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1 Introduction

Despite the negative answer to Mark Kac’s famous question

Can one hear the shape of a drum?

there have been many interesting positive results. The line most relevant to our cur-
rent investigation starts with a seminal paper by Melrose [22]. For bounded planar
domains, or ‘drumheads’, the geometry is encoded in the geodesic curvature of the
boundary and Melrose showed that the short-time asymptotics of the trace of the heat
kernel determine this curvature to within a compact subset of the space of smooth
functions.

A stronger compactness result was obtained by Osgood, Phillips, and Sarnak
[26–29] by making use of the determinant of the Laplacian, in addition to the short-
time asymptotics of the heat trace. Indeed, they were able to show that on a given
closed surface a family of isospectral metrics is compact in the space of smooth met-
rics (and similarly for planar domains). Their proof can be conveniently understood
in terms of the Cheeger compactness theorem: A set of metrics with lower bounds on
the injectivity radius and volume, and uniform pointwise upper bounds on the curva-
ture and its covariant derivatives, is compact. The short-time asymptotics of the heat
trace determine the volume and upper bounds on the Sobolev norms of the curva-
ture [4, 16, 22, 27], while for surfaces the determinant of the Laplacian gives a lower
bound on the injectivity radius [27]. The control on the injectivity radius and the
Sobolev norms of the curvature can then be parlayed into uniform pointwise bounds
on the curvature and its covariant derivatives.

There have been many extensions of the Osgood–Phillips–Sarnak results. For in-
stance, it is only recently that their result for planar domains has been extended to
flat surfaces with boundary by Kim [21]. In higher dimensions there are results of
Brooks–Perry–Yang [8], Chang–Yang [14], and Chang–Qing [12] studying compact-
ness of isospectral metrics in a given conformal class, as well as results establishing
compactness of isospectral metrics with an additional assumption on the curvature
or the injectivity radius, e.g., by Anderson [3], Brooks–Glezen [4], Brooks–Perry–
Petersen [7], Chen–Xu [13], and Zhou [30]. For a well-written survey of positive and
negative isospectral results, we refer the reader to [17].

The first extension of these compactness results to non-compact surfaces is the pa-
per by Hassell and Zelditch [20]. These authors consider exterior domains on R

2, i.e.,
each of their surfaces is the exterior of a compact subset of R2, and they consider the
Laplacian with Dirichlet boundary conditions. The spectrum of such a Laplacian is
always equal to [0,∞), so they propose a replacement of the isospectrality condition,
isophasality. For manifolds that coincide with R

n outside a compact set, or more gen-
erally for non-compact manifolds with an asymptotically regular structure at infinity,
one can define a scattering operator λ �→ S(λ) (see, e.g., [23]), and the scattering
phase is defined to be s(λ) = −i log detS(λ). In the context of exterior domains, the
scattering phase is a natural replacement for the counting function of the spectrum,
and requiring that two manifolds have the same scattering phase is a natural replace-
ment for isospectrality. Hassell and Zelditch show that a family of isophasal exterior
domains is compact in the space of smooth domains.
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More recently, Borthwick and Perry [6] consider non-compact surfaces whose
ends are hyperbolic funnels. For these metrics the resolvent R(s) = (�− s(1 − s))−1

admits a meromorphic continuation to the whole complex plane [18, 19, 24]. Two
metrics whose resolvents have the same poles (with multiplicity) are called isores-
onant. Borthwick and Perry prove that any set of isoresonant metrics that coincide,
and are hyperbolic funnel metrics, in a fixed ‘neighborhood of infinity’ form a C∞-
compact subset in the space of metrics. This generalizes earlier work of Borthwick,
Judge, and Perry [5].

One of the authors [2] has shown that metrics that are conformally equivalent to
a hyperbolic surface with cusps, with conformal factors supported in a fixed com-
pact set, and are mutually isoresonant, form a C∞-compact set. Note that due to the
vanishing of the injectivity radius, one cannot use Sobolev inequalities to transform
Sobolev bounds on the curvature to uniform bounds. We shall face the same problem
below (see, e.g., Lemma 2).

The results in the noncompact setting are similar in the sense that the metrics
are assumed to coincide outside a compact set, but they differ in the definition of
isospectrality. We propose a notion of isospectrality for noncompact manifolds that
unifies these approaches. Let us say that two Riemannian manifolds (M1, g1) and
(M2, g2) coincide cocompactly if there exist compact subsets Ki ⊆ Mi \ ∂Mi and an
isometry M1 \ K1 −→ M2 \ K2. In this case, we say that the manifolds coincide on
U∞ = Mi \ Ki . By embedding each L2(Mi, gi) into

L2(K1, g1) ⊕ L2(K2, g2) ⊕ L2(U∞, gi),

we can consider the difference of the heat kernels

e−t�g1 − e−t�g2 .

Often this difference is trace-class even if the individual heat kernels are not. Indeed,
results of Bunke [9] and Carron [10] guarantee that for complete metrics that coincide
cocompactly the difference of heat kernels is trace-class.

Definition 1 Two Riemannian manifolds (M1, g1) and (M2, g2) are relatively
isospectral if they coincide on Mi \ Ki with Ki ⊂ Mi \ ∂Mi compact sets and if
their relative heat trace is (defined and) identically zero,

Tr
(
e−t�1 − e−t�2

) = 0 for all t > 0. (1.1)

We also say that they are isospectral relative to U∞ to emphasize the neighborhood
where they coincide.

Notice that, on a closed manifold, two metrics are isospectral if and only if the
traces of their heat kernels coincide for all positive time, motivating this definition.
Indeed, asking that the spectrum of two Laplacians coincide with multiplicity is the
same as asking that the trace of their spectral measures coincide as measures on the
positive real line. Taking Laplace transforms this is equivalent to asking that the trace
of the heat kernels coincide.



1188 P. Albin et al.

If the manifolds are complete, then (1.1) can be interpreted as a condition on the
‘Krein spectral shift function’ ξ of the pair �1, �2, as one has, e.g., [10, Theo-
rem 3.3]1

Tr
(
e−t�1 − e−t�2

) = −
∫

R

ξ(λ)te−tλdλ. (1.2)

Thus with mild regularity assumptions on ξ , relatively isospectral complete metrics
have ξ ≡ 0, i.e., are isophasal.

As mentioned above, the metrics considered by Borthwick–Perry are relatively
isospectral, as are those considered by Hassell–Zelditch, if one allows the compact
sets Ki to have boundary. In the case of Borthwick–Perry this is a consequence of a
Poisson formula [6, Theorem 2.1], due in this context to Borthwick, that shows that
the resonance set determines the (renormalized) trace of the wave kernel, and hence
the (renormalized) trace of the heat kernel. Similarly, in [20, (1.6)], it is pointed out
that the scattering phase determines a renormalized trace of the heat kernel. It is
straightforward to write the relative trace of the heat kernels as the difference of their
renormalized traces.

Let us now introduce the type of Riemannian metrics considered here. Let M be
a smooth compact surface with boundary ∂M with n marked points p1, . . . , pn ∈
M \ ∂M . We suppose ∂M is the disjoint union of two types of boundaries, ∂F M

and ∂bM , each of which is a finite union of circles. Consider then the possibly non-
compact surface M = M \ (∂F M ∪ {p1, . . . , pn}).

