2 ∈ E∗

6(3) of norm 6, with v1 · v2 = −3,
then ΛG ∼= (A2 ⊕ A2)

′(3) and case (iii) applies.

4 Symmetry groups of torus orbifolds

In this section we will prove that all K3 sigma-models that are realised as (possibly
left-right asymmetric) orbifolds of T4 by a cyclic group have an ‘exceptional’ group of
symmetries, i.e. their symmetries are not a subgroup of M24. Furthermore, these torus
orbifolds account for most of the exceptional models (in particular, for all models in the
cases (ii)–(iv) of the theorem). On the other hand, as we shall also explain, there are
exceptional models in case (i) that are not cyclic torus orbifolds.

Our reasoning is somewhat reminiscent of the construction of [28, 29] in the context of
Monstrous Moonshine. Any Zn-orbifold of a conformal field theory has an automorphism
g of order n, called the quantum symmetry, which acts trivially on the untwisted sector
and by multiplication by the phase exp(2πik

n
) on the k-th twisted sector. Furthermore,

the orbifold of the orbifold theory by the group generated by the quantum symmetry g,
is equivalent to the original conformal field theory [30]. This observation is the key for
characterising K3 models that can be realised as torus orbifolds:

A K3 model C is a Zn-orbifold of a torus model if and only if it has a symmetry g of
order n such that C/〈g〉 is a consistent orbifold equivalent to a torus model.

§The possibility G′′ = Z4 that has been considered in [7] has to be excluded, since there are no
elements of order 4 in W (E6) that preserve a four-dimensional sublattice of E∗

6
(3).
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In order to see this, suppose that CK3 is a K3 sigma-model that can be realised as a
torus orbifold CK3 = C̃T4/〈g̃〉, where g̃ is a symmetry of order n of the torus model C̃T4 .
Then CK3 possesses a ‘quantum symmetry’ g of order n, such that the orbifold of CK3 by
g describes again the original torus model, C̃T4 = CK3/〈g〉.

Conversely, suppose CK3 has a symmetry g of order n, such that the orbifold of CK3

by g is consistent, i.e. satisfies the level matching condition — this is the case if and
only if the twining genus φg has a trivial multiplier system — and leads to a torus model
CK3/〈g〉 = C̃T4 . Then CK3 itself is a torus orbifold since we can take the orbifold of C̃T4 by
the quantum symmetry associated to g, and this will, by construction, lead back to CK3.

Thus we conclude that C ≡ CK3 can be realised as a torus orbifold if and only if
C contains a symmetry g such that (i) φg has a trivial multiplier system; and (ii) the
orbifold of C by g leads to a torus model C̃T4 . It is believed that the orbifold of C by any
N = (4, 4)-preserving symmetry group, if consistent, will describe a sigma-model with
target space either a torus T4 or a K3 manifold. The two cases can be distinguished by
calculating the elliptic genus; in particular, if the target space is a torus, the elliptic genus
vanishes. Actually, since the space of weak Jacobi forms of weight zero and index one
is 1-dimensional, this condition is equivalent to the requirement that the elliptic genus
φ̃(τ, z) of C̃ = C/〈g〉 vanishes at z = 0.

Next we recall that the elliptic genus of the orbifold by a group element g of order
n = o(g) is given by the usual orbifold formula

φ̃(τ, z) =
1

n

n
∑

i,j=1

φgi,gj(τ, z) , (4.1)

where φgi,gj(τ, z) is the twining genus for g
j in the gi-twisted sector; this can be obtained by

a modular transformation from the untwisted twining genus φgd(τ, z) with d = gcd(i, j, n).
As we have explained above, it is enough to evaluate the elliptic genus for z = 0. Then

φgd(τ, z = 0) = Tr24(g
d) , (4.2)

where Tr24(g
d) is the trace of gd over the 24-dimensional space of RR ground states, and

since (4.2) is constant (and hence modular invariant) we conclude that

φ̃(τ, 0) =
1

n

n
∑

i,j=1

Tr24(g
gcd(i,j,n)) . (4.3)

According to the theorem in section 3, all symmetry groups of K3 sigma-models are
subgroups of Co0 and, in fact, Tr24(g

d) coincides with the trace of gd ∈ Co0 in the
standard 24-dimensional representation of Co0. Thus, the elliptic genus of the orbifold
model C̃ = C/〈g〉 only depends on the conjugacy class of g in Co0. The group Co0
contains 167 conjugacy classes, but only 42 of them contain symmetries that are realised
by some K3 sigma-model, i.e. elements that fix at least a four-dimensional subspace in
the standard 24-dimensional representation of Co0. If Tr24(g) 6= 0 (this happens for 31
of the above 42 conjugacy classes), the twining genus φg(τ, z) has necessarily a trivial
multiplier system, and the orbifold C/〈g〉 is consistent. These classes are listed in the
following table, together with the dimension of the space that is fixed by g, the trace over
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the 24-dimensional representation, and the elliptic genus φ̃(τ, z = 0) of the orbifold model
C̃ (we underline the classes that restrict to M24 conjugacy classes):

Co0-class 1A 2B 2C 3B 3C 4B 4E 4F 5B 5C 6G 6H 6I 6K 6L 6M 7B
dim fix 24 16 8 12 6 8 10 6 8 4 6 6 6 8 4 4 6
Tr24(g) 24 8 −8 6 −3 8 4 −4 4 −1 −4 4 5 2 −2 −1 3

φ̃(τ, 0) 24 24 0 24 0 24 24 0 24 0 0 24 24 24 0 0 24

Co0-class 8D 8G 8H 9C 10F 10G 10H 11A 12I 12L 12N 12O 14C 15D
dim fix 4 6 4 4 4 4 4 4 4 4 4 4 4 4
Tr24(g) 4 2 −2 3 −2 2 3 2 2 1 −2 2 1 1

