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Abstract We study higher-derivative gravity theories in arbitrary space–time dimen-
sion d with a cosmological constant at their maximally critical points where the masses
of all linearized perturbations vanish. These theories have been conjectured to be dual
to logarithmic conformal field theories in the (d −1)-dimensional boundary of an AdS
solution. We determine the structure of the linearized perturbations and their boundary
fall-off behaviour. The linearized modes exhibit the expected Jordan block structure
and their inner products are shown to be those of a non-unitary theory. We demonstrate
the existence of consistent unitary truncations of the polycritical gravity theory at the
linearized level for odd rank.

Keywords Gravity · Higher-derivative · Unitarity · Linear perturbation

1 Introduction

The perturbative properties of ordinary general relativity in d = 4 space–time dimen-
sions can be improved by adding higher derivative terms to the action. The price one
has to pay for rendering the theory renormalizable in this way is typically the loss
of unitarity [1,2]. Recently, specific models in d ≥ 3 with special choices of higher
derivative terms have attracted renewed attention for several reasons. One is that in
d = 3 they can provide consistent ghost-free theories of massive gravitons. This was
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728 A. Kleinschmidt et al.

first observed in the parity violating ‘topologically massive theory of gravity’ (TMG)
[3,4] with three derivatives and more recently for the parity preserving ‘new massive
gravity’ (NMG) [5] with four derivatives. A crucial feature in the construction of NMG
is the choice of coefficients in the four-derivative Lagrangian such that the problem-
atic scalar mode of the massive graviton becomes pure gauge. Furthermore, there is a
critical point where the mass of the massive graviton vanishes and degenerates with
that of the massless graviton.

Both features were later extended to higher dimensions by the discovery of ‘criti-
cal gravity’ theories with four derivatives [6–11]. At the critical points one typically
encounters logarithmic graviton modes that emerge as the replacement for the mas-
sive modes. These theories importantly have a non-vanishing cosmological constant.
Similar parity preserving theories now also exist in arbitrary dimension and with an
arbitrary (even) number of space–time derivatives and critical points, the so-called
polycritical gravities [12]. (For other work on massive gravity see [13–19].)

Another reason for studying polycritical models is provided by the AdS/CFT cor-
respondence where one would expect a non-unitary logarithmic CFT as the dual of
a polycritical gravity theory [8,20,21] (see also [22,23]). The non-unitarity of the
logarithmic CFT is related to the fact that the Hamiltonian cannot be diagonalized
on the fields; there is a Jordan structure [24,25]. However, the precise structure of
the two-point correlation functions suggests the existence of unitary truncations, and
by AdS/CFT also in the gravity theory [21]. The example of six-derivative gravity in
d = 3 was treated recently in [26] whereas four-derivative critical gravity in d = 4
appeared in [27].

To explore this question further, the present paper analyzes the structure of the
various gravitational modes in polycritical gravity in space–time dimensions d ≥ 3
at the linear level. We find that an inner product can be defined that reproduces the
structure expected from logarithmic CFTs. The linearized graviton excitations around
an AdS background can be organized into a hierarchy of higher and higher logarith-
mic dependence near the boundary of AdS. The lowest mode is the usual Einstein
mode, the next one has an additional logarithmic dependence on the AdS radius, the
next one contains log2 terms and so on. This allows us to truncate the linearized the-
ory by imposing appropriate boundary conditions on the graviton fall-off behaviour.
A suitable truncation then renders the inner product matrix between the various modes
positive semi-definite. The null states can also be factored out, but the resulting theory
is quite different depending on the rank of the polycritical gravity theory. The rank
is defined as half the maximum number of space–time derivatives. When the rank is
odd, one arrives at a unitary model of a single graviton mode. By contrast, the theory
becomes trivial for even rank; the surviving mode has zero energy. This confirms a
conjecture of [21]. An alternative description of this truncation can be given by defin-
ing a hierarchy of (conserved) charges and then restricting to a superselection sector
in this charge hierarchy.

While this paper was being completed, the preprint [28] appeared that discusses the
specific case of non-linear critical gravity of rank 3 in d = 3 and d = 4 with the result
that truncations that appear to be unitary at the linearized level may be inconsistent
at the non-linear level, i.e., the truncation is flawed by a linearization instability. The
argument given there seems to extend to the general case independently of how the
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On unitary subsectors of polycritical gravities 729

linearized theory is completed and this would suggest that our unitary subsectors exist
only in the linearized approximation.

Our paper is structured as follows. In Sect. 2, we give the Lagrangian of the poly-
critical theory around AdS space whose various modes will be obtained in Sect. 3.
Then in Sect. 4 we define and compute the inner product for these modes. Using either
the hierarchy of charges established in Sect. 5 or appropriate boundary conditions,
we will be able to define a unitary truncation of the polycritical model in Sect. 6. An
appendix shows that our inner product is equivalent to one derived canonically from
a two-derivative master action.

2 Quadratic Lagrangian

In this section we briefly review the quadratic Lagrangian around AdS space of poly-
critical models of arbitrary rank. But before doing so, it is useful to first go over the
rank one (i.e. two derivative) case: Einstein gravity with a cosmological constant.