Definition 2 Let M be as described above. A Funnel-cusp-boundary metric (Fc ∂-
metric for short) is a Riemannian metric g on M such that:

(i) there exist a collar neighborhood

cF : ∂F M × [0, ν)x → M,

a Riemannian metric hF on ∂F M , and a smooth function ϕF ∈ C∞(∂F M ×
[0, ν)x) locally constant on ∂F M × {0} such that

c∗
F g = eϕF

(
dx2 + pr∗F hF

x2

)
,

where prF is the natural projection onto ∂F M ;
(ii) for each marked point pi , there exist a neighborhood Vi ⊂ M , coordinates u,v

on Vi with u(pi) = v(pi) = 0, and a function ϕi ∈ C∞(M) such that near pi ,

g = eϕi

(
du2 + dv2

r2(log r)2

)
,

where r = √
u2 + v2.

1The function ξ is closely related to the ‘scattering phase’; see [10].
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Fig. 1 (M,g) a Fc ∂-surface

In other words, the metric is asymptotically hyperbolic near ∂F M while it is con-
formal to a cusp near each marked point pi . We say (M,g) is a Fc ∂-Riemannian
surface, see Fig. 1.

For such a Fc ∂-metric g on M , we will consider the corresponding (positive)
Laplacian �g with Dirichlet boundary condition on ∂M := ∂bM . When ∂M = ∅,
Fc ∂-metrics correspond to some of the F −hc metrics considered in [1]. If ∂F M = ∅
and M has no marked points, the spectrum of �g is discrete. Otherwise, each bound-

ary component Y of ∂F M gives rise to a band of continuous spectrum [ e−cY

4 ,∞) (of
infinite multiplicity), where the constant cY is the restriction of ϕF to Y , while each

marked point pi gives rise to a band of continuous spectrum [ e−ϕi (pi )

4 ,∞) (of mul-
tiplicity one). In particular, the continuous spectrum is bounded below by a positive
constant. Notice also that 0 is in the spectrum if and only if ∂F M = ∂bM = ∅.

The main result of this paper is to establish compactness for sets of relatively
isospectral Fc ∂-Riemannian surfaces. More precisely, we prove the following theo-
rem.

Theorem 1 Let (Mi, gi) be a sequence of Fc ∂-Riemannian surfaces, isospectral rel-
ative to U∞. Then there is a Riemannian surface (M,g∞), a subsequence (Mik , gik ),
and a sequence of diffeomorphisms

φk : M −→ Mik , with φ	 ◦ φ−1
	′ |U∞ = Id for any 	, 	′

such that the metrics φ∗
k gik converge to g∞ in C∞.

The proof of Theorem 1 consists in reducing to the case treated by Borthwick and
Perry (or by Osgood, Phillips, and Sarnak if there are only cusps) via a conformal
surgery. Namely, using the fact that a cusp is conformal to a punctured disk, we con-
formally modify the metrics near each cusp to obtain punctured disks that we fill in.
Similarly, near each boundary component of M , we modify the metric conformally
from an incomplete cylinder to a complete funnel hyperbolic near infinity. Doing
another conformal transformation, we can assume that these metrics are also hyper-
bolic at the other funnel ends. Under these conformal surgeries, the new metrics will
generally no longer be relatively isospectral. However, since each metric undergoes
the same conformal transformation in a region where all the metrics were the same,
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the relative local heat invariants stay the same. From the local nature of Polyakov’s
formula for the variation of the determinant, one can also hope that the relative de-
terminant will remain unchanged. Using a finite speed propagation argument, we are
able to show that this is indeed the case—even though for a conformal surgery at a
point, the deformation does not have uniformly bounded curvature nor global Sobolev
inequalities. This reduces the problem to the situations treated in [6, 27], from which
the compactness of the set of relatively isospectral Fc∂-metrics follows.

The paper is organized as follows. In Sect. 2 we introduce conformal surgery met-
rics. These are metrics depending on a parameter ε that transform the ends from cusps
and funnels, at ε = 0, to disks and boundaries, at ε = 1. We also show that the non-
zero spectrum of the Laplacian has a lower bound uniform in ε. The next few sections
are devoted to understanding the relative trace as a function of ε,

ε �→ Tr
(
e−t�gε − e−t�hε

)
,

when gε and hε are two Fc ∂-metrics that coincide along the ends and are both un-
dergoing conformal surgery. Section 3 is devoted to establishing some L2-estimates
on the heat kernel of a Fc∂-metric, which we use in Sect. 4 to show that

‖e−t�gε − e−t�hε ‖Tr → 0 exponentially, as t → ∞,

and in Sect. 5 to show that

∣∣Tr
(
e−t�gε − e−t�hε

) − Tr
(
e−t�g0 − e−t�h0

)∣∣ → 0 exponentially, as t → 0,

and ultimately that the relative trace is continuous in ε all the way down to ε = 0.
These results are strong enough, as we point out in Sect. 6, to conclude that the
relative determinant of gε and hε is also continuous down to ε = 0.

Now assume that there is some value of the parameter ε where the metrics gε and
hε are relatively isospectral. At this value the relative heat invariants and the relative
determinant all vanish and, since these invariants have local transformations under
conformal changes of the metrics, it follows that they must vanish for all values of ε.
Thus by a conformal surgery we can transform any two relatively isospectral Fc∂-
metrics into two metrics, on either a closed manifold or one with funnel ends, with
vanishing relative heat invariants and relative determinant. In Sect. 7 we point out that
this is enough to run the proof of compactness of [6, 27], and this in turn is enough
to conclude compactness of the class of relatively isospectral Fc ∂-metrics.

2 Conformal Surgeries

Let (M,g) be a Fc ∂-Riemannian surface. Fix a marked point p ∈ M \∂M and choose
coordinates u and v in a neighborhood V of p such that u(p) = v(p) = 0 and such
that in these coordinates the metric takes the form

g = ef du2 + dv2

r2(log r)2
= ef dr2 + r2dθ2

r2(log r)2
= ef

(
dρ2

ρ2
+ ρ2dθ2

)
, f ∈ C∞(V),
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Fig. 2 Conformal surgery at a
point p

where we are using the polar coordinates u = r cos θ , v = r sin θ , and ρ = −1
log r

. With-
out loss of generality, we can assume that the neighborhood V is given by the open
disk of radius r = 4

5 . Let σ ∈ C∞
c (V) be a function taking values between 0 and 1

with σ ≡ 1 for r < 1
4 and σ ≡ 0 for r > 1

2 . Consider then the function ψ(ε, r) given
by

ψ(ε, r) = σ(r)

(
r2(log r)2

ε2 + (ε2 + r2)(log
√

r2 + ε2)2

)
+ (

1 − σ(r)
)
. (2.1)

Extending ψε(r) = ψ(ε, r) by 1 outside the neighborhood V allows us to consider
the family of metrics

gε = ψεg.

For ε > 0, this metric is smooth at the marked point p. However, as ε approaches 0,
the point p is pushed to infinity so that in the limit we recover the metric g. We say
the metric g undergoes a conformal surgery at the marked point p, see Fig. 2

Similarly, suppose now that ∂M is nonempty and fix a boundary component ∂iM .
Instead of a conformal surgery at pi , we can consider one at ∂iM . Thus, we now take
V ∼= ∂iM × [0,1)r to be a collar neighborhood of ∂iM in M and let θ be the angular
variable on ∂iM ∼= S

1. Near the boundary, the metric is of the form

g = ef
(
dr2 + dθ2), f ∈ C∞(V).

In V , consider a function ψ(ε, r) such that
(
ε2 + r2)ψ(ε, r) ∈ C∞(V),

ψ(ε, r) = 1 if ε > 1/2 or r > 1/2,

(
ε2 + r2)ψ(ε, r) = ew if ε2 + r2 ≈ 0,

(2.2)

where w ∈ C∞(V) is such that w + f is constant on ∂iM . For instance, we can take
w = −f . Extending ψε(r) = ψ(ε, r) by 1 outside the neighborhood V allows us to
consider the family of metrics

gε = ψεg.