φ̃(τ, 0) 24 24 0 24 0 24 24 24 24 24 0 24 24 24

Note that the elliptic genus of the orbifold theory C̃ is always 0 or 24, corresponding
to a torus or a K3 sigma-model, respectively. Out of curiosity, we have also computed
the putative elliptic genus φ̃(τ, 0) for the 11 classes of symmetries g with Tr24(g) = 0 for
which we do not expect the orbifold to make sense — the corresponding twining genus φg

will typically have a non-trivial multiplier system, and hence the orbifold will not satisfy
level-matching. Indeed, for almost none of these cases is φ̃(τ, 0) equal to 0 or 24, thus
signaling an inconsistency of the orbifold model:

Co0-class 2D 3D 4D 4G 4H 6O 6P 8C 8I 10J 12P
dim fix 12 8 4 8 6 6 4 4 4 4 4
Tr24(g) 0 0 0 0 0 0 0 0 0 0 0

φ̃(τ, 0) 12 8 0 12 6 12 4 12 6 12 12

The only exception is the class 4D, which might define a consistent orbifold (a torus
model). It follows that a K3 model C is the Zn-orbifold of a torus model if and only if it
contains a symmetry g in one of the classes

2C, 3C, 4F, 5C, 6G, 6L, 6M, 8H, 10F, 12N, (4.4)

4B, 4D, 6H, 6I, 8C, 8D, 9C, 10G, 10H, 12I, 12L, 12O

of Co0.
¶ Here we have also included (in the second line) those classes of elements g ∈ Co0

for which C/〈gi〉 is a torus model, for some power i > 1. Our main observation is now
that none of the Co0 classes in (4.4) restricts to a class in M24, i.e.

All K3 models that are realised as Zn-orbifolds of torus models are exceptional. In
particular, the quantum symmetry is not an element of M24.

One might ask whether the converse is also true, i.e. whether all exceptional models are
cyclic torus orbifolds. This is not quite the case: for example, the classification theorem

¶We should emphasise that for us the term ‘orbifold’ always refers to a conformal field theory (rather
than a geometrical) construction. Although a non-linear sigma-model on a geometric orbifold M/ZN

always admits an interpretation as a CFT orbifold, the converse is not always true. In particular, there
exist asymmetric orbifold constructions that do not have a direct geometric interpretation, see for example
section 5.
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of section 3 predicts the existence of models with a symmetry group G ∼= GL2(3) (the
group of 2× 2 invertible matrices on the field F3 with 3 elements). The group G contains
no elements in the classes (4.4), so the model is not a cyclic torus orbifold; on the other
hand, G contains elements in the class 8I of Co0, which does not restrict to M24. A second
counterexample is a family of models with a symmetry g in the class 6O of Co0. A generic
point of this family is not a cyclic torus model (although some special points are), since
the full symmetry group is generated by g and contains no elements in (4.4). Both these
counterexamples belong to case (i) of the general classification theorem. In fact, we can
prove that

The symmetry group G of a K3 sigma-model C contains a subgroup 31+4 : Z2 (cases
(iii) and (iv) of the theorem) if and only if C is a Z3-orbifold of a torus model. Furthermore,
G = 51+2 : Z4 (case (ii)) if and only if C is a Z5-orbifold of a torus model.

The proof goes as follows. All subgroups of Co0 of the form 31+4 : Z2 (respectively,
51+2 : Z4) contain an element in the class 3C (resp., 5C), and therefore the corresponding
models are Z3 (resp., Z5) torus orbifolds. Conversely, consider a Z3-orbifold of a torus
model. Its symmetry group G contains the quantum symmetry g in class 3C of Co0. (It
must contain a symmetry generator of order three whose orbifold leads to a torus, and
3C is then the only possibility.) The sublattice Λ〈g〉 ⊂ Λ fixed by g is the S-lattice 227336

[31]. From the classification theorem, we know that G is the stabiliser of a sublattice
ΛG ⊂ Λ of rank at least 4. Since ΛG ⊆ Λ〈g〉, G contains as a subgroup the stabiliser of
Λ〈g〉, namely 31+4 : Z2.

Analogously, a Z5 torus orbifold always has a symmetry in class 5C, whose fixed
sublattice Λ〈g〉 is the S-lattice 25310 [31]. Since Λ〈g〉 has rank 4 and is primitive, ΛG = Λ〈g〉

and the symmetry group G must be the stabiliser 51+2 : Z4 of Λ〈g〉.

It was shown in [7] that the Gepner model (1)6 corresponds to the case (ii) of the
classification theorem. It thus follows from the above reasoning that it must indeed be
equivalent to a Z3-orbifold of T4, see also [27]. (We shall also study these orbifolds more
systematically in section 6.) In the next section, we will provide an explicit construction
of a Z5-orbifold of a torus model and show that its symmetry group is 51+2 : Z4, as
predicted by the above analysis.