2.1 Rank one: Einstein gravity

Recall that for Einstein gravity with a cosmological constant, we have the Lagrangian

L = √−g(R − 2�). (1)

The equations of motion state that the cosmological Einstein tensor (that is, the Einstein
tensor plus a term proportional to the cosmological constant) vanishes,

G�
μν = Gμν +�gμν = 0. (2)

We will perform perturbations around solutions of the equations of motion as follows,

gμν = ḡμν + gL
μν = ḡμν + hμν. (3)

The bar indicates the background solution, and the superscript L the linear perturba-
tions around it. Thus the linear perturbation of the metric is given by hμν . We take
the background solution to be an AdS space, which means that the curvature tensors
satisfy

R̄μνρσ = 2�

(d − 2)(d − 1)

(
ḡμρ ḡνσ − ḡμσ ḡνρ

)
, (4a)

R̄μν = 2

(d − 2)
�ḡμν, (4b)

R̄ = 2d

(d − 2)
�, (4c)

Ḡμν = −�ḡμν, (4d)
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with d being the number of space–time dimensions and� < 0. Instead of the cosmo-
logical constant, we can also use the AdS length � as a measure for the background
curvature. The two are related via

1

�2 = − 2�

(d − 2)(d − 1)
. (5)

Note that (4d) indeed solves the equations of motion (2). On this background, the
linear equations of motion become

(
G�
μν

)L = RL
μν − 2�

(d − 2)
hμν − 1

2
ḡμνRL = 0, (6)

with

RL = ∇̄ρ∇̄σ hρσ − ¯ h − 2

d − 2
�h, (7a)

RL
μν = ∇̄ρ∇̄(μhν)

ρ − 1

2
¯ hμν − 1

2
∇̄μ∇̄νh. (7b)

Taking the trace of the linear equation of motion (6) is the same as linearizing the
trace of the non-linear equation of motion (2), because the cosmological Einstein
tensor vanishes by construction on the background. Either way, we find

ḡμν
(
G�
μν

)L = (
gμνG�

μν

)L =
(

1 − d

2

)
RL = 0. (8)

Furthermore, the linear equations of motion (6) have a gauge invariance that stems
from the diffeomorphism invariance of the non-linear theory. To be precise, they are
invariant under the gauge transformation

hμν → h′
μν = hμν + ∇̄(μvν), (9)

for any vector vμ. This gauge invariance, combined with the on-shell vanishing of the
linearized Ricci scalar RL , implies [29] that we can go to the so-called ‘transverse
traceless’ gauge,

∇̄μhμν = 0, (10)

h = 0. (11)

This gauge eliminates the scalar mode (that would otherwise be a ghost) of hμν ,
making it a proper spin-2 field.1

1 As is clear from Eq. (7a), the transverse traceless gauge ‘gauges away’ the linear Ricci scalar. This might
seem counter-intuitive, as the linear Ricci scalar is gauge-invariant. But we must not forget that we used the
fact that it vanishes on-shell in order to arrive at the above gauge. Thus in using this gauge one automatically
goes (partially) on-shell.
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On unitary subsectors of polycritical gravities 731

In the transverse traceless gauge, the linearized equation of motion (6) simplifies
considerably to

(
G�
μν

)L = −1

2

( ¯ + 2�−2
)

hμν = 0. (12)

The term 2�−2 may look like a mass term, but it is not. Mass terms in general break
gauge invariance, but the linearized equations of motion were in fact gauge invariant.
Instead, if one were to introduce a mass for the spin-2 field, its equation of motion
would read

( ¯ + 2�−2 − m2
)

hμν = 0, with m being the proper mass parameter.
Lastly, the linear equations of motion (6) can also be obtained from the quadratic

perturbation of the Lagrangian (1), which, after partial integration, reads

L2 = −1

2

√−ḡ hμν
(
G�
μν

)L
. (13)

Indeed, upon varying this quadratic action with respect to hμν we recover (6).

2.2 Einstein and Schouten operators

The fact that the Lagrangian (13) is quadratic in hμν is obscured as the linear Ein-

stein tensor
(
G�
μν

)L
also contains hμν . We can make the quadratic dependence a bit

more transparent by introducing the so-called Einstein operator G, upon which the
Lagrangian reads

L2 = −1

2

√−ḡ hμνGhμν. (14)

The (cosmological) Einstein operator G is defined as

Ghμν ≡ (
G�
μν

)L
. (15)

Here and in the following we have suppressed the indices on G. But it is in fact a
tensorial operator, so when we write Ghμν we implicitly mean Gμνρσ hρσ . Reading
off from Eq. (6), the explicit form of the Einstein operator is

Gρσμν = ∇̄ρ∇̄(μδσν) − 1
2

¯ δρμδσν − 1
2 ∇̄μ∇̄ν ḡρσ − 1

2 ḡμν∇̄ρ∇̄σ

+ 1
2 ḡμν ¯ ḡρσ − 2�

d − 2
δρμδ

σ
ν + �

d − 2
ḡμν ḡρσ . (16)

The Einstein operator has a number of nice properties:

1. It is self-adjoint under partial integration:

Aμν(GBμν) = (G Aμν)B
μν + total derivative. (17)
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2. It is conserved:

∇̄μG Aμν = 0. (18)

3. It is gauge invariant:

G
[
Aμν + ∇̄(μvν)

] = G Aμν. (19)

Here the symmetric Aμν, Bμν , and vμ are completely arbitrary.
In the following we will also need another operator, the so-called (cosmological)

Schouten operator S [12]. It is defined similarly as the Einstein operator, the difference
being that it yields the linearized cosmological Schouten tensor when applied to hμν :

Shμν ≡ (
S�μν

)L
. (20)

In turn, the cosmological Schouten tensor is the usual Schouten tensor2 plus a term
proportional to the cosmological constant:

S�μν = Sμν − �

d − 1
gμν

= Rμν − 1

2(d − 1)
gμνR − �

d − 1
gμν. (21)