In this case, the boundary component ∂iM is pushed to infinity as ε approaches zero,
so that in the limit the metric becomes asymptotically hyperbolic in that end,

g0 = ew+f dr2 + dθ2

r2
, r small.

If we pick w = −f , then g0 is in fact hyperbolic near infinity. We think of this family
of metrics as a conformal surgery at ∂iM , see Fig. 3.
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Fig. 3 Conformal surgery at a boundary component ∂iM

To study the determinant, it will be important for us to know that the spectra stay
away from zero under conformal surgeries at a point or at a boundary component.

Theorem 2 Let (M,g) be a Fc ∂-Riemannian surface. Let the family gε be a confor-
mal surgery at point p or at boundary component ∂iM . Then the smallest non-zero
eigenvalue of �gε is bounded below by a constant c > 0 independent of ε.

Proof Suppose first that gε is a conformal surgery at a point p. Let λε > 0 be the
smallest positive eigenvalue of �gε and let u ∈ C∞(M) ∩ L2(M,gε) be the corre-
sponding eigenfunction, so that �gεu = λεu. When ε > 0, notice that u ∈ C∞(M),
so its restriction to M \ {p} will be in L2(M,g0), in fact, in the domain of �g0 . Now,
we can find a constant C > 0 such that

dvolgε ≤ C dvolg0 , ∀ε ≥ 0.

On the other hand, since our change of metric is conformal, ‖du‖2
L2(M,gε)

=
‖du‖2

L2(M,g0)
. Thus, if zero is not in the spectrum, that is, if (M,g) has at least one

funnel end or if it has a non-empty boundary, we have that

λε =
‖du‖2

L2(M,gε)

‖u‖2
L2(M,gε)

≥ 1

C

‖du‖2
L2(M,g0)

‖u‖2
L2(M,g0)

≥ λ0

C
,

where λ0 = inf Spec(�0). It therefore suffices to take c = λ0
C

in this case. If instead
(M,g) has an empty boundary and no funnel end, we know that zero is an eigenvalue.
Thus, in this case, we have instead

λε = inf
Π

max
v∈Π

‖dv‖2
L2(M,gε)

‖v‖2
L2(M,gε)

,
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where Π runs over 2-dimensional subspaces of C∞
c (M). Since C∞

c (M) is densely
contained in the domain of �g0 , we have again

λε = inf
Π

max
v∈Π

‖dv‖2
L2(M,gε)

‖v‖2
L2(M,gε)

≥ 1

C
inf
Π

max
v∈Π

‖dv‖2
L2(M,g0)

‖v‖2
L2(M,g0)

≥ λ0

C
,

where λ0 = inf(Spec(�0) \ {0}), so that we can still take c = λ0
C

to obtain the result.
If instead gε is a conformal surgery at a boundary component ∂iM , notice that if

u ∈ C∞(M) is an eigenfunction of �gε for ε > 0, then, since u is zero on ∂iM , it is
in L2(M,g0), in fact in the domain of �g0 . On the other hand, we can clearly find a
constant C > 0 such that

dvolgε ≤ C dvolg0 ∀ε ∈ [0,1].
With these two facts, we can proceed as before to obtain the result. �

3 L2-Estimates for the Heat Kernel

In [11], some L2 estimates are obtained for the heat kernel using a finite speed prop-
agation argument. More precisely, they obtained a bound on the norm of the heat
kernel acting on L2-functions. As observed by Donnelly in [15], using the Sobolev
embedding, this also gives an estimate for the Hilbert–Schmidt norm of the heat ker-
nel. Since we will use this observation several times, we will, for the convenience of
the reader, go through this argument in detail.

Lemma 1 Let (M,g) be a Fc ∂-Riemannian surface. Let U and G be two open sets
in M and let d = dg(U ,G) ≥ 0 be the distance between them. Suppose the closure of
G is compact in M \ ∂M . If d > 0 there exists a constant CG depending on G such
that

∫

U

∣∣e−t�g (x, y)e−t�g
(
x, y′)∣∣dx ≤ CGe

−d2
8t ∀y, y′ ∈ G,∀t > 0.

If instead d = 0 then, given ν > 0, there exists a constant CG,ν > 0 such that

∫

U

∣∣e−t�g (x, y)e−t�g
(
x, y′)∣∣dx ≤ CG,ν ∀y, y′ ∈ G,∀t ≥ ν.

Proof Suppose first that d > 0. Let G̃ be an open set relatively compact in M such

that G ⊂ G̃ with ∂G̃ smooth and d̃ = dg(U , G̃) > d√
2

. Let χ ∈ C∞
c (G̃) be a nonneg-

ative cut-off function with χ ≡ 1 in a neighborhood of G. On G̃ × G̃, consider the
distribution

W
(
y, y′) :=

∫

U
e−t�g (x, y)χ(y)e−t�g

(
x, y′)χ

(
y′)dx. (3.1)



1194 P. Albin et al.

The reason for inserting the cut-off function χ in the definition of W is to be able to
integrate by parts later on.

To prove the lemma, we will first show that the distributions �k

G̃,y
�	

G̃,y′W(y,y′)

are in L2, where k, 	 ∈ N and �G̃ is the Laplacian of the metric g on G̃ with Dirichlet
boundary conditions. Let {ui}, i ∈ N, be an orthonormal basis of L2(G̃, g) given by
eigenfunctions of �G̃ and let 0 < λ1 ≤ λ2 ≤ · · · be the corresponding eigenvalues.
Then {ui(y)uj (y

′)}, i, j ∈ N is an orthonormal basis of L2(G̃ × G̃, g × g). On G̃,
we know from the Weyl law that there exists a constant c > 0 such that λj ∼ cj as j

tends to infinity, so that

K :=
√√√√

∑

i,j

1

λ2
i λ

2
j

< ∞.

On the other hand, by the L2-estimate of [11, Corollary 1.2] applied to the heat kernel,
we know that, for any k, 	 ∈N, there exists a constant Ck,	 > 0 such that

∣∣∣
∣

∫

G̃×G̃

(
�k

G̃,y
�	

G̃,y′W
(
y, y′))ui(y)uj

(
y′)dydy′

∣∣∣
∣ ≤ Ck,	e

− d̃2
4t < Ck,	e

− d2
8t , (3.2)

for all i, j ∈N, and t > 0. Now, given v ∈ L2(G̃ × G̃, g × g), it can be written as

v
(
y, y′) =

∑

i,j

μijui(y)uj

(
y′), with ‖v‖2

L2 =
∑

i,j

|μij |2.

Using (3.2), we can pair it with �k

G̃,y
�	

G̃,y′W(y,y′), namely,

∣∣∣∣

∫

G̃×G̃

(
�k

G̃,y
�	

G̃,y′W
(
y, y′))v

(
y, y′)dydy′

∣∣∣∣

=
∣∣∣∣

∫

G̃×G̃

(
�k+1

G̃,y
�	+1

G̃,y′W
(
y, y′))�−1

G̃,y
�−1

G̃,y′v
(
y, y′)dydy′

∣∣∣∣ (3.3)

=
∣∣∣∣
∑

i,j

μij

λiλj

∫

G̃×G̃

(
�k+1

G̃,y
�	+1

G̃,y′W
(
y, y′))ui(y)uj

(
y′)dydy′

∣∣∣∣ (3.4)

≤
(∑ 1

λ2
i λ

2
j

) 1
2
(∑

i,j

|μij |2
) 1

2

Ck+1,	+1e
− d2

8t (3.5)

= K‖v‖L2Ck+1,	+1e
− d2

8t , ∀t > 0. (3.6)

Since v is arbitrary, this means by the Riesz theorem that �k

G̃,y
�	

G̃,y′W is in L2 with

∥∥�k

G̃,y
�	

G̃,y′W
∥∥

L2 ≤ KCk+1,	+1e
− d2

8t .
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We can thus apply the Sobolev embedding theorem to bound the C0-norm of W on
G × G, giving the desired estimate. Notice also that we have shown W is smooth on
G × G.

