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Non-existence of stationary two-black-hole configuratioa

Gernot Neugebauer - Jorg Hennig

Abstract We resume former discussions of the question, whether timespin repulsion
and the gravitational attraction of two aligned black halas balance each other. To answer
the question we formulate a boundary value problem for twaasse (Killing-) horizons
and apply the inverse (scattering) method to solve it. Mgkise of results of Manko, Ruiz
and Sanabria-Gobmez and a novel black hole criterion, weeptioe non-existence of the
equilibrium situation in question.
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1 Introduction

This paper is meant to contribute to the present discusdiontathe existence or non-
existence of stationary equilibrium configurations catirsggof separate bodies at rest. Her-
mann Weyl, whom Jirgen Ehlers admired especially, was thefderson to consider the
problem of two separate static (axisymmetric) bodies inlégiwm [27]. To mention only
one modern advancement in this field we refer to a paper by @widschoeri [5], who were
able to prove a non-existence theorem for a reflectionaliyrsgtricstatic nbody configu-
ration.

Our intention is to involve the interaction of the angularmemta of rotating bod-
ies (“spin-spin interaction”) which could generate repugdseffects compensating the om-
nipresent mass attraction. A characteristic example foln sustationary configuration could
be the equilibrium between two aligned rotating black hols will present and review a
chain of old and new arguments which finally forbid the edpilim situation.
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Our argumentation is based on a boundary value problem forseparate (Killing-)
horizons (see Fid.]1) and the characterizatiorswaif-extremablack holes by Booth and
Fairhurst|[6] and makes explicit use of the solution of thatde-Kerr equilibrium problem
by Manko and Ruiz [19].

The so-called double-Kerr (more precicely: double-KetdIN solution, first derived in
[21/15], is a seven parameter solution constructed by afthdoBacklund transformation
of Minkowski space. Since a single Backlund transformatienerates the Kerr-NUT so-
lution that contains, by a special choice of its three patarsethe stationary black hole
solution (Kerr solutions) and since Backlund transfoliora act as a “nonlinear” superpo-
sition principle, the double-Kerr-NUT solution was coresield to be a good candidate for
the solution of the two horizon problem and extensively aised in the literature [15,14,
26/1228,13.8,16,18,17.119]. However, there was no argtireguiring that this particular
solution be theonly candidate. In this paper we will remove this objection andwsthat
the discussion of a boundary value problem for two sepamtedns necessarily leads to
the double-Kerr-NUT solution. Thus we can make use of thdibgum conditions derived
in the context of this solution which ensure that the interva*, 27°, o7~ (see Fig[l)
are regular parts of the axis of symmetry. After a too retiecansatz in[[15], Kihara and
Tomimatsu([14, 26] derived and discussed a complete setuwlitegum conditions on the
axis. Reformulations and numerical studies by Hoense[@8ksnade plausible that the two
gravitational sources (black hole candidates) of the de#tarr-NUT solution (located at
the intervalsp = 0, K1 > ¢ > Ky andK3 > ¢ > K4) cannot be in equilibrium if their Ko-
mar masses are positive. The first decisive step toward grevéioenselaers conjecture
was taken by Manko, Ruiz and Sanabria-Gonez [18], who ddran explicit and easily
applicable form of the equilibrium conditions and, as anam@nt complement, analytical
formulae for the Komar masses and angular momenta of thétafienal sources. Manko
and Ruiz[[19] completed the non-existence proof by showiagthe equilibrium conditions
for the double-Kerr-NUT solution are indeed violated fosjiive Komar masses. This is a
critical point of their analysis. To the best of our knowledhere is no argument in favour
of the positiveness of the Komar mass. (On the contrary, dgnaond Petroff[[1] have given
a convincing counterexample.)

In this paper we replace the Komar mass inequality (positief the Komar mass of
each black hole) by an inequality connecting angular moomeraénd horizon area9]. This
relation is based on the causal structure of trapped swrfiacthe interior vicinity of the
event horizon[[5]. In this way we can complete the no-go teegravoiding more laborious
investigations of the domain outside the horizons and @fakis of symmetry (e.g., the
search for singular rings or other singularities — in $e2Me will return to that question).