5 A K3 model with symmetry group 5
1+2

: Z4

In this section we will construct a supersymmetric sigma-model on T4 with a symmetry
g of order 5 commuting with an N = (4, 4) superconformal algebra and acting asymmet-
rically on the left- and on the right-moving sector. The orbifold of this model by g will
turn out to be a well-defined SCFT with N = (4, 4) (in particular, the level matching
condition is satisfied) that can be interpreted as a non-linear sigma-model on K3. We will
argue that the group of symmetries of this model is G = 51+2.Z4, one of the exceptional
groups considered in the general classification theorem.
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5.1 The torus model

Let us consider a supersymmetric sigma-model on the torus T4. Geometrically, we can
characterise the theory in terms of a metric and a Kalb-Ramond field, but it is actually
more convenient to describe it simply as a conformal field theory that is generated by the
following fields: four left-moving u(1) currents ∂Xa(z), a = 1, . . . , 4, four free fermions
ψa(z), a = 1, . . . , 4, their right-moving analogues ∂̄Xa(z̄), ψ̃a(z̄), as well as some winding-
momentum fields Vλ(z, z̄) that are associated to vectors λ in an even unimodular lattice
Γ4,4 of signature (4, 4). The mode expansions of the left-moving fields are

∂Xa(z) =
∑

n∈Z
αnz

−n−1 , ψa =
∑

n∈Z+ν

ψnz
−n− 1

2 , (5.1)

where ν = 0, 1/2 in the R- and NS-sector, respectively. Furthermore, we have the usual
commutation relations

[αa
m, α

b
n] = mδab δm,−n {ψa

m, ψ
b
n} = δab δm,−n . (5.2)

Analogous statements also hold for the right-moving modes α̃n and ψ̃n. The vectors
λ ≡ (λL, λR) ∈ Γ4,4 describe the eigenvalues of the corresponding state with respect to
the left- and right-moving zero modes αa

0 and α̃a
0, respectively. In these conventions the

inner product on Γ4,4 is given as

(λ, λ′) = λL · λ′L − λR · λ′R . (5.3)

5.1.1 Continuous and discrete symmetries

Any torus model contains an ŝu(2)1⊕ŝu(2)1⊕û(1)4 current algebra, both on the left and on
the right. Here, the û(1)4 currents are the ∂Xa, a = 1, . . . , 4, while ŝu(2)1⊕ŝu(2)1 = ŝo(4)1
is generated by the fermionic bilinears

a3 := ψ̄(1)ψ(1) + ψ̄(2)ψ(2) a+ := ψ̄(1)ψ̄(2) a− := −ψ(1)ψ(2) , (5.4)

â3 := ψ̄(1)ψ(1) − ψ̄(2)ψ(2) â+ := ψ̄(1)ψ(2) â− := −ψ(1)ψ̄(2) , (5.5)

where

ψ(1) = 1√
2
(ψ1 + iψ2) ψ(2) = 1√

2
(ψ3 + iψ4) (5.6)

ψ̄(1) = 1√
2
(ψ1 − iψ2) ψ̄(2) = 1√

2
(ψ3 − iψ4) . (5.7)

At special points in the moduli space, where the Γ4,4 lattice contains vectors of the form
(λL, 0) with λ2L = 2, the bosonic u(1)4 algebra is enhanced to some non-abelian algebra
g of rank 4. There are generically 16 (left-moving) supercharges; they form four (2, 2)
representations of the su(2)⊕ su(2) zero mode algebra from (5.4) and (5.5). Altogether,
the chiral algebra at generic points is a large N = 4 superconformal algebra.

We want to construct a model with a symmetry g of order 5, acting non-trivially on
the fermionic fields, and commuting with the small N = 4 subalgebras both on the left
and on the right. A small N = 4 algebra contains an ŝu(2)1 current algebra and four
supercharges in two doublets of su(2). The symmetry g acts by an O(4,R) rotation on
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the left-moving fermions ψa, preserving the anti-commutation relations (5.2). Without
loss of generality, we may assume that ψ(1) and ψ̄(1) are eigenvectors of g with eigenvalues
ζ and ζ−1, where ζ is a primitive fifth root of unity

ζ5 = 1 , (5.8)

and that the ŝu(2)1 algebra preserved by g is (5.4). This implies that g acts on all the
fermionic fields by

ψ(1) 7→ ζ ψ(1) , ψ̄(1) 7→ ζ−1ψ̄(1) , ψ(2) 7→ ζ−1ψ(2) , ψ̄(2) 7→ ζ ψ̄(2) . (5.9)

Note that the action of g on the fermionic fields can be described by e
2πik
5

â30 for some
k = 1, . . . , 4, where â3 is the current in the algebra (5.5). The four g-invariant supercharges
can then be taken to be

√
2

2
∑

i=1

J (i)ψ̄(i) ,
√
2

2
∑

i=1

J̄ (i)ψ(i) ,
√
2(J̄ (1)ψ̄(2) − J̄ (2)ψ̄(1)) ,

√
2(J (1)ψ(2) − J (2)ψ(1)) ,

(5.10)
where J (1), J̄ (1), J (2), J̄ (2) are suitable (complex) linear combinations of the left-moving
currents ∂Xa, a = 1, . . . , 4. In order to preserve the four supercharges, g must act with
the same eigenvalues on the bosonic currents

J (1) 7→ ζ J (1) , J̄ (1) 7→ ζ−1J̄ (1) , J (2) 7→ ζ−1J (2) , J̄ (2) 7→ ζ J̄ (2) . (5.11)

A similar reasoning applies to the right-moving algebra with respect to an eigenvalue
ζ̃, with ζ̃5 = 1. For the symmetries with a geometric interpretation, the action on the
left- and right-moving bosonic currents is induced by an O(4,R)-transformation on the
scalar fields Xa, a,= 1, . . . , 4, representing the coordinates on the torus; then ζ and ζ̃ are
necessarily equal. In our treatment, we want to allow for the more general case where
ζ 6= ζ̃.