If instead d = 0, we can follow the same argument, except that instead of (3.2),
there is a constant Ck,	,ν depending on ν > 0 such that

∣∣∣∣

∫

G̃×G̃

(
�k

G̃,y
�	

G̃,y′W
(
y, y′))ui(y)uj

(
y′)dydy′

∣∣∣∣ ≤ Ck,	,ν, ∀i, j ∈ N, ∀t ≥ ν. �

For some of the applications of this estimate, we will allow the open set G to
move towards infinity and it will be essential to understand how the constant CG

grows under such a change. From the proof Lemma 1, this constant depends in a
subtle way on the eigenvalues of the Laplacian �G̃. To control the growth of CG, we
will instead derive the estimate, using the fact (established in the proof of Lemma 1)
that W is smooth. This requires some preparation.

Consider the hyperbolic metric

gH2 = dx2 + dy2

y2

on the upper half-plane H
2 = {z = x + iy ∈ C;y > 0}. The hyperbolic cusp metric

(also called the horn metric) is obtained from this metric by taking the quotient of
H

2 by the isometric action of Z generated by z �→ z + 1. By making the change of
coordinates u = logy, we can write the hyperbolic cusp metric as

ghc = du2 + e−2udx2 on H = R× (R/Z).

With respect to the change of variable x = θ and ρ = e−u, we see this simply cor-

responds to the metric dρ2

ρ2 + ρ2dθ2 considered in the conformal surgery at a point.
However, for the study of the constant CG, it will be more convenient to work with
the coordinates (u, x). For a > 0, consider the open set

Ua = {
(u, x) ∈ R× (R/Z) : u < a

}
.

Lemma 2 Let W ∈ C∞(H × H) be such that there exist constants Ca,k,l depending
on a, k, and l such that

∣∣∣∣

∫

Ua×Ua

W
(
y, y′)�k

ghc
u(y)�l

ghc
v
(
y′)dydy′

∣∣∣∣ ≤ Ca,k,l‖u‖L2(Ua,ghc)
‖v‖L2(Ua,ghc)

for all u,v ∈ L2(Ua, ghc) with supports compactly included in Ua . Then there exists
a constant C independent of a, k, and l such that

sup
Ua×Ua

|W | ≤ C
(
e4a + 1

)
(

3∑

k,l=0

Ca+1,k,l

)

.
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Proof Notice first that for y0, y
′
0 in Ua , we have that

W
(
y0, y

′
0

) =
∫

Ua×Ua

W
(
y, y′)δy0(y)δy′

0

(
y′)dydy′, (3.7)

where δy0 is the Dirac delta function centered at y0. Let ψ ∈ C(H2) be a cut-off
function taking values between 0 and 1 such that

ψ(u,x) =
{

1, 0 ≤ x ≤ 1
4 and u ≤ 0,

0, |x| ≥ 1
2 or u ≥ 1.

Then define the translated function ψa,b(u, x) = ψ(u − a, x − b). Clearly, there is a
constant K independent of a and b such that

sup |�H2ψa,b| ≤ K
(
e2a + 1

)
, sup |∇ψa,b|g

H2 ≤ K
(
ea + 1

)
, sup |ψ | = 1.

(3.8)
Let q : H2 → H

2/Z be the quotient map. Given y0 ∈ Ua , choose ỹ0 ∈ H
2 such that

q(ỹ0) = y0 and let uỹ0 be the unique solution in the Sobolev space L2
1(H

2, gH2) to

δỹ0 = �3
H2uỹ0 .

By symmetry, there is a constant K1 independent of ỹ0 ∈ H
2 such that

‖uỹ0‖L2
1(H

2,g
H2 ) ≤ K1. (3.9)

Take b := x(ỹ0) to be the x coordinate of ỹ0 so that ψa,b ≡ 1 in a neighborhood of ỹ0.
Using this cut-off function, this means the equality

δỹ0 =
3∑

j=0

�
j

H2αj (3.10)

descends to an equality on Ua+1, where

α0 = −(�H2ψa,b)�
2
H2uỹ0 + 2∇ψa,b · ∇(�H2uỹ0)

α1 = −(�H2ψa,b)�H2uỹ0 − ψa,b�
2
H2uỹ0 + 2∇ψ · ∇(�H2uỹ0)

α2 = −(�H2ψa,b)uỹ0 + 2∇ψa,b · ∇uỹ0

α3 = ψa,buỹ0 .

(3.11)

By (3.9), ‖α3‖L2(H2,g
H2 ) ≤ K1. On the other hand, since ∇ψa,b is supported away

from ỹ0, notice by elliptic regularity and using (3.8) and (3.9) that there is a positive
constant K2 independent of a and ỹ0 such that

‖αj‖L2(H2,g
H2 ) ≤ K2

(
e2a + 1

)
, j = 0,1,2. (3.12)
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Thus, plugging (3.10) into (3.7) and using the hypothesis of the lemma, we obtain

sup
Ua×Ua

|W | ≤ C
(
e4a + 1

)
(

3∑

k,l=0

Ca+1,k,l

)

for a constant C depending only on K , K1, and K2. �

4 Long Time Behavior of the Relative Trace

As mentioned in the Introduction, the crux of the proof of compactness of relatively
isospectral metrics is showing that the relative determinant of the Laplacian and the
relative heat invariants are unchanged by conformal surgery. The Laplacian is confor-
mally covariant in dimension two, so this will follow from knowing that the variation
of these invariants is continuous, so ultimately from showing that the relative trace
of the heat kernel is uniformly continuous along a conformal surgery. This section
provides one of the ingredients for such a result, namely, a good uniform control of
the relative trace for large time.

Fix a family of functions ψε as in (2.1) or (2.2) with support in an open set V
containing the point or the boundary component at which the conformal surgery is
performed. Let g and h be two Fc ∂-metrics on M such that h = g on U ∪ V , where
U = M \ K and K is a compact set. For these metrics, we can consider the corre-
sponding conformal surgeries gε = ψεg and hε = ψεh. Clearly, for all ε > 0, we
have that hε = gε on U ∪ V , while for ε = 0, we have that h0 = g0 on (U ∪ V) \ {p}
for a conformal surgery at a point p, and h0 = g0 on (U ∪ V) \ ∂iM for a conformal
surgery at a boundary component ∂iM . By the results of Bunke [9] and Carron [10],
we know the difference of heat kernels

e−t�gε − e−t�hε (4.1)

is trace-class for all ε ≥ 0 and all t > 0. We will in fact need a more precise statement
about the trace norm of this difference of heat kernels.

Proposition 1 Given T > ν > 0, there exists a positive constant C such that

‖e−t�gε − e−t�hε ‖Tr ≤ C ∀ε ∈ [0,1], ∀ t ∈ [ν,T ].

Proof For metrics that coincide outside a compact set, Bunke [9] established a bound
on the trace norm of the relative heat kernel. By partially following his proof, but also
adding a new twist, we will show that this bound can be achieved uniformly in ε.