2 The boundary value problem
2.1 The boundary conditions

The exterior vacuum gravitational field of axisymmetric atationary gravitational sources
can be described in cylindrical Weyl-Lewis-Papapetrourdimates by the line element

ds? = e [eX(do? + d¢?) + o%dy?] — € (dt +ady)?, ()

where the “Newtonian” gravitational potentldl the “gravitomagnetic” potentia and the
“superpotential’k are functions op and¢ alone. Fig[dl shows the boundaries of the vacuum
region:«7t, o7, o7~ are the regular parts of the axis of symmet#; and.»% are Killing



Ki

Ko -

K

Fig. 1 lllustration of the situation in Weyl coordinates. The emeorizons.# and.”# of the two black holes
are located in the interval&z, K] and[Ks,Ks] on the¢-axis, respectively. The remaining part of thexis
corresponds to the rotation axis. In particular, we dendtie w'*, =7°, and.<7~ the upper, middle and lower
parts of the axis.

horizons and# stands for spatial infinity. Regularity of the metric along", «/°, o/~
means elementary flatness and uniqueness on the axis of sggnme

dT, 7% a=0, k=0. 2)
The spacetime has to be flat at large distances from the Insrizo
¢:. U—0, a—0, k—0 3)

i.e. the line elemen{{1) takes a Minkowskian form in cylicdt space 4, ¢, »)- time (t)
coordinates.

The metric [(1) allows an Abelian group of motio@ with the generators (Killing
vectors)

¢ =4, ¢£&<0 (stationarity) 4)
n'=0d,, n'n>0 (axisymmetry) (5)

where the Kronecker symbot ands', indicate that' has only &-component whereag
points in the azimuthab-direction along closed circles. Obviously,

& =—dg, a=-end (6)

is a coordinate-free representation of the two relativigtiavitational potential§) anda
with the boundary value§1(2L1(3).

In stationary and axisymmetric spacetimes, the event twiaf a black hole is a Killing
horizon which can be defined by a linear combinatioof £ ands,

L=¢4+07, (7)
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where(? is a constant. A connected component of the set of pointseffth= —(L,L) =0,
which is a null hypersurfacéde?’' ,de?') = 0, is called a Killing horizons# (L),

#L): ¥ =—(LL=0  (d&V,déV)=0. (8)

Since the Lie derivativez] of €V vanishes, we havit,de?) = 0. HenceL and &€ being
null vectors ons#(L) are proportional to each other,

A(L): de = —2L. 9)
Using the field equations one can show thatdhgace gravitys is a constant oo#’(L). In
Weyl-Lewis-Papapetrou coordinates the event horizon megées to a “straight line” and
covers &-interval atp = 0 [7]. To formulate boundary conditions on the horizot#s and
5 (see Fig[l) we make use 6f (6) andl (7) to expré¥sreterms of €”, aandy,

A =V [(1+ 2187 - 0% V] =0, 0=0, Ki>(>Kp,  (10)
. 2= [(1+ 20)° — 250%™V ] =0, 0=0, Kg>(>Ks (11

21, £2, are the constant angular velocities of the horizéfis 7%, respectively.

2.2 The field equations

The vacuum Einstein equations for the metric potentiglg, k are equivalent to the Ernst
equation

(OF)(fo0+ foc+ % o) =13+12 (12)
for the complex function
f0.0) =€V +ib(e.0), (13)
whereb replaces via
a,=0e Vb, a,=-0eh, (14)

andk can be calculated from

1
ko = o|UZ—U%+Ze (1, —1%)]. (15)

ke =20[UU¢+ %e"‘“ b,bc]. (16)

As a consequence of the Ernst equation (12), the integrabitinditionsa ,c = a¢,
andk ,c = k¢, are satisfied such that the metric potentalsndk may be calculated via
line integration from the Ernst potentiél Thus the boundary value problem for the vacuum
Einstein equations reduces to a bounary value problem foEtinst equation. However,
we have to cope with non-local boundary conditions for thesEpotential, seé¢ [2),_(114),
(@9), (18). Fortunately, these boundary conditions ard-agdpted to the “inverse method”,
which will be applied to solve the boundary value problem.



2.3 The inverse method

The inverse (scattering) method first applied to solveahitdlue problems of special classes
of non-linear partial differential equations in many areas of physicsr{éeeg-de Vries
equation in hydrodynamics, non-linear Schrodinger dqoan non-linear optics etc.) is
based on the existence of a linear problem (LP) whose irttéiyacondition is equivalent
to the non-linear differential equation. Luckily, the Ereguation has a linear problem too,
so one can tackle boundary value problems for rotating tbjecluding black holes. We

use the LP[[20,22]
BO 0B
e [(32)1(23))o

o [(52)3 (D)

where®(z,z 1) is a 2x 2 matrix depending on the spectral parameter

K_iz
A= VKT (18)

as well as on the complex coordinates o +i¢, Z= ¢ —i¢, whereas

fz fz
El B: 3
f4f’ f+f

(19)

and the complex conjugate quantitiasB are functions of, Z (or o, ¢) alone and do not
depend orK. From the integrability conditio® 7= & 7> and the relations