The extra term proportional to the cosmological constant is chosen such that the
cosmological Schouten tensor vanishes on AdS backgrounds,

S̄�μν = 0. (22)

The linearized cosmological Schouten tensor reads

(
S�μν

)L = RL
μν − 2�

(d − 2)
hμν − 1

2(d − 1)
ḡμνRL . (23)

Note that it differs from the linearized cosmological Einstein tensor (6) by a factor of
RL :

(
S�μν

)L = (
G�
μν

)L + 1

2

d − 2

d − 1
ḡμνRL . (24)

The Schouten operator on its own does not have striking properties: it is not self-adjoint,
nor is it conserved. However, in combination with the Einstein operator, things become
more interesting:

2 Strictly speaking, the usual Schouten tensor has an additional overall 1
d−2 factor. However, for our

purposes it is more convenient to normalize slightly differently.
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On unitary subsectors of polycritical gravities 733

1. GS is self-adjoint under partial integration:

Aμν(GS Bμν) = (GS Aμν)B
μν + total derivative. (25)

And because G on its own is also self-adjoint, GSk (the k-fold application of S
followed by G) is so too.

2. S can be traded for a cosmological constant when taking the trace:

ḡμνGS Aμν = d − 2

2�2 ḡμνG Aμν. (26)

3. S is gauge invariant:

S
[
Aμν + ∇̄(μvν)

] = S Aμν. (27)

4. For a symmetric, transverse and traceless tensor (say Cμν), G and S are the same:

SCμν = GCμν = −1

2

( ¯ + 2�−2
)

Cμν. (28)

The first two properties are crucial for constructing a quadratic theory of general rank,
which we will do now.

2.3 General rank

The rank r polycritical Lagrangian around an AdS background is given by

L(r)2 = − 1

2τ

√−ḡ hμνG
r−1∏

i=1

(
2S + m2

i

)
hμν, (29)

with τ = ∏r−1
i=1

(
m2

i + d−2
�2

)
. For rank one, it reduces to the quadratic Einstein

Lagrangian (14), as required.
The non-linear completion for rank one is unique [30]; it is simply the Einstein–

Hilbert Lagrangian (1). For rank two in d = 3 [5] or d = 4 [7] the non-linear
completion is also unique, because the number of independent curvature invariants
is sufficiently small in those cases. However, for higher rank the quadratic theory no
longer uniquely fixes the non-linear theory, due to the growth of curvature invariants.
One can still find some non-linear Lagrangian that reproduces the above theory (29)
for quadratic perturbations. For d ≥ 4 and arbitrary rank this was done in [12], while
[26] has a non-linear action for r = 3, d = 3. However, finding a unitary interacting
theory is not so easy [1,2]. We will content ourselves with knowing one can always
write down a non-linear completion.
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Since GSk is self-adjoint, the equations of motion that follow from (29) are simply

1

τ
G

r−1∏

i=1

(
2S + m2

i

)
hμν = 0. (30)

Upon taking the trace of this, we find with the help of (26),

1

τ
ḡμνG

r−1∏

i=1

(
2S + m2

i

)
hμν = ḡμνGhμν =

(
1 − d

2

)
RL = 0. (31)

Note that the use of Schouten operators is crucial in order for the trace to reduce to
the linear Ricci scalar. If one were to use only Einstein operators in the action (29),
the trace of the equations of motion would not be equal to the linear Ricci scalar.

Similarly as in the rank one case, the on-shell vanishing of the linear Ricci scalar
allows us to go to the transverse and traceless gauge. The equations of motion then
become

∇̄μhμν = 0, (32a)

h = 0, (32b)
r−1∏

i=0

( ¯ + 2�−2 − m2
i

)
hμν = 0, (32c)

with m0 = 0. The theory thus contains r propagating gravitons h[i]
μν , one of which is

always massless while the others can be massive. Such a graviton mode is a solution
to a different equation of motion than (32). Instead it is annihilated by a single factor
of the product of (32c),

h[i]
μν :

( ¯ + 2�−2 − m2
i

)
h[i]
μν = 0, (33)

while of course still being transverse and traceless. Their on-shell quasilocal energies
can be computed by taking an appropriate integral of the effective stress-energy tensor,
as we will explain in more detail in Sect. 4.1. For the modes h[i] defined above the
result is [12]

E [i] = E0

τ

r−1∏

j=0
j �=i

(
m2

j − m2
i

)
. (34)

Here E0 is the energy of the massless graviton for rank one, that is, the usual graviton
energy in Einstein gravity. If we arrange the masses by size,

m2
1 < · · · < m2

i−1 < m2
i < m2

i+1 < · · · < m2
r−1, (35)
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On unitary subsectors of polycritical gravities 735

the sign of the energies alternates:

sgn
(

E [i]
r

)
= −sgn

(
E [i+1]

r

)
. (36)

So unfortunately, when the masses are not degenerate some of the gravitons will always
be ghosts, no matter how one chooses the overall sign of the action. A notable exception
is the d = 3, r = 2 case, NMG [5]. In three dimensions the massless graviton does
not propagate, but the massive one does. One can then choose the overall sign of the
action such that massive graviton has positive energy and is not a ghost.

However, for generic dimensions and rank, such a thing is not possible. In an attempt
to ameliorate the situation, one can send all the masses to zero, thereby reaching the
polycritical point.