Let S be the point or the boundary component where the conformal surgery is
taking place. Let us choose two open sets in M , W1, and W2, such that

(i) M = W1 ∪W2;
(ii) W1 ⊂ V ∪ U and W2 is compact;



1198 P. Albin et al.

(iii) gε|W1 = hε|W1 for all ε ∈ [0,1];
(iv) gε|W2 = g0|W2 and hε|W2 = h0|W2 for all ε ∈ [0,1].
We will also choose W1 and W2 so that they are contained in bigger open sets W̃1
and W̃2 satisfying the same properties and such that

gε = hε = g = h on W̃1 \W1 and W̃2 \W2, ∀ε ∈ [0,1].
In [9], the strategy is to estimate the trace-norm of the difference of the heat kernels
by considering the restriction of the difference to W1 × W1, W2 × W2, W1 × W2,
and W2 ×W1, and then applying finite propagation speed estimates.

Let us consider first the region W2 × W2. Let φ ∈ C∞
c (M) be a function with

φ ≡ 1 near W2 and suppφ ⊂ W̃2. Let χ ∈ C∞
c (M) be another function such that

χ ≡ 1 on suppφ and suppχ ⊂ W̃2. Finally, let γ ∈ C∞(M) be a function with γ ≡ 1
on supp(1 − φ) and γ ≡ 0 on W2. Consider then the approximate heat kernel

Hε(t, x, y) = γ (x)e−t�g0 (x, y)
(
1 − φ(y)

) + χ(x)e−t�gε (x, y)φ(y).

Since limt→0 Hε(t, x, y) = δx,y , we obtain via Duhamel’s principle that

e−t�g0 (x, y) − Hε(t, x, y)

= −
∫ t

0

∫

M\S
e−s�g0 (x, z)

(
∂

∂t
+ �g0

)
Hε(t − s, z, y)dzds.

Thus, for x and y in W2, we have that Hε(t, x, y) = e−t�gε , so that

e−t�g0 (x, y) − e−t�gε (x, y) = −
∫ t

0

∫

G

e−s�g0 (x, z)Eε(t − s, z, y)dzds,

where G ⊂ W̃2 \W2 is the support of dχ and

Eε(t, z, y) = (�gχ)(z)e−t�gε (z, y) − 2
〈∇zχ(z),∇ze

−t�gε (z, y)
〉
g
.

If PG and PW2 are the projection operators obtained by multiplying by the charac-
teristic functions of G and W2, this can be rewritten as

PW2

(
e−t�g0 − e−t�gε

)
PW2 = −

∫ t

0

(
PW2e

−s�g0 PG

)(
PGEε(t − s)PW2

)
ds. (4.2)

If d = distg(G,W2) is the distance between G and W2 with respect to the metric g,
then using the L2 estimates of [11], we know by Lemma 1 (cf. [9, p. 69]) that there
exists a positive constant C depending on G such that

‖PW2e
−s�g0 PG‖HS ≤ Ce− d2

8s , ‖PGEε(t − s)PW2‖HS ≤ Ce
− d2

8(t−s) ,

where ‖ · ‖HS is the Hilbert–Schmidt norm. Since we have ‖AB‖Tr ≤ ‖A‖HS‖B‖HS
for two Hilbert–Schmidt operators A and B , we see from (4.2) that

∥∥PW2

(
e−t�g0 − e−t�gε

)
PW2

∥∥
Tr ≤ C
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for a positive constant C independent of t ∈ (0, T ] and ε ∈ [0,1]. We obtain similarly
that

∥∥PW2

(
e−t�h0 − e−t�hε

)
PW2

∥∥
Tr ≤ C.

Combining these two inequalities, this means that for t ∈ [ν,T ],
∥
∥PW2

(
e−t�gε − e−t�hε

)
PW2

∥
∥

Tr ≤ 2C + max
t∈[ν,T ]

∥
∥PW2

(
e−t�g0 − e−t�h0

)
PW2

∥
∥

Tr,

giving the desired uniform bound in ε in that region.
For the region W1 × W1, Bunke writes the difference of heat kernels as a sum

of products of Hilbert–Schmidt operators whose norm is bounded by Ce− d2
8t using a

finite speed propagation argument; see [9, Theorem 3.4]. Here, the positive constants
C and d depend on a choice (independent of ε) of compact region G in W̃1 \W1 and
on the metric h = hε = gε = g in that region. In particular, the constants C and d can
be chosen to be the same for all ε ∈ [0,1].

For the regions W1 × W2, we cannot proceed as in [9], since we do not have a
uniform bound on the curvature in ε for a conformal surgery at a point. Instead, we
will use a finite speed propagation argument. Since we already control the trace norm
on W1 ×W1 and W2 ×W2, it suffices to control the trace norm in a smaller open set
Ŵ1 × Ŵ2 ⊂ W1 ×W2, where the open sets Ŵ1 and Ŵ2 can be chosen to be disjoint
and such that

M \W2 ⊂ Ŵ1 ⊂ W1 and M \W1 ⊂ Ŵ2 ⊂ W2,

with gε = hε = g0 = h0 on W1 \ Ŵ1 and W2 \ Ŵ2.
Let φ1, φ2 ∈ C∞(M) be nonnegative functions such that

(i) φi ≡ 1 in an open neighborhood of Ŵi for i = 1,2;
(ii) suppφ1 ∩ suppφ2 = ∅.

Since the kernel

Eε(t, x, y) = φ1(x)
(
e−t�gε (x, y) − e−t�hε (x, y)

)
φ2(y)

is supported away from the diagonal, its limit as t → 0 is zero. Thus, by Duhamel’s
principle, we have that

Eε(t, x, y) =
∫ t

0

∫

M\S
e−s�gε (x, z)

(
∂

∂t
+ �gε

)
Eε(t − s, z, y)dzds.

Using the fact that gε = hε on W1 and suppφ1 ⊂ W1, we see that this can be rewritten
as

Eε(t, x, y) =
∫ t

0

∫

G

e−s�gε (x, z)Gε(t − s, x, y)dzds,

where G ⊂ W1 \ Ŵ1 is the support of dφ1 and

Gε(t, z, y) = (�gφ1)(z)
(
e−t�gε (z, y) − e−t�hε (z, y)

)

+ 2
〈∇zφ1(z),∇z

(
e−t�hε (z, y) − e−t�gε (z, y)

)〉
g
. (4.3)
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If PŴ1
, PŴ2

, and PG are the projection operators obtained by multiplying by the

characteristic functions of Ŵ1, Ŵ2, and G, then this can be reformulated as

PŴ1

(
e−t�gε − e−t�hε

)
PŴ2

=
∫ t

0

(
PŴ1

e−s�gε PG

)(
PGGε(t − s)PŴ2

)
ds.

Then, for d := mini=1,2 distg(G,Ŵi ) > 0, we see from Lemma 1 that there is a posi-
tive constant C depending on G such that

‖PŴ1
e−s�gε PG‖HS ≤ Ce− d2

8s , ‖PGGε(t − s)PŴ2
‖HS ≤ Ce

− d2
8(t−s) .

We can thus conclude as before that there is a constant C1 > 0 such that
∥∥PŴ1

(
e−t�gε − e−t�hε

)
PŴ2

∥∥
Tr ≤ C1, ∀t ∈ [0, T ],∀ε ∈ [0,1]. (4.4)

Finally, for the region W2 × W1, we also only need to control the trace norm
on Ŵ2 × Ŵ1. Since PŴ2

(e−t�gε − e−t�hε )PŴ1
is the adjoint2 of PŴ1

(e−t�gε −
e−t�hε )PŴ2

, the desired estimate follows from (4.4) in this case. �

Using Theorem 2 and Proposition 1, we obtain the following estimate for the be-
havior of the relative trace as t tends to infinity.