The action of g on Ja and J̃a induces an O(4, 4,R)-transformation on the lattice Γ4,4.
The transformation g is a symmetry of the model if and only if it induces an automorphism
on Γ4,4. In particular, it must act by an invertible integral matrix on any lattice basis.
The requirement that the trace of this matrix (and of any power of it) must be integral,
leads to the condition that

2(ζ i + ζ−i + ζ̃ i + ζ̃−i) ∈ Z , (5.12)

for all i ∈ Z. For g of order 5, this condition is satisfied by

ζ = e
2πi
5 and ζ̃ = e

4πi
5 , (5.13)

and this solution is essentially unique (up to taking powers of it or exchanging the defini-
tion of ζ and ζ−1). Eq. (5.13) shows that a supersymmetry preserving symmetry of order
5 is necessarily left-right asymmetric, and hence does not have a geometric interpretation.

It is now clear how to construct a torus model with the symmetries (5.9) and (5.11).
First of all, we need an automorphism g of Γ4,4 of order five. Such an automorphism
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must have eigenvalues ζ, ζ2, ζ3, ζ4, each corresponding to two independent eigenvectors
v
(1)

ζi , v
(2)

ζi , i = 1, . . . , 4, in Γ4,4⊗C. Given the discussion above, see in particular (5.13), we
now require that the vectors

v
(1)
ζ1 , v

(2)
ζ1 , v

(1)
ζ4 , v

(2)
ζ4 (5.14)

span a positive-definite subspace of Γ4,4⊗C (i.e. correspond to the left-movers), while the
vectors

v
(1)

ζ2 , v
(2)

ζ2 , v
(1)

ζ3 , v
(2)

ζ3 (5.15)

span a negative-definite subspace of Γ4,4 ⊗ C (i.e. correspond to the right-movers).
An automorphism g with the properties above can be explicitly constructed as follows.

Let us consider the real vector space with basis vectors x1, . . . , x4, and y1, . . . , y4, and
define a linear map g of order 5 by

g(xi) = xi+1 , g(yi) = yi+1 , i = 1, . . . , 3 , (5.16)

and
g(x4) = −(x1 + x2 + x3 + x4) , g(y4) = −(y1 + y2 + y3 + y4) . (5.17)

A g-invariant bilinear form on the space is uniquely determined by the conditions

(xi, xi) = 0 = (yi, yi) , i = 1, . . . , 4 (5.18)

and

(x1, x2) = 1 , (x1, x3) = (x1, x4) = −1 , (y1, y2) = 1 , (y1, y3) = (y1, y4) = −1 ,
(5.19)

as well as
(x1, y1) = 1 , and (xi, y1) = 0 , (i = 2, 3, 4) . (5.20)

The lattice spanned by these basis vectors is an indefinite even unimodular lattice of rank
8 and thus necessarily isomorphic to Γ4,4. The g-eigenvectors can be easily constructed
in terms of the basis vectors and one can verify that the eigenspaces have the correct
signature.

This torus model has an additional Z4 symmetry group that preserves the supercon-
formal algebra and normalises the group generated by g. The generator h of this group
acts by

h(xi) := g1−i(x1 + x4 + 2y1 + y2 + y3 + y4) , (5.21)

h(yi) := g1−i(−2x1 − x2 − x3 − x4 − y1 − y3 − y4) , i = 1, . . . , 4 , (5.22)

on the lattice vectors. The g-eigenvectors v
(a)

ζi
, a = 1, 2, i = 1, . . . , 4 can be defined as

v
(1)

ζi
:=

4
∑

j=0

ζ−ijgj(x1 + h(x1)) , v
(2)

ζi
:=

4
∑

j=0

ζ−ijgj(x1 − h(x1)) , (5.23)

so that
h(v

(1)

ζi
) = −v(2)

ζ−i , h(v
(2)

ζi
) = v

(1)

ζ−i . (5.24)
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Correspondingly, the action of h on the left-moving fields is

ψ(1) 7→ −ψ(2) , ψ(2) 7→ ψ(1) , ψ̄(1) 7→ −ψ̄(2) , ψ̄(2) 7→ ψ̄(1) , (5.25)

J (1) 7→ −J (2) , J (2) 7→ J (1) , J̄ (1) 7→ −J̄ (2) , J̄ (2) 7→ J̄ (1) , (5.26)

and the action on the right-moving fields is analogous. It is immediate to verify that the
generators of the superconformal algebra are invariant under this transformation.

5.2 The orbifold theory

Next we want to consider the orbifold of this torus theory by the group Z5 that is generated
by g.

5.2.1 The elliptic genus

The elliptic genus of the orbifold theory can be computed by summing over the SL(2,Z)
images of the untwisted sector contribution, which in turn is given by

φU(τ, z) =
1

5

4
∑

k=0

φ1,gk(τ, z) , (5.27)

where
φ1,gk(τ, z) = TrRR(g

k qL0− c
24 q̄L̃0− c̃

24 y2J0(−1)F+F̃ ) . (5.28)

The k = 0 contribution, i.e. the elliptic genus of the original torus theory, is zero. Each
gk-contribution, for k = 1, . . . , 4, is the product of a factor coming from the ground states,
one from the oscillators and one from the momenta

φ1,gk(τ, z) = φgd
1,gk

(τ, z)φosc
1,gk(τ, z)φ

mom
1,gk (τ, z) . (5.29)

These contributions are, respectively,

φgd
1,gk

(τ, z) = y−1(1− ζky)(1− ζ−ky)(1− ζ2k)(1− ζ−2k) = 2y−1 + 2y + 1 , (5.30)

φosc
1,gk(τ, z) =

∞
∏

n=1

(1− ζkyqn)(1− ζ−kyqn)(1− ζky−1qn)(1− ζ−ky−1qn)