2.4 Polycritical point

We define the maximally polycritical point to be the point in parameter space where
all the masses are zero. The Lagrangian (29) then reads

L(r)2 = −1

2

(
2�2

d − 2

)r−1

hμνGSr−1hμν, (37)

and the equations of motion that follow from it are

GSr−1hμν = 0. (38)

We know from before that this allows us to let hμν be transverse and traceless. In
this gauge, the Schouten and Einstein operator become the same, and the remaining
equations of motion read

Gr hμν = 0. (39)

It is worth stressing that the above is not the correct complete equation of motion; one
must take into account that hμν is already transverse and traceless. If this was not the
case we would have to go back to (38).

At the polycritical point the r − 1 massive modes degenerate with the massless
mode into a single mode. In addition r −1 new modes appear, the so-called log modes
h(I )μν (with I = 1, . . . , r − 1). These log modes satisfy different equations of motion
than the massless mode; they are annihilated by two or more Einstein operators:

h(I )μν : G I+1h(I )μν = 0,
G I h(I )μν �= 0,

(40)
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with I = 0, 1, . . . , r − 1. Note that h(0)μν is the usual massless graviton. The action of
a single Einstein operator on a log mode gives a ‘lower’ log mode,

Gh(I )μν = d − 2

2�2 h(I−1)
μν . (41)

If we use the convention h(−1)
μν = 0 then (40) reproduces the equations of motion.

The main aim of this paper is to analyse the inner product of the log modes and
study the unitarity of the linearized theory. Next, we will examine explicit solutions
to the equations of motion of the log modes.

3 Linearized log modes

In this section we explicitly present modes of the linearized equations of motion of
the polycritical gravities at their maximally polycritical point. We first recall cer-
tain basic facts about constructing such modes from [31,32] and then give some
explicit expressions. A similar analysis has been recently performed by other authors
[28,32,33].

To construct log modes, one first constructs massive as well as massless transverse
traceless spin-2 modes in terms of the highest weight representations of the symmetry
group SO(2, d −1) of AdSd spacetime. From the highest weight states all other states
are obtained by acting with the negative root generators of the algebra. Recall that the
mass parameter for spin-2 modes is defined as in (33), therefore a general transverse
traceless massive spin-2 mode ψμν satisfies

ḡμνψμν = 0, (42a)

∇̄μψμν = 0, (42b)
(

¯ + 2

�2 − m2
)
ψμν = 0. (42c)

In higher derivative theories at the maximally polycritical point the equations of motion
read (39) in the transverse traceless gauge. At the critical points log modes emerge
that satisfy different equations of motion (40).

It has been previously observed [22,32,33] that the highest weight log modes are
related to the corresponding massless mode. The relation is through an overall factor.
For the log mode h(I )μν of index I , the factor is a polynomial of order I in a function f .
To introduce the function f , we first introduce global coordinates on AdSd in which
the metric of AdSd takes the form

ds2 = �2
(
− cosh2 ρdτ 2 + dρ2 + sinh2 ρ dΩ2

d−2

)
, (43)

where dΩ2
d−2 is the unit metric on the round d − 2 sphere. In terms of the coordinates

τ and ρ the function f takes the form

f = −iτ − log cosh ρ − 1
2 log 2. (44)
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On unitary subsectors of polycritical gravities 737

The highest weight massless spin-2 mode ψμν in general dimension d is constructed
in [33]. We will present explicit expressions for ψμν in four-dimensions in Sect. 6.2.

The massless spin-2 mode ψμν is exactly the mode h(0)μν of the preceding section.
We observe the following properties of the function f and of the highest weight

massless spin-2 mode ψμν in general dimension d,

¯ f = − (d − 1)

�2 , (45a)

∇̄σ f ∇̄σ f = 1

�2 , (45b)

∇̄σ f ∇̄σψμν = d − 1

�2 ψμν. (45c)

From these equations it follows that

¯ ( f Iψμν) = I (I − 1)

�2 f I−2ψμν + (d − 1)I

�2 f I−1ψμν − 2

�2 f Iψμν, (46)

where I = 0, . . . , r − 1. As a result,

G( f Iψμν) = − I (I − 1)

2�2 f I−2ψμν − (d − 1)I

2�2 f I−1ψμν. (47)

Using the above equations one can easily find log modes in the basis (41). The first
few modes are

h(0)μν = ψμν, (48a)

h(1)μν =
[
−d − 2

d − 1
f

]
ψμν, (48b)

h(2)μν =
[
(d − 2)2

2(d − 1)2
f 2 − (d − 2)2

(d − 1)3
f

]
ψμν, (48c)

h(3)μν =
[
− (d − 2)3

6(d − 1)3
f 3 + (d − 2)3

(d − 1)4
f 2 − 2(d − 2)3

(d − 1)5
f

]
ψμν, (48d)

h(4)μν =
[
(d − 2)4

24(d − 1)4
f 4 − (d − 2)4

2(d − 1)5
f 3 + 5(d − 2)4

2(d − 1)6
f 2 − 5(d − 2)4

(d − 1)7
f

]
ψμν.

(48e)

To find a general expression for the index I mode, one needs to solve a combinatorial
equation. This equation can perhaps be solved explicitly, but the resulting expressions
will not be illuminating. Instead one can develop a recursive algorithm to find log
modes that solves (41) to whatever order one wants. This is how we have obtained
(48).
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4 Quasilocal energies and the inner product

In this section we define an inner product on the (log) solutions. The first step is to
define a bilinear norm 〈·|·〉 by means of the quasilocal energy of a solution. Once we
have such a norm, the inner product between two states follows readily. It turns out
that the formulas for the generic case involve the inner product of Einstein–Hilbert
gravity. So, as a starting point, let us see how things work for rank one.