Corollary 1 Let μ > 0 be a uniform lower bound for the positive spectrum of �gε

and �hε for all ε ∈ [0,1]. Then there exist T > 0 and K > 0 independent of ε such
that

‖e−t�gε − e−t�hε ‖Tr ≤ Ke− μ
2 t , ∀t ≥ T .

Proof Recall that any Fc∂ metric has a punctured neighborhood of 0 disjoint from
its spectrum. Assume first that 0 is not in the spectrum. Since there is a constant
C ≥ 1 such that gε

C
≤ hε ≤ Cgε for all ε, we know by the spectral theorem that for

t0 = log(2C2)
μ

, we have

‖e−t0�gε ‖ ≤ 1

2
, ‖e−t0�hε ‖ ≤ 1

2
,

where ‖ · ‖ is the operator norm defined with respect to the norm of L2(M,gε). For
t ≥ 2t0, notice that

‖e−t�gε − e−t�hε ‖Tr

= ∥∥e− t
2 �gε

(
e− t

2 �gε − e− t
2 �hε

) + (
e− t

2 �gε − e− t
2 �hε

)
e− t

2 �hε
∥∥

Tr

≤ (‖e− t
2 �gε ‖ + ‖e− t

2 �hε ‖)‖e− t
2 �gε − e− t

2 �hε ‖Tr

≤ ‖e− t
2 �gε − e− t

2 �hε ‖Tr. (4.5)

2When acting on half-densities.
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Applying this inequality finitely many times, we see that for all t ≥ 2t0,

‖e−t�gε − e−t�hε ‖Tr ≤ max
τ∈[t0,2t0]

‖e−τ�gε − e−τ�hε ‖Tr.

By Proposition 1, this means the relative trace is uniformly bounded for t ≥ 2t0
and ε ∈ [0,1]. Now, using the fact that ‖e−t�gε ‖ ≤ e−tμ and ‖e−t�hε ‖ ≤ ce−tμ for
some constant c > 0 depending only on g and h and proceeding as in (4.5), we thus
have for t ≥ 2t0,

‖e−t�gε − e−t�hε ‖Tr ≤ (‖e− t
2 �gε ‖ + ‖e− t

2 �hε ‖)‖e− t
2 �gε − e− t

2 �hε ‖Tr

≤ (1 + c)e− μ
2 t max

τ∈[t0,2t0]
‖e−τ�gε − e−τ�hε ‖Tr. (4.6)

By Proposition 1, maxτ∈[t0,2t0] ‖e−τ�gε − e−τ�hε ‖Tr is bounded above by a positive
constant independent of ε. This gives the desired result. If zero is in the spectrum, we
can obtain the same result by first projecting off the constants. �

5 Finite Time Behavior of the Relative Trace

To introduce and study the relative determinant, we need to obtain some good control
on the relative trace as ε tends to 0. We will adapt the methods used in [15] to show
that the relative heat trace is continuous in ε for small t .

Theorem 3 For T > 0, the functional

ε �→ Tr
(
e−t�gε − e−t�hε

)

is continuous at ε = 0 uniformly with respect to t ∈ (0, T ].

Intuitively, we expect Theorem 3 to hold from the fact that the singular behavior
of gε and hε should cancel out. What allows us to turn these local considerations into
a statement about the heat kernels is a finite propagation speed argument. We will
proceed in three steps. We will use the notation S to denote either {p} or ∂iM de-
pending on whether we are considering a conformal surgery at a point or at boundary
component.

Lemma 3 There exist constants d > 0 and C > 0 such that

∣∣Tr
(
e−t�gε − e−t�hε

) − Tr
(
e−t�g0 − e−t�h0

)∣∣ < Cte− d2
8t

for all t > 0 and ε ∈ [0,1].

Proof Note that we expect such a rapid decay as t tends to zero from the fact that the
short time asymptotics of these heat kernels cancel out. The precise estimate will be
obtained via a finite speed propagation argument.
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Let W1, W̃1, W2, and W̃2 be open sets as in the proof of Proposition 1. To estimate
the difference of relative traces on W1, let φ ∈ C∞(M) be a function with φ ≡ 1 near
W1 and suppφ ⊂ W̃1. Let χ ∈ C∞(M) be another function with χ ≡ 1 on suppφ

and suppχ ⊂ W̃1. Let also γ ∈ C∞
c (M) be a function with γ ≡ 1 on supp(1 − φ).

Consider then the approximate heat kernel

E(t, x, y) = γ (x)e−t�gε (x, y)
(
1 − φ(y)

) + χ(x)e−t�hε (x, y)φ(y).

By Duhamel’s principle, we have that

e−t�gε (x, y) − E(t, x, y)

= −
∫ t

0

∫

M\S
e−s�gε (x, z)

(
∂

∂t
+ �gε

)
E(t − s, z, y)dzds. (5.1)

If we assume now that x and y are equal and lie in W1, then Eε(t, x, x) =
e−t�hε (x, x), so proceeding as in [15, Proposition 5.1], we have that

∫

W1\S
|e−t�gε (x, x) − e−t�hε (x, x)|dx

≤ C

∫ t

0

∫

G

(∫

W1\S
|e−s�gε (x, z)|2dx

) 1
2
((∫

W1\S
|∇ze

−(t−s)�hε (z, x)|2dx

) 1
2

+
(∫

W1\S
|e−(t−s)�hε (z, x)|2dx

) 1
2
)

dzds, (5.2)

where C > 0 is a constant depending on the norm of dχ and �hχ and G ⊂ W̃1 \W1

is a compact set containing the support of dχ . By Lemma 1, we have

∫

W1\S
|e−s�gε (x, z)|2dx ≤ C1e

− d2
8s ,

∫

W1\S
|e−(t−s)�hε (z, x)|2dx ≤ C1e

− d2
8(t−s) ,

∫

W1\S
|∇ze

−(t−s)�hε (z, x)|2dx ≤ C1e
− d2

8(t−s) ,

(5.3)

where C1 is a constant depending on G, so is independent of ε, while d > 0 is chosen
to be smaller than the distance between W1 and suppdχ with respect to the metric h

(recall that h = hε = gε = g on W̃1 \W1). Combining (5.2) and (5.3), we obtain

∫

W1\S
|e−t�gε (x, x) − e−t�hε (x, x)|dx < 2 Vol(G)CC1te

− d2
8t ∀ε ∈ [0,1],∀ t > 0.

(5.4)
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Using the fact that gε = g0 and hε = h0 on W̃2 and that gε = hε = g = h on
W̃2 \W2, we can proceed in a similar way to obtain that

∫

W2

|e−t�gε (x, x) − e−t�g0 (x, x)|dx < Cte− d2
8t ,

∫

W2

|e−t�hε (x, x) − e−t�h0 (x, x)|dx < Cte− d2
8t ,

(5.5)

for all ε ∈ [0,1] and t > 0, for potentially different constants C > 0 and d > 0. Fi-
nally, combining (5.4) and (5.5) gives the result. �

An easy consequence of Lemma 3 is the following.

Corollary 2 The relative heat invariants in the asymptotic expansion

Tr
(
e−t�gε − e−t�hε

) ∼ t−1
∑

k≥0

ak(gε, hε)t
k (5.6)

are preserved under conformal surgery, i.e., ak(gε, hε) = ak(g0, h0) for all k and
all ε.