Az= 4%()\2—1), Az= ﬁ()\z—l) (20)
it follows that theA -independent coefficients of a matrix polynomialArhave to vanish.
The result is the Ernst equatidn {12). Vice versa, the makrixalculated from[(17) does
not depend on the path of integrationfifis a solution to the Ernst equation. The idea of
the inverse (scattering) method is to constréctior fixed but arbitrary values o, z, as
a holomorphic function ofA and to calculatef (o,¢) from &. To obtain the dependence
on A for the two-horizon problem we have to integrate the lingatesm [17) along the
dashed lineZ = o/~ U 5 U &/°U 24 U o/ U making use of the boundary conditions
@), @), [10), [11). As was shown in_[23] and [24] (see Eq#t)(344), (45), (57)) the
result of the integration is a matrix representation of tkis s&alues of the Ernst potential
f(¢)=f(o=0,¢) = +ib(¢) on &/ in terms of the parametet§ (i = 1,...,4),
fi = f (0= 0,¢ = K;) and the angular velocitie®; = 2V = 2@, 2, = 2 = P*):

4 Fn
JVznljl <1+72i9<”)(<—Kn))’ (21)

W;:ezu<<><_ L _ib(f) ) (22)
ib(¢) f(OF(C)

fo —1
Fn ::(—1)“<f2 i ) (23)

where

and



Obviously, the sum of the off-diagonal elements@fhas to vanish,#1,+ .45, = 0, whence

Gt e

Since this equation holds identically §n one obtains four constraints amofyg, 22; K3 —
Ka, Ko — K3, K1 —Ky; f1,... fs. Particularly, the 1¢-term yields

o 212

2 o ff*f‘%.

(25)

Hence the three remaining constraints enable us to expnesthtee similarity variables
Ql(Kg — K4), Ql(Kl — Kz), Q]_(Kz — Kg), or, aIternativer,Qz(Kg — K4), Qz(Kl — Kz),
22(K2—K3s), in terms of the four values of the Ernst potentigl. .., f4. It turns out that the
constancy of the surface gravity gives rise to one furthestraint. Since the axis values
f(¢) determine the solution of the Ernst equation uniquely, oag expect a three (real)
parameter solution of the two horizon problem.

2.4 The double-Kerr-NUT solution

According to [21), the axis potentidl™ (¢) is a quotient of two polynomials ig. To de-
termine the degree of the polynomials we compare the poljalostructure of the matrix

elements[(22),

2070 _ ([C=K)(C—Ka)(¢—Ks) (¢~ Ka) 6
pa(¢) ’
Y o 1(9)
PHO=100 @)
_ m4(C)
TOMO=nw 8)

wherepy, w4 are real normalized polynomials of the fourth degree (thetfoorder coeffi-
cientis equal to one) and the real polynonpal¢) is of second order due o (P5). Replacing
f+ and f+ in the third equation by the combinatidn = e " +ib* and its complex con-
jugate from the first and the second equation, we get the tondi

[(C = K1) (€ —K2) (¢ —Ka)(¢ —Ka) +ip2] [(¢ — K1) (¢ —K2) (¢ —Kz) (¢ — Ka) —ip2]
= 7m4(¢)Pa(Q)- (29)
Identifying the zeros of both sides, we see that each braxtkae left hand side has to have

two zeros ofr4 as well as ofps (note that the brackets must be complex conjugate to each
other). Thereforef *(¢) has to be the quotient of two polynomials of second degree,

MGEEC (30)

where the numerator polynomial and the denominator polyalonave the structure
M(¢) =¢34+ b¢ +a,

(31)
da(¢) = ¢ +e¢ +d,



anda, b, d, e are complex constants.

Anticipating the continuation of *(¢) off the axis of symmetry into the-¢ plane
(see Fig[) we replace these constants by the appropriegenpgersdy(K;)/d»(K;) and
n2(Ki)/m2(Ki),

K24k +d

B _ KZ+bKi+a _
~ KZ+eK+d’

Kok ra  eTh GG=1  (32)

Qj

Bi

Equation[[26) implies?' (K) = 0 and therefore
f+(Ki):7f+(Ki)a i:la'“747 (33)

whence
Bi = —ai. (34)
In a next step we solve the linear algebraic system
ek +d—eaiKi —daj =K% (s — 1), i=1,...,4, (35)
to obtaine, d and finallyd,(¢) in