4.1 Rank one

The on-shell energy of a solution of the equations of motion can be computed by

E =
∫

Σ

dd−1x
√−ḡ nμξ̄ νTμν, (49)

where ξ̄ ν is a time-like Killing vector, nμ is the normal to the Cauchy surface that is
being integrated over. The effective stress-energy tensor Tμν is given by varying the
action w.r.t. the background metric as if it were dynamical [34],

Tμν = − 2√−ḡ

δL
δḡμν

. (50)

In computing the on-shell stress-energy tensor, one has to be a bit careful in first taking
the variation and then going on-shell, because the on-shell Lagrangian vanishes. For
the Einstein–Hilbert case (14), the on-shell stress-energy tensor can be written as

Tμν = hρσ
δG
δḡμν

hρσ , (51)

where we have used the short-hand notation δG
δḡμν hρσ = δ

δḡμν
(
Ghρσ

)
. There would

have been other contributions, such as the variation w.r.t. the background metrics that
contract hρσ and Ghρσ , but since they are proportional to the equations of motion they
vanish on-shell. The complete form of the energy of a mode hμν is thus

E(h) =
∫

Σ

dd−1x
√−ḡ nμξ̄ νhρσ

δG
δḡμν

hρσ . (52)

For physical excitations on AdS spaces this yields a real number. We can use the above
expression to define a norm:

〈h|h〉 ≡ E(h). (53)

We have dropped the indices on the fields in the norm 〈·|·〉 in order to simplify notation,
but it is to be understood that we mean the ‘full’ tensor hμν in the above, not its trace.
The norm defines an inner product on the space of solutions as follows:
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〈h|k〉 = 1

2

(
〈h + k|h + k〉 − 〈h|h〉 − 〈k|k〉

)

= 1

2

(
E(h + k)− E(h)− E(k)

)

= 1

2

∫

Σ

dd−1x
√−ḡ nμξν

(
hρσ

δG
δḡμν

kρσ + kρσ
δG
δḡμν

hρσ

)
. (54)

Because the expression hρσ δG
δḡμν kρσ is not obviously symmetric in h and k, we have

kept the symmetrization in the above formula for clarity.

4.2 General rank

For general rank one can define an inner product on the space of solutions in a similar
manner as for Einstein gravity. At the polycritical point, the effective stress-energy
tensor is

Tμν =
(

2�2

d − 2

)r−1 r∑

i=1

(
Gi−1hρσ

δG
δḡμν

Gr−i hρσ

)
. (55)

Here we have used the fact that when acting on transverse and traceless tensors,
the Einstein and Schouten operator are the same. Furthermore we made use of their
variation w.r.t. the background metric being identical after going on-shell:

δG
δḡμν

hρσ

∣∣∣∣
∇̄μhμν=h=0

= δS
δḡμν

hρσ

∣∣∣∣
∇̄μhμν=h=0

. (56)

The norm for rank r, 〈·|·〉r , then becomes

〈h|h〉r =
(

2�2

d − 2

)r−1 r∑

i=1

〈
Gi−1h

∣∣Gr−i h
〉
1, (57)

where 〈·|·〉1 is the norm of the rank one (Einstein–Hilbert) case, as calculated in the
last section. This leads to the following inner product on the log modes:

〈h(I )|h(J )〉r =
r∑

i=1

〈h(I−i+1)|h(J+i−r)〉1. (58)

Since h(−1)
μν = 0, the inner product between log modes h(I )μν and h(J )μν vanishes if

I + J < r − 1. Furthermore, we can relate the inner product for rank r to the inner
product at lower rank if I > J :
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〈h(I )|h(J )〉r =
r∑

i=2

〈h(I−i+1)|h(J+i−r)〉1

=
r−1∑

i=1

〈h(I−i)|h(J+i−r+1)〉1

= 〈h(I−1)|h(J )〉r−1. (59)

In the first line we used the fact that h(J−r+1) = 0 for J < I ≤ r − 1, and in the
second we relabeled the summation index. This allows us to inductively compute the
complete inner product matrix for generic rank starting from rank 1. The only new bit
of information at every step is 〈h(r−1)|h(r−1)〉r , which is the energy of the maximal
log mode at the given rank. We denote this quantity by Er−1:

Er−1 ≡ 〈h(r−1)|h(r−1)〉r . (60)

The inner product matrix for generic rank then reads

〈h(I )|h(J )〉r =

⎛

⎜⎜⎜
⎜⎜⎜⎜⎜
⎝

0 0 0 · · · 0 E0
0 0 · · · 0 E0 E1

0
... 0 E0 E1

...
... 0 E0 E1

... Er−3
0 E0 E1 · · · Er−3 Er−2
E0 E1 · · · Er−3 Er−2 Er−1

⎞

⎟⎟⎟
⎟⎟⎟⎟⎟
⎠

. (61)

In Appendix A we show that the structure of this inner product is same as the one
derived canonically from a two-derivative master action. Since E0 is the energy of the
massless graviton in Einstein gravity, it is a positive number. In four dimensions E1
was also found to be positive [7]. Based on the explicit solutions of the log modes (48)
and the form of the inner product, we expect all norms to be non-zero.

The inner product matrix is indefinite. Regardless of the exact values of the energies
EI , one can always find linear combinations whose energies have opposite sign. One
example is

〈h(r−1)|h(r−1)〉r = −
〈
h(r−1) − Er−1

E0
h(0)

∣∣∣h(r−1) − Er−1

E0
h(0)

〉

r
. (62)

Thus one of the above modes is a ghost, implying that the untruncated linear theory
is not unitary.