Lemma 4 Given δ > 0 and T > 0, there exist an open set A ⊂ V containing S and
ε0 > 0 such that for all t < T and all ε ∈ [0, ε0),

∫

A\S
|e−t�gε (x, x) − e−t�hε (x, x)|dx < δ.

Proof This is a finite propagation speed argument as in [15, Proposition 5.1], namely,
we consider the approximate heat kernel

E(t, x, y) = γ (x)e−t�gε (x, y)
(
1 − φ(y)

) + χ(x)e−t�hε (x, y)φ(y), (5.7)

where φ, χ , and γ are smooth functions on M with φ ≡ 1 near p and φ ≡ 0 when r >
1
2 on V (and more generally outside V), χ ≡ 1 when r ≤ 1

2 and χ ≡ 0 when r > 3
4 ,

and γ ≡ 1 on supp(1 − φ) and suppγ is disjoint from p. Let G be a compact set
containing the support of dχ and choose A ⊂ V such that φ ≡ 1 on A. By choosing
A and ε0 > 0 sufficiently small, we can ensure that dgε (A,G) > d when ε ∈ [0, ε0],
where d is a large positive number to be chosen later. Using Duhamel’s principle as
in [15, Proposition 5.1], we have

∫

A\S
|e−t�gε (x, x) − e−t�hε (x, x)|dx

≤ C

∫ t

0

∫

G

(∫

A\S
|e−s�gε (x, z)|2dx

) 1
2
((∫

A\S
|∇ze

−(t−s)�hε (z, x)|2dx

) 1
2

+
(∫

A\S
|e−(t−s)�hε (z, x)|2dx

) 1
2
)

dzds, (5.8)
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where C is a constant depending on G. By Lemma 1 and using the fact that gε = g

and hε = h near G, we have
∫

A\S
|e−t�gε (x, z)|2dx ≤ C1e

− d2
8t ,

∫

A\S
|e−t�hε (z, x)|2dx ≤ C1e

− d2
8t ,

∫

A\S
|∇ze

−t�hε (z, x)|2dx ≤ C1e
− d2

8t ,

(5.9)

where the positive constant C1 depends only on G and is thus independent of ε. By
taking A and ε0 sufficiently small, we can make d as large as we want. From (5.8),
given δ > 0 and T > 0, we can thus choose A and ε0 so that

∫

A\S
|e−t�gε (x, x) − e−t�hε (x, x)|dx < δ,

for all ε ∈ [0, ε0] and t ∈ (0, T ]. �

We need also to control the trace on the complement of A.

Lemma 5 Let N ⊂ M be an open set with N ∩ S = ∅. Then given δ > 0 and T >

ν > 0, there exists ε0 > 0 such that for all ε ∈ [0, ε0] and t ∈ [ν,T ],
∫

N

|e−t�gε (x, x)−e−t�g0 (x, x)|dx < δ,

∫

N

|e−t�hε (x, x)−e−t�h0 (x, x)|dx < δ.

Proof We will prove the lemma for the metric gε , the proof being the same for the
metric hε . Without loss of generality, by taking N bigger if needed, we can assume
M \ N is contained in the neighborhood V . This time, we consider φ ∈ C∞(M) with
φ ≡ 1 on N and φ ≡ 0 near S, χ ∈ C∞(M) with the same properties and such that
χ ≡ 1 on the support of φ, and we choose a function γ ∈ C∞

c (V) with γ ≡ 1 on
supp(1 − φ). With these functions, we define the approximate heat kernel

E(t, x, y) = γ (x)e−t�g0 (x, y)
(
1 − φ(y)

) + χ(x)e−t�gε (x, y)φ(y). (5.10)

Using Duhamel’s principle, we have

e−t�g0 (x, y)−E(t, x, y) = −
∫ t

0

∫

M\S
e−s�g0 (x, z)

(
∂

∂t
+�g0

)
E(t − s, z, y)dzds.

(5.11)
Suppose now that x and y are equal and lie in N . Then E(t, x, x) = e−t�gε (x, x).
Writing gε = eϕεg0, we also have

(
∂

∂t
+ �g0

)
e−t�gε =

(
∂

∂t
+ �gε + (

eϕε − 1
)
�gε

)
e−t�gε

= (
eϕε − 1

)
�gεe

−t�gε . (5.12)
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Thus, from (5.11), when x and y are equal and lie in N , we have

e−t�g0 (x, x) − e−t�gε (x, x)

= 2
∫ t

0

∫

G

e−s�g0 (x, z)
〈∇zχ,∇ze

−(t−s)�gε (z, x)
〉
dzds

−
∫ t

0

∫

G

e−s�g0 (x, z)
(
�g0χ(z)

)
e−(t−s)�gε (z, x)dzds

+
∫ t

0

∫

G′
e−s�g0 (x, z)

(
1 − eϕε

)
χ(z)�gεe

−(t−s)�gε (z, x)dzds, (5.13)

where G = suppdχ ⊂ M \ S is a compact set and G′ ⊂ V \ S is a compact set con-
taining suppχ ∩ supp(1 − eϕε ).

When we integrate with respect to x on N , the first two terms on the right-hand
side of (5.13) can be bounded as before by

C

∫ t

0

∫

G

(∫

N

|e−s�g0 (x, z)|2dx

) 1
2
((∫

N

|e−(t−s)�gε (z, x)|2dx

) 1
2

+
(∫

N

|∇ze
−(t−s)�gε (z, x)|2dx

) 1
2
)

dzds,

where C is a constant depending on the norm of dχ and �g0χ on G with respect to
the norm of gε . By Lemma 1, we can bound this expression by

C̃
√

Vol(G,g0)Vol(G,gε)
√

CG,g0CG,gε e
− d2

0 +d2
ε

16t , (5.14)

where dε is the distance between G and N with respect to the metric gε , C̃ is a
constant depending on C and ν, and CG,gε is the optimal constant for the estimate of
Lemma 1 for gε on G.

In the case of a surgery at a boundary component, using the fact that g0 is quasi-
isometric to a Fc ∂-metric which is hyperbolic near infinity, we see using Lemma 2
with the constant a fixed that we can take CG,g0 to be independent of G. On the other
hand, for fixed G, we can take the constant CG,gε to be as close as we want to CG,g0

by taking ε sufficiently small. Now, at the cost of changing χ and taking ε sufficiently
small, we can make d0 and dε as large as we want. Choosing χ to be independent
of θ near p, this can be achieved while keeping the norm of dχ bounded by a fixed
constant K with respect to g0, so that its norm with respect to gε will be bounded by
K + 1 if ε is small enough. During such a procedure, the volume of G with respect to
g0 satisfies an estimate of the form Vol(G,g0) ≤ C0e

d0 for some fixed constant C0,
and again, for fixed G, by taking ε small enough, we can make Vol(G,gε) as close as
we want to Vol(G,g0). This means that by choosing χ and ε suitably, we can make
(5.14) as small as we want.

In the case of a conformal surgery at a point, we need to use the fact that g0 is
quasi-isometric to a hyperbolic cusp metric near the point p, so that by Lemma 2, the
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Sobolev constant of g0 on G satisfies an estimate of the form

CG,g0 ≤ K
(
e4d0 + 1

)

for some constant K . Thus, by choosing G sufficiently far away from N , we can

make the term CG,g0e
− d2

0
8t as small as we want. Since a cusp end has finite area, this

can be done in such a way that the volume of G with respect to gε is bounded above
by a constant independent of d0 and ε.

Since on the other hand we can, for fixed G, make CG,gε arbitrarily close to CG,g0

by taking ε sufficiently small, we see we can again make (5.14) as small as we want
by taking G sufficiently far away from N and ε sufficiently small.