(1− ζkqn)2(1− ζ−kqn)2
, (5.31)

and
φmom
1,gk (τ, z) = 1 , (5.32)

where the last result follows because the only g-invariant state of the form (kL, kR) is the
vacuum (0, 0). Thus we have

φ1,gk(τ, z) = 5
ϑ1(τ, z +

k
5
)ϑ1(τ, z − k

5
)

ϑ1(τ,
k
5
)ϑ1(τ,−k

5
)

, (5.33)

where

ϑ1(τ, z) = −iq1/8y−
1
2 (y − 1)

∞
∏

n=1

(1− qn)(1− yqn)(1− y−1qn) , (5.34)
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is the first Jacobi theta function. Modular transformations of φ1,gk(τ, z) reproduce the
twining genera in the twisted sector

φgl,gk(τ, z) = TrH(l)

(

gk qL0− c
24 q̄L̃0− c̃

24 y2J0(−1)F+F̃
)

, (5.35)

and using the modular properties of the theta function we obtain

φgl,gk(τ, z) = 5
ϑ1(τ, z +

k
5
+ lτ

5
)ϑ1(τ, z − k

5
− lτ

5
)

ϑ1(τ,
k
5
+ lτ

5
)ϑ1(τ,−k

5
− lτ

5
)

, (5.36)

for k, l ∈ Z/5Z, (k, l) 6= (0, 0). The elliptic genus of the full orbifold theory is then

φorb(τ, z) =
1

5

∑

k,l∈Z/5Z
φgl,gk(τ, z) =

∑

k,l∈Z/5Z
(k,l)6=(0,0)

ϑ1(τ, z +
k
5
+ lτ

5
)ϑ1(τ, z − k

5
− lτ

5
)

ϑ1(τ,
k
5
+ lτ

5
)ϑ1(τ,−k

5
− lτ

5
)

. (5.37)

Since φgk,gl(τ, 0) = 5 for all (k, l) 6= (0, 0), we have

φorb(τ, 0) =
1

5

∑

k,l∈Z/5Z
(k,l)6=(0,0)

5 = 24 , (5.38)

which shows that the orbifold theory is a non-linear sigma-model on K3. In particular, the
untwisted sector has 4 RR ground states, while each of the four twisted sectors contains
5 RR ground states. For the following it will be important to understand the structure
of the various twisted sectors in detail.

5.2.2 The twisted sectors

In the gk-twisted sector, let us consider a basis of g-eigenvectors for the currents and
fermionic fields. For a given eigenvalue ζ i, i ∈ Z/5Z, of gk, the corresponding currents J i,a

and fermionic fields ψi,b (where a, b labels distinct eigenvectors with the same eigenvalue)
have a mode expansion

J i,a(z) =
∑

n∈ i
5
+Z

αi,a
n z

−n−1 , ψi,a(z) =
∑

r∈ i
5
+ν+Z

ψi,a
r z−r−1/2 , (5.39)

where ν = 1/2 in the NS- and ν = 0 in the R-sector. The ground states of the gk-twisted
sector are characterised by the conditions

αi,a
n |m, k〉 = α̃i,a

n |m, k〉 = 0 , ∀ n > 0, i, a , (5.40)

ψi,b
r |m, k〉 = ψ̃i,b

r |m, k〉 = 0 , ∀ r > 0, i, b , (5.41)

where |m, k〉 denotes themth ground state in the gk-twisted sector. Note that since none of
the currents are g-invariant, there are no current zero modes in the gk-twisted sector, and
similarly for the fermions. For a given k, the states |m, k〉 have then all the same conformal
dimension, which can be calculated using the commutation relation [L−1, L1] = 2L0 or
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read off from the leading term of the modular transform of the twisted character (5.35).
In the gk-twisted NS-NS-sector the ground states have conformal dimension

NS-NS gk-twisted: h =
k

5
and h̃ =

2k

5
, (5.42)

while in the RR-sector we have instead

R-R gk-twisted: h = h̃ =
1

4
. (5.43)

In particular, level matching is satisfied, and thus the asymmetric orbifold is consistent
[32]. The full gk-twisted sector is then obtained by acting with the negative modes of the
currents and the fermionic fields on the ground states |m, k〉.

Let us have a closer look at the ground states of the gk twisted sector; for concreteness
we shall restrict ourselves to the case k = 1, but the modifications for general k are minor
(see below). The vertex operators Vλ(z, z̄) associated to λ ∈ Γ4,4, act on the ground states
|m, 1〉 by

lim
z→0

Vλ(z, z̄)|m, 1〉 = eλ|m, 1〉 , (5.44)

where eλ are operators commuting with all current and fermionic oscillators and satisfying

eλ eµ = ǫ(λ, µ) eλ+µ , (5.45)

for some fifth root of unity ǫ(λ, µ). The vertex operators Vλ and Vµ must be local relative
to one another, and this is the case provided that (see the appendix)

ǫ(λ, µ)

ǫ(µ, λ)
= C(λ, µ) , (5.46)

where

C(λ, µ) =

4
∏

i=1

(ζ i)(g
i(λ),µ) = ζ (Pg(λ),µ) with Pg(λ) =

4
∑

i=1

igi(λ) . (5.47)

The factor C(λ, µ) has the properties

C(λ, µ1 + µ2) = C(λ, µ1)C(λ, µ2) , C(λ1 + λ2, µ) = C(λ1, µ)C(λ2, µ) , (5.48)

C(λ, µ) = C(µ, λ)−1 , (5.49)

C(λ, µ) = C(g(λ), g(µ)) . (5.50)

Because of (5.48), C(λ, 0) = C(0, λ) = 1 for all λ ∈ Γ4,4, and we can set

e0 = 1 , (5.51)

so that ǫ(0, λ) = 1 = ǫ(λ, 0). More generally, for the vectors λ in the sublattice