It is possible, however, to truncate some of the log modes such that the resulting
submatrix of (61) is semi-positive definite. After we have developed some of the
necessary machinery in the next section, we will demonstrate this in Sect. 6.
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5 Conserved charges

We now turn to the construction of conserved charges in these models following the
method of Abbott–Deser for asymptotically AdS spaces [35–37]. It will turn out that
one can define an extended hierarchy of charges that makes reference to the hierarchy
of graviton modes defined above.

5.1 Abbott–Deser charge

The method of [35–37] was applied to polycritical theories in [12] and makes use of
the split of the metric into background and perturbation gμν = ḡμν + hμν , where hμν
does not need to be small. In the formalism, one splits the equations of motion for
hμν into linear terms and non-linear terms. The non-linear terms are then interpreted
as an effective energy-momentum tensor Tμν that, by the equations of motion, can be
equivalently expressed linearly in hμν on-shell. Tμν is then conserved by the linearised
equations of motion.

From Tμν one can define a conserved current by

Jμ = Tμνξ̄ ν (63)

in terms of a time-like Killing vector ξ̄ ν . Writing this current in terms of a divergence
is possible by virtue of ∇̄μ Jμ = 0 and leads to

Jμ = ∇̄νFμν, (64)

where Fμν = F [μν]. In our specific case we have [12]

Fμν = Fξ̄ Sr−1hμν (65)

where

Fξ̄hμν = ξ̄ ρ∇̄[μhν]ρ + ξ̄[μ∇̄ν]h − ξ̄[μ∇̄ρhν]ρ + hρ [mu∇̄ν]ξ̄ρ + 1

2
h∇̄μξ̄ν. (66)

Fξ̄ is an operation that creates an antisymmetric tensor out of a symmetric one. It is
constructed in such a way that its derivative relates to the Einstein operator by

∇̄νFξ̄ Aμν = ξ̄ νG Aμν, (67)

when acting on any symmetric tensor Aμν . This ensures that

∇̄νFμν = ξ̄ νGSr−1hμν, (68)
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which vanishes by the linearized equations of motion (39). The conserved Abbott-
Deser (AD) charge is then given (up to normalization) by the integral at infinity via

Q =
∫

S∞

F0i d Si . (69)

5.2 Hierarchy of charges

We can define a more refined object by considering the following generalization
of (65)

F (I )
μν := Fξ̄ SI−1hμν for I = 1, . . . , r. (70)

A generalized current can be defined as the divergence of this antisymmetric tensor
via

J (I )μ := ∇̄νF (I )
μν = ξ̄ νGS I−1hμν. (71)

For I = r this gives the conserved Abbott–Deser current (64): Jμ(r) ≡ Jμ. For I < r ,
the divergence of this current does not vanish in general and hence the current is not
conserved on the full space of solutions of the linearized theory. But we see from
the definition of Jμ(I ) that it is proportional to the equations of motion for a lower log
graviton mode. Explicitly, for a transverse traceless mode

J (I )μ = ξ̄ νG I hμν, (72)

since the Einstein and Schouten operators then coincide. Hence, by virtue of the
definition of the various graviton modes in (40), we find that Jμ(I ) = 0 when evaluated

for modes h(K )μν with K < I . So, if one restricts to the part of the space of solutions

spanned by modes h(K )μν with K < I , the current Jμ(I ) is conserved and can be used to

define a conserved charge Q(I ) on that subspace. Hence, the AD charge Q of (69) is
equal to Q(r).

Whether a given ‘charge’ Q(I ) vanishes or not can be calculated explicitly for the
various modes h(I )μν . We find the distribution of charges displayed in Table 1. In that
table we use “n.d.” to indicate when a certain charge is not well-defined for a given
mode. It is easy to see that the only mode that has a non-vanishing charge Q(I−1) is
the mode h(I ), all others have vanishing charge (if it is defined). This means that the
only mode that has non-vanishing AD charge Q(r) is the highest log-mode h(r−1)

μν .
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6 Unitary subsectors

In this section, we discuss possible unitary truncations of the polycritical theory at the
linearized level. As anticipated in [21] we will find a difference between odd and even
rank.

6.1 Truncation by superselection

Looking at Table 1 one sees that one can consistently truncate to superselection sectors
by demanding that certain charges vanish.

Starting with the AD-charge Q(r) = 0 we truncate out the mode h(r−1) ∼ logr−1.
In the linearized approximation this truncated sector is dynamically closed. Further-
more, the ‘charge’ Q(r−1) becomes a perfectly well-defined conserved charge in this
truncated model. We can repeat the superselection now to further truncate consistently
to Q(r−1) = 0.

One would like to continue the truncation until one obtains a standard positive semi-
definite inner product matrix from (61). Every new step in the truncation corresponds
to removing the last row and column of the inner product matrix. For even rank this
leads to removing all the modes h(r/2), . . . , h(r−1); the resulting inner product matrix
is identically zero and the theory has become trivial. This was already observed in the
rank r = 2 case (four derivatives) in [7,9].

For odd rank, a truncation to a theory with positive semi-definite two-point functions

can be achieved by restricting to the sector Q(r) = · · · = Q( r+1
2 +1) = 0. In this case

the inner product matrix becomes almost identically zero except for one standard
correlator in the lower right-hand corner. This is the structure of a theory with many
null states that need to be quotiented out. The resulting theory then is that of a single

mode h(
r−1

2 ) (defined up to the definition of lower log-modes). This mode has the
standard correlator and positive energy. It appears to be the same model as standard
Einstein gravity in the linearized approximation.