For the third term in (5.13), we note that its integral with respect to x on N can be
bounded by

C

∫ t

0

∫

G′

(∫

N

|e−s�g0 (x, z)|2dx

) 1
2
(∫

N

|�gεe
−(t−s)�gε (z, x)|2dx

) 1
2 (

1−eϕε(z)
)
dzds.

(5.15)
Since we are assuming t ≥ ν > 0, each integral in x can be uniformly bounded (for G′
fixed) using Lemma 1 with d = 0. Thanks to the term (1−eϕε ), the overall expression
can be made arbitrarily small by taking ε > 0 sufficiently small. �

These three lemmas can then be combined to give the proof of Theorem 3.

Proof of Theorem 3 Given T > 0 and δ > 0, we need to find ε0 > 0 such that when
ε ∈ [0, ε0],

∫

M\S
∣∣(e−t�gε (x, x) − e−t�hε (x, x)

) − (
e−t�g0 (x, x) − e−t�h0 (x, x)

)∣∣dx < δ

∀ t ∈ (0, T ].
By Lemma 3, we can find ν > 0 such that this integral is smaller than δ

3 for t ≤ ν.
By Lemma 4, we can find ε0 > 0 and an open set A ⊂ V containing S such that the
integral restricted to A \ S is smaller than δ

3 when ε ∈ [0, ε0] and t ∈ (0, T ]. On the
other hand, choosing an open set N ⊂ (M \ S) containing the complement of A, we
know by Lemma 5 that by taking ε0 smaller if needed, we can ensure the integral
restricted to N is also bounded by δ

3 for ε ∈ [0, ε0] and t ∈ [ν,T ], from which the
result follows. �

6 The Relative Determinant

By Corollaries 1 and 2, the relative zeta function given by

ζ(�gε ,�hε , s) = 1

Γ (s)

∫ ∞

0
t s−1 Tr

(
e−t�gε − e−t�hε

)
dt
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is well defined for Re s > 1. In fact, using the short-time asymptotic expansion (5.6),
the relative zeta function can be extended meromorphically to s ∈ C with at worst
simple poles in s, but with s = 0 a regular point. Thus, a relative determinant can be
defined by

det(�gε ,�hε ) = exp
(−ζ ′(�gε ,�hε ,0)

)
. (6.1)

Lemma 6 For ε > 0, we have

d

dε
det(�gε ,�hε ) = 0.

Proof Using the regularized trace as in [1], we can write the relative trace as a dif-
ference of two regularized traces. Similarly, we can write the relative determinant as
a quotient of two regularized determinants. Therefore,

log det(�gε ,�hε ) = log Rdet(�gε ) − log Rdet(�hε ).

Applying the Polyakov formula of [1] to this ratio of regularized determinants, we
see that the contribution coming from one regularized determinant is canceled by the
other, from which the result follows. �

Remark 1 In [1] the surfaces considered have no boundary, but since the discussion
about the regularized trace and the Polyakov formula is local near the cusps and the
funnels, the extension to the boundary case is automatic. As in [28], one simply needs
to add an extra term in the Polyakov formula of [1] expressed in terms of the geodesic
curvature of the boundary.

This immediately gives the following.

Theorem 4 For the families of metrics gε and hε , the relative determinant det(�gε ,

�hε ) is independent of ε.

Proof By Corollary 1, Lemma 3, and Theorem 3, the relative determinant is a con-
tinuous function of ε. On the other hand, by Lemma 6, it is constant for ε > 0. By
continuity, it is therefore constant for ε ≥ 0. �

We can use this to obtain a similar result for conformal deformations near ∂F M .

Corollary 3 Let ψF ∈ C∞(M) be a smooth function supported near ∂F M such that
ψF |∂F M is locally constant and consider the new Fc ∂-metrics g̃ = eψF g, h̃ = eψF h.
Then we have that

det(�g̃,�h̃) = det(�g,�h).

Proof We could use the Polyakov formula of [1], but this would require some extra
decay behavior in ψF . Instead, we simply apply the previous theorem twice by un-
doing and doing again a conformal surgery at each boundary component of ∂F M to
go from g to g̃ and from h to h̃. �
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7 Compactness of Families of Relatively Isospectral Surfaces

As mentioned in the Introduction, Borthwick and Perry [6] prove a compactness the-
orem for isoresonant metrics that coincide cocompactly and whose ends are hyper-
bolic funnels. Their proof of compactness, like the proof of compactness of Osgood–
Phillips–Sarnak, uses the spectral assumption only through the equality of the relative
heat invariants (5.6) and relative determinants (6.1). We restate their theorem with
these assumptions.

Theorem 5 (Borthwick–Perry [6]) Let (Mi, gi) be a family of Riemannian surfaces
that coincide cocompactly, whose ends are hyperbolic funnels, and assume that the
relative heat invariants and relative determinants satisfy

ak(gi, gj ) = 0, det(�gi
,�gj

) = 1, for all i, j, k.

Then there is a Riemannian surface (M,g∞), a subsequence (Mik , gik ), and a se-
quence of diffeomorphisms

φk : M −→ Mik , with φ	 ◦ φ−1
	′ |U∞ = Id for any 	, 	′

such that the metrics φ∗
k gik converge to g∞ in C∞.

We can now finally give a proof of our main result.

Proof of Theorem 1 We need to first check that the various surfaces have the same
topology. This can be deduced from the relative heat invariants. Namely, given two of
the relatively isospectral surfaces (Mi, gi) and (Mk,gk), we can deform conformally
gi and gk in U∞ in the same way to obtain metrics ĝi and ĝk also having vanishing
relative heat invariants and such that

(i) the metrics ĝi and ĝk have no cusp, the cusps being removed by a conformal
surgery at each marked point;

(ii) the metrics ĝi , ĝk define incomplete metrics on Mi and Mk with boundary having
no geodesic curvature.

Since these metrics ĝi , ĝk have the same heat invariants, we know from [25] that Mi

and Mk have the same Euler characteristic, so the same topology. Thus, the isometry
Mi \Ki → Mk \Kk can be extended to a diffeomorphism Mi → Mk . This means we
can assume all the relatively isospectral metrics are defined on the same surface M∞
and agree on U∞ = M \ K where K ⊂ M \ ∂M is a compact set.

Going back to the initial metrics gi , we can, by doing a conformal surgery on U∞,
remove all the cusps and transform each boundary into a funnel end hyperbolic near
infinity. We can also conformally modify the metrics in the remaining funnels to
make them hyperbolic near infinity. We thus get a new sequence of metrics g̃i =
eψgi on M , where ψ is a function supported on U∞ and M is obtained from M

by filling each cusp end with a point. In doing so, the relative local heat invariants
remain zero, and the relative determinant remains 1 by Theorem 4. We can thus apply
Theorem 5 to find a Riemannian surface (M, g̃∞) and to extract a subsequence g̃ik
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and a sequence of diffeomorphisms φik : M → Mik such that φ∗
ik
gik converges to g̃∞

in C∞(M, g̃∞). As explained in [6], we can choose the diffeomorphisms such that
φik ◦ φ−1

ik′ = Id near each funnel of (M, g̃∞). The same argument can be carried out

near each (filled) cusp, so that the diffeomorphisms can be chosen so that φik ◦φ−1
ik′ =

Id on U∞. Undoing the conformal transformation on the metric g̃∞ to obtain the
metric g∞ = e−ψg̃∞ on M , we obtain the desired result with the subsequence gik

and the diffeomorphisms φik . �
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