R := {λ ∈ Γ4,4 | C(λ, µ) = 1 , for all µ ∈ Γ4,4} ⊂ Γ4,4 , (5.52)

we have C(λ+ µ1, µ2) = C(µ1, µ2), for all µ1, µ2 ∈ Γ4,4, so that we can set

eµ+λ = eµ , ∀λ ∈ R , µ ∈ Γ4,4 . (5.53)
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Thus, we only need to describe the operators corresponding to representatives of the group
Γ4,4/R. The vectors λ ∈ R are characterised by

(Pg(λ), µ) ≡ 0 mod 5 , for all µ ∈ Γ4,4 , (5.54)

and since Γ4,4 is self-dual this condition is equivalent to

Pg(λ) ∈ 5 Γ4,4 . (5.55)

Since g has no invariant subspace, we have the identity

1 + g + g2 + g3 + g4 = 0 (5.56)

that implies (see (5.47))

Pg ◦ (1− g) = (1− g) ◦ Pg = −5 · 1 . (5.57)

Thus, λ ∈ R if and only if
Pg(λ) = Pg ◦ (1− g)(λ̃) , (5.58)

for some λ̃ ∈ Γ4,4, and since Pg has trivial kernel (see (5.57)), we finally obtain

R = (1− g) Γ4,4 . (5.59)

Since also (1−g) has trivial kernel, R has rank 8 and Γ4,4/R is a finite group. Furthermore,

|Γ4,4/R| = det(1− g) = 25 , (5.60)

and, since 5 Γ4,4 ⊂ R, the group Γ4,4/R has exponent 5. The only possibility is

Γ4,4/R ∼= Z5 × Z5 . (5.61)

Let x, y ∈ Γ4,4 be representatives for the generators of Γ4,4/R. By (5.49), we know that
C(x, x) = C(y, y) = 1, so that C(x, y) 6= 1 (otherwise C would be trivial over the whole
Γ4,4), and we can choose x, y such that

C(x, y) = ζ . (5.62)

Thus, the ground states form a representation of the algebra of operators generated by
ex, ey, satisfying

e5x = 1 = e5y , exey = ζeyex . (5.63)

The group generated by ex and ey is the extra-special group 51+2, and all its non-abelian
irreducible representations‖ are five dimensional.

In particular, for the representation on the g-twisted ground states, we can choose a
basis of ex-eigenvectors

|m; 1〉 with ex|m; 1〉 = ζm|m; 1〉 , m ∈ Z/5Z , (5.64)

‖We call a representation non-abelian if the central element does not act trivially.
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and define the action of the operators ey by

ey|m; 1〉 = |m+ 1; 1〉 . (5.65)

For any vector λ ∈ Γ4,4, there are unique a, b ∈ Z/5Z such that λ = ax+ by + (1− g)(µ)
for some µ ∈ Γ4,4 and we define∗∗

eλ := eaxe
b
y . (5.66)

Since g(λ) = ax+ by + (1− g)(g(µ)− ax− by), by (5.53) we have

eg(λ) = eλ , (5.67)

so that, with respect to the natural action g(eλ) := eg(λ), the algebra is g-invariant. This
is compatible with the fact that all ground states have the same left and right conformal
weights h and h̃, so that the action of g = e2πi(h−h̃) is proportional to the identity.

The construction of the gk-twisted sector, for k = 2, 3, 4, is completely analogous to
the g1-twisted case, the only difference being that the root ζ in the definition of C(λ, µ)

should be replaced by ζk. Thus, one can define operators e
(k)
x , e

(k)
y on the gk-twisted sector,

for each k = 1, . . . , 4, satisfying

(e(k)x )5 = 1 = (e(k)y )5 , e(k)x e(k)y = ζke(k)y e(k)x . (5.68)

The action of these operators on the analogous basis |m; k〉 with m ∈ Z/5Z is then

e(k)x |m; k〉 = ζm|m; k〉 , e(k)y |m; k〉 = |m+ k; k〉 . (5.69)

5.2.3 Spectrum and symmetries

The spectrum of the actual orbifold theory is finally obtained from the above twisted
sectors by projecting onto the g-invariant states; technically, this is equivalent to restrict-
ing to the states for which the difference of the left- and right- conformal dimensions is
integer, h − h̃ ∈ Z. In particular, the RR ground states (5.69) in each (twisted) sector
have h = h̃ = 1/4, so that they all survive the projection. Thus, the orbifold theory
has 4 RR ground states in the untwisted sector (the spectral flow generators), forming a
(2, 2) representation of su(2)L ⊕ su(2)R, and 5 RR ground states in each twisted sector,
which are singlets of su(2)L⊕ su(2)R. In total there are therefore 24 RR ground states, as
expected for a non-linear sigma-model on K3. (Obviously, we are here just reproducing
what we already saw in (5.38).)

Next we want to define symmetry operators acting on the orbifold theory. First we can
construct operators eλ associated to λ ∈ Γ4,4, that will form the extra special group 51+2.
They are defined to act by e

(k)
λ on the gk-twisted sector. The action of the untwisted

sector preserves the subspaces HU
m, m ∈ Z/5Z, of states with momentum of the form

λ = nx+my + (1− g)(µ), for some n ∈ Z and µ ∈ Γ4,4. Let us denote by Tm;k a generic
vertex operator associated with a gk-twisted state, k = 1, . . . , 4, with ex-eigenvalue ζ

m,

∗∗The ordering of ex and ey in this definition is arbitrary; however, any other choice corresponds to a
redefinition ẽλ = c(λ)eλ, for some fifth root of unity c(λ), that does not affect the commutation relations
ẽλẽµ = C(λ, µ)ẽµẽλ.
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m ∈ Z/5Z, and by Tm;0 a vertex operator associated with a state in HU
m. Consistency of

the OPE implies the fusion rules

Tm;k × Tm′;k′ → Tm+m′;k+k′ . (5.70)

These rules are preserved by the maps

Tm;k 7→ eλ Tm;k e
−1
λ , λ ∈ Γ4,4 , (5.71)

which therefore define symmetries of the orbifold theory. As we have explained above,
these symmetries form the extra-special group 51+2.