Table 1 Charges of the various modes, normalized conveniently

Charge/mode h(r−1) h(r−2) h(r−3) · · · h(2) h(1) h(0)

Q(r) 1 0 0 · · · 0 0 0

Q(r−1) n.d. 1 0 · · · 0 0 0

Q(r−2) n.d. n.d. 1 · · · 0 0 0

.

.

.
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.

Q(3) n.d. n.d. n.d. · · · 1 0 0

Q(2) n.d. n.d. n.d. · · · n.d. 1 0

Q(1) n.d. n.d. n.d. · · · n.d. n.d. 1

Only the top-most charge Q(r) is conserved in the full theory, but when the most logarithmic modes are
truncated by deleting columns from the left, lower charges also become well-defined. We have used the
abbreviation “n.d.” to indicate when a certain charge is not well-defined for a given mode
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For low rank, the truncated models (before removing unphysical null states) have
the following inner product matrices:

r = 2 :
(

0 E0
E0 E1

)
−→ (

0
)

r = 3 :
⎛

⎝
0 0 E0
0 E0 E1
E0 E1 E2

⎞

⎠ −→
(

0 0
0 E0

)

r = 4 :

⎛

⎜⎜
⎝

0 0 0 E0
0 0 E0 E1
0 E0 E1 E2

E0 E1 E2 E3

⎞

⎟⎟
⎠ −→

(
0 0
0 0

)
(73)

Factoring out the null states (that decouple) one is then left with a standard CFT for odd
rank, identical to that of Einstein–Hilbert gravity, but this time for the log(r−1)/2-mode.
For even rank, the theory trivializes completely.

6.2 Truncation by boundary condition

In this subsection we discuss fall-offs of various modes, and truncation to a unitary
subsector from the point of view of boundary conditions at spatial infinity. For con-
creteness we work with explicit coordinates and we write expression only in four
dimensions. We expect our considerations to apply more generally. Let us introduce
global coordinates in AdS4 in which the metric of AdS4 takes the form

ds2 = �2
(
− cosh2 ρdτ 2 + dρ2 + sinh2 ρ(dθ2 + sin2 θdφ2)

)
. (74)

In these coordinates explicit expressions for the various components of the massless
spin-2 highest weight mode are [32]

ψττ = −ψτφ = ψφφ = exp(−3iτ + 2iφ) sin2 θ(cosh ρ)−3 sinh2 ρ, (75a)

ψτρ = −ψρφ = i(sinh ρ)−1(cosh ρ)−1ψττ , (75b)

ψτθ = −ψθφ = i cot θψττ , (75c)

ψρρ = −(sinh ρ)−2(cosh ρ)−2ψττ (75d)

ψρθ = − cot θ(sinh ρ)−1(cosh ρ)−1ψττ , (75e)

ψθθ = − cot2 θψττ . (75f)

Physical excitations correspond to real or imaginary part of these modes. Let us now
introduce another set of global coordinates r and t as

r = � sinh ρ, t = �τ. (76)
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In these coordinates the AdS metric takes the form

ds2 = −
(

1 + r2

�2

)
dt2 +

(
1 + r2

�2

)−1

dr2 + r2(dθ2 + sin2 θdφ2). (77)

The boundary of AdS space lies at r → ∞, or equivalently, ρ → ∞. In these
new coordinates it is fairly easy to check that the mode (75) satisfies the Henneaux–
Teitelboim boundary conditions [38]. In particular, we have

ψt t ∼ ψtθ ∼ ψtφ ∼ ψθθ ∼ ψθφ ∼ ψφφ ∼ O
(

1

r

)
, (78a)

ψr t ∼ ψrθ ∼ ψrφ ∼ O
(

1

r4

)
, (78b)

ψrr ∼ O
(

1

r7

)
. (78c)

In fact, except for the rr component these fall-offs saturate the Henneaux–Teitelboim
boundary conditions. This is expected: since we are working in the transverse traceless
gauge we do not expect to reproduce all fall offs of [38], but we do expect that the fall-
offs to be strong enough for the linearized mode (75) to be contained in the phase space
defined by those boundary conditions. We schematically denote a mode saturating the
Henneaux–Teitelboim boundary conditions as ψHT.

The index I log mode h(I )μν behaves asymptotically as

h(I )t t ∼ h(I )tθ ∼ h(I )tφ ∼ h(I )θθ ∼ h(I )θφ ∼ h(I )φφ ∼ O
(

logI r

r

)
, (79a)

h(I )r t ∼ h(I )rθ ∼ h(I )rφ ∼ O
(

logI r

r4

)
, (79b)

h(I )rr ∼ O
(

logI r

r7

)
. (79c)

This is simply because the function f behaves asymptotically as f ∼ − log r . Thus,
if for a rank r polycritical theory one imposes boundary conditions such that,

h ∼ logr−2 rψHT, (80)

then one clearly truncates away the highest logarithmic mode, that is, logr−1 rψ . One
can also choose to impose a stronger boundary condition to truncate way more loga-
rithmic modes. In this way one can continue truncating away higher index logarithmic
modes until one arrives at the boundary conditions where one obtains a standard pos-
itive semi-definite inner product matrix (61). This happens for a rank r theory when
one removes the highest � r

2� log modes. This can be done by imposing boundary
conditions

h ∼ log� r
2 �−1 rψHT. (81)
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At this stage it becomes quite clear that the discussion about the choice of boundary
conditions exactly parallels the discussion of the previous subsection based on the
superselection sector.