Finally, the symmetries (5.21), (5.22), (5.25) and (5.26) of the original torus theory
induce a Z4-group of symmetries of the orbifold. Since h−1gh = g−1, the space of g-
invariant states of the original torus theory is stabilised by h, so that h restricts to a
well-defined transformation on the untwisted sector of the orbifold. Furthermore, h maps
the gk- to the g5−k-twisted sector. Eqs. (5.21) and (5.22) can be written as

h(x1) = 2x1 + (1− g)(−x1 − x2 − x3 + y1 + y2 + y3 + y4) , (5.72)

h(y1) = 2y1 + (1− g)(−x1 − x2 − x3 − x4 − 2y1 − y2 − y3 − y4) . (5.73)

It follows that the action of h on the operators e
(k)
λ , k = 1, . . . , 4 must be

he(k)x h−1 = e
(5−k)
2x , he(k)y h−1 = e

(5−k)
2y , (5.74)

and it is easy to verify that this transformation is compatible with (5.68). Correspond-
ingly, the action on the twisted sector ground states is

h|m; k〉 = |3m; 5− k〉 , (5.75)

and it is consistent with (5.70).
Thus the full symmetry group is the semi-direct product

G = 51+2 : Z4 , (5.76)

where the generator h ∈ Z4 maps the central element ζ ∈ 51+2 to ζ−1.
All of these symmetries act trivially on the superconformal algebra and on the spectral

flow generators, and therefore define symmetries in the sense of the general classification
theorem. Indeed, G agrees precisely with the group in case (ii) of the theorem. Thus our
orbifold theory realises this possibility.

6 Models with symmetry group containing 3
1+4

: Z2

Most of the torus orbifold construction described in the previous section generalises to
symmetries g of order different than 5. In particular, one can show explicitly that orbifolds
of T4 models by a symmetry g of order 3 contain a group of symmetries 31+4 : Z2, so
that they belong to one of the cases (iii) and (iv) of the theorem, as expected from the
discussion in section 4.
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We take the action of the symmetry g on the left-moving currents and fermionic fields
to be of the form (5.9) and (5.11), where ζ is a now a third root of unity; analogous
transformations hold for the right-moving fields with respect to a third root of unity ζ̃.
In this case, eq.(5.12) can be satisifed by

ζ = ζ̃ = e
2πi
3 , (6.1)

so that the action is left-right symmetric and g admits an interpretation as a geometric
O(4,R)-rotation of order 3 of the torus T4. For example, the torus R4/(A2 ⊕ A2), where
A2 is the root lattice of the su(3) Lie algebra, with vanishing Kalb-Ramond field, admits
such an automorphism.

The orbifold by g contains 6 RR ground states in the untwisted sector. In the kth

twisted sector, k = 1, 2, the ground states form a representation of an algebra of operators
e
(k)
λ , λ ∈ Γ4,4, satisfying the commutation relations

e
(k)
λ e(k)µ = C(λ, µ)ke(k)µ e

(k)
λ , (6.2)

where
C(λ, µ) = ζ (Pg(λ),µ) , Pg = g + 2g2 . (6.3)

As discussed in section 5.2.2, we can set

e
(k)
λ+µ = e(k)µ , ∀λ ∈ R, µ ∈ Γ4,4 , (6.4)

where
R = (1− g)Γ4,4 . (6.5)

(Note that Γ4,4 contains no g-invariant vectors). The main difference with the analysis of
section 5.2.2 is that, in this case,

Γ4,4/R ∼= Z
4
3 . (6.6)

In particular, we can find vectors x1, x2, y1, y2 ∈ Γ4,4 such that

C(xi, yj) = ζδij , C(xi, xj) = C(yi, yj) = 1 . (6.7)

The corresponding operators obey the relations

e(k)xi
e(k)yj

= ζkδije(k)yj
e(k)xi

, e(k)xi
e(k)xj

= e(k)xj
e(k)xi

, e(k)yi
e(k)yj

= e(k)yj
e(k)yi

, (6.8)

as well as
(e(k)xi

)3 = 1 = (e(k)yi
)3 . (6.9)

These operators generate the extra-special group 31+4 of exponent 3, and the kth-twisted
ground states form a representation of this group. We can choose a basis |m1, m2; k〉, with
m1, m2 ∈ Z/3Z, of simultaneous eigenvectors of e

(k)
x1 and e

(k)
x2 , so that

e(k)xi
|m1, m2; k〉 = ζmi|m1, m2; k〉 , e(k)yi

|m1, m2; k〉 = |m1 + kδ1i, m2 + kδ2i; k〉 . (6.10)

The resulting orbifold model has 9 RR ground states in each twisted sector, for a total of
6 + 9 + 9 = 24 RR ground states, as expected for a K3 model. As in section 5.2.3, the
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group 31+4 generated by e
(k)
λ extends to a group of symmetries of the whole orbifold model.

Furthermore, the Z2-symmetry that flips the signs of the coordinates in the original torus
theory induces a symmetry h of the orbifold theory, which acts on the twisted sectors by

h |m1, m2; k〉 = | −m1,−m2; k〉 . (6.11)

We conclude that the group G of symmetries of any torus orbifold T4/Z3 contains a
subgroup 31+4 : Z2, and is therefore included in the cases (iii) or (iv) of the classification
theorem. This obviously ties in nicely with the general discussion of section 4.

7 Conclusions

In this paper we have reviewed the current status of the EOT conjecture concerning a
possible M24 symmetry appearing in the elliptic genus of K3. We have explained that, in
some sense, the EOT conjecture has already been proven since twining genera, satisfying
the appropriate modular and integrality properties, have been constructed for all conju-
gacy classes of M24. However, the analogue of the Monster conformal field theory that
would ‘explain’ the underlying symmetry has not yet been found. In fact, no single K3
sigma-model will be able to achieve this since none of them possesses an automorphism
group that contains M24.

Actually, the situation is yet further complicated by the fact that there are K3 sigma-
models whose automorphism group is not even a subgroup of M24; on the other hand, the
elliptic genus of K3 does not show any signs of exhibiting ‘Moonshine’ with respect to any
larger group. As we have explained in this paper, most of the exceptional automorphism
groups (i.e. automorphism groups that are not subgroups of M24) appear for K3s that
are torus orbifolds. In fact, all cyclic torus orbifolds are necessarily exceptional in this
sense, and (cyclic) torus orbifolds account for all incarnations of the cases (ii) – (iv) of
the classification theorem of [7] (see section 4). We have checked these predictions by
explicitly constructing an asymmetric Z5 orbifold that realises case (ii) of the theorem
(see section 5), and a family of Z3 orbifolds realising cases (iii) and (iv) of the theorem (see
section 6). Incidentally, these constructions also demonstrate that the exceptional cases
(ii)-(iv) actually appear in the K3 moduli space — in the analysis of [7] this conclusion
relied on some assumption about the regularity of K3 sigma-models.

The main open problem that remains to be understood is why precisely M24 is ‘visible’
in the elliptic genus of K3, rather than any smaller (or indeed bigger) group. Recently, we
have constructed (some of) the twisted twining elliptic genera of K3 [33], i.e. the analogues
of Simon Norton’s generalised Moonshine functions [34]. We hope that they will help to
shed further light on this question.
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A Commutation relations in the twisted sector

The vertex operators Vλ(z, z̄) in the g-twisted sector can be defined in terms of formal
exponentials of current oscillators

E±
λ (z, z̄) := exp

(

∑

r∈ 1
5
Z

±r>0

(λL · α)(r)r

z−r

r

)

exp
(

∑

r∈ 1
5
Z

±r>0

(λR · α̃)(r)r

z̄−r

r

)

, (A.1)

where (λL · α)(r)r and (λR · α̃)(r)r are the r-modes of the currents

(λL · ∂X)(r) :=
1

5

4
∑

i=0

ζ5irλL · gi(∂X) =
1

5

4
∑

i=0

ζ5irg−i(λL) · ∂X , (A.2)

(λR · ∂̄X)(r) :=
1

5

4
∑

i=0

ζ̄5irλR · gi(∂̄X) =
1

5

4
∑

i=0

ζ̄5irg−i(λR) · ∂̄X . (A.3)

Then we can define
Vλ(z, z̄) := E−

λ (z, z̄)E
+
λ (z, z̄) eλ , (A.4)

where the operators eλ commute with all current oscillators and satisfy

eλ eµ = ǫ(λ, µ) eλ+µ , (A.5)

for some fifth root of unity ǫ(λ, µ). The commutator factor

C(λ, µ) :=
ǫ(λ, µ)

ǫ(µ, λ)
, (A.6)

can be determined by imposing the locality condition

Vλ(z1, z̄1) Vµ(z2, z̄2) = Vµ(z2, z̄2) Vλ(z1, z̄1) . (A.7)

To do so, we note that the commutation relations between the operators E±
λ can be

computed, as in [35], using the Campbell-Baker-Hausdorff formula

E+
λ (z1, z̄1)E

−
µ (z2, z̄2) = E−

µ (z2, z̄2)E
+
λ (z1, z̄1)

4
∏

i=0

[(1− ζ−i( z1
z2
)
1
5 )g

i(λ)L·µL(1− ζ̄−i( z̄1
z̄2
)
1
5 )g

i(λ)R·µR] . (A.8)

Using (A.8) and eλeµ = C(λ, µ)eµeλ, the locality condition is then equivalent to

C(λ, µ)

4
∏

i=0

(1− ζ−i( z1
z2
)
1
5 )g

i(λ)L·µL(1− ζ̄−i z̄
1/5
1

z̄
1/5
2

)g
i(λ)R·µR

(1− ζ i( z2
z1
)
1
5 )gi(λ)L·µL(1− ζ̄ i( z̄2

z̄1
)
1
5 )gi(λ)R·µR

= 1 , (A.9)

that is

C(λ, µ)
(

−z
1/5
1

z
1/5
2

)

∑

i g
i(λ)L·µL

(

− z̄
1/5
1

z̄
1/5
2

)

∑

i g
i(λ)R ·µR

4
∏

i=0

[(ζ−i)g
i(λ)L·µL(ζ̄−i)g

i(λ)R·µR ] = 1 .

(A.10)
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Since Γ4,4 has no g-invariant vector, we have the identities

4
∑

i=0

gi(λ)L = 0 =

4
∑

i=0

gi(λ)R , (A.11)

and hence finally obtain

C(λ, µ) =

4
∏

i=0

(ζ i)g
i(λL)·µL−gi(λR)·µR . (A.12)
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