Note that in comparison to the corresponding three-dimensional discussion [26],
our four-dimensional discussion of boundary conditions is rather schematic. In three-
dimensions there are other independent studies checking the consistency of log—
[23,39,40] and log2—[41] boundary conditions. Similar studies do not yet exist for
the four- and higher-dimensional settings.

7 Discussion and conclusions

In this paper we have analyzed the structure of polycritical gravity of rank r in d space–
time dimensions at the linear level. We found that the r different graviton modes on
an AdS background satisfy a hierarchical structure h(I ) ∼ logI r in terms of the AdS
radius r . Their inner products can be calculated by using quasilocal energies and the
inner product matrix was found to exhibit a specific triangular structure as expected
from a putative dual logarithmic CFT description. In particular, the inner product
matrix is indefinite, reflecting the non-unitary structure of the theory.

Following the method of Abbott and Deser one can define a conserved charge in
these models and only the highest logarithmic mode h(r−1) carries a non-vanishing
charge. Restricting to a superselection sector where this charge vanishes—or equiva-
lently modes that have faster fall-off near the boundary—one can truncate the model.
As we showed, this process can be iterated until one ends up in a truncated model with
positive semi-definite inner product matrix. After modding out the null states one is
then left with a unitary model of a single graviton mode in the odd rank case. For even
rank, the truncated model trivializes completely. In either case, the truncated model is
unitary at the linear level.

The correlator of the single remaining mode in the odd rank case is non-trivial and
identical to that of the Einstein mode in usual two-derivative general relativity theory.
This raises the question whether our truncated model is nothing but a reformulation
of standard general relativity, albeit a rather complicated one. Since one has to impose
appropriate boundary conditions on the graviton modes to implement the truncation,
this idea is reminiscent of the proposal of [42] to obtain Einstein gravity from a confor-
mal higher-derivative gravity theory with appropriate boundary conditions. However,
since our truncation will probably not remain unitary and consistent when embedded
in a non-linear theory [28], it appears to be impossible that our model is equivalent
with general relativity.

Acknowledgments We would like to thank E. A. Bergshoeff, G. Compère, S. Fredenhagen, S. de Haan,
M. Köhn and I. Melnikov for useful discussions.

Appendix A: Master action and the other inner product

In this appendix we relate our inner product to the symplectic inner product derived
from a two-derivative action. To this end we first observe that the equations of motion
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(38) can also be obtained from an auxiliary field action, which we call the ‘master
action.’ It only contains two derivatives but it has r − 1 auxiliary fields k(I )μν . It takes
the form

Lmaster = −1

2
AI J k(I )μνGk(J )μν + 1

2
BI J

(
k(I )μνk(J )μν − k(I )k(J )

)
, (82)

with I, J = 0, . . . , r − 1 and the symmetric matrices A and B are given by

AI J = δI+J,r−1, (83)

BI J = δI+J,r−2. (84)

The equations of motion for the field k(r−1−I )
μν read

Gk(I )μν = k(I−1)
μν − ḡμνk(I−1), (85)

from which we have, after taking the trace,

k(I−1)
μν = Gk(I )μν − 1

d − 1
ḡμνGk(I )

= Sk(I )μν . (86)

The complete set of equations of motion become

Gk(0)μν = 0, (87a)

k(0)μν = Sk(1)μν , (87b)

k(1)μν = Sk(2)μν , (87c)

...

k(r−2)
μν = Sk(r−1)

μν . (87d)

Upon eliminating the r − 1 auxiliary fields k(I �=r−1)
μν , and calling k(r−1)

μν to be hμν , we
recover the original equations of motion (38). For the rest of the discussion we take
the k(I )s to be transverse and traceless, which follows from the equations of motion.
This allows us to freely replace Schouten operators on k(I ) with Einstein operators.

For the two derivative master action (82) the symplectic inner product can be simply
computed following the formalism reviewed in [11]. Up to an over-all normalization,
the symplectic inner product for a rank r theory takes the form

〈ψ ||φ〉r =
∫

Σ

dd−1x
√−ḡḡ00

⎛

⎝
r−1∑

I,J=0

AI J (ψ
(I )
μν )

∗(∇̄0φ
(J ))μν

⎞

⎠ , (88)

where ψ(I ) and φ(I ) are the auxiliary field configurations associated with the con-
figurations ψ and φ, respectively. The integration is done over a constant τ Cauchy
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surface � and the index 0 denotes the time components of the various tensors in the
coordinates (43). Furthermore, to distinguish this inner product from that of Sect. 4 we
use the double line notation 〈ψ ||φ〉r . The subscript r denotes the rank of the theory.
From expression (88) and from the form of the matrix AI J it follows that

〈ψ ||φ〉r =
∫

�

dd−1x
√−ḡḡ00

(
r−1∑

I=0

(ψ(I )μν )
∗(∇̄0φ

(r−1−I ))μν

)

=
∫

�

dd−1x
√−ḡḡ00

(
r−1∑

I=0

(Gr−1+Iψ(r−1)
μν )∗(∇̄0G Iφ(r−1))μν

)

=
r−1∑

I=0

〈Gr−1+Iψ ||G Iφ〉1

=
r∑

j=1

〈Gr− jψ ||G j−1φ〉1, (89)

where in going from the first to the second line we have used (87), in going from
the second to the third line we have used the notation 〈ψ ||φ〉1 which denotes the
(appropriately normalized) symplectic inner product for the rank one theory, and finally
in going from the third to the fourth line we have renamed the dummy variable I to
j = I + 1. From this last equality and Eq. (57) we immediately see that the two inner
products give rise to the identical matrix structure over log modes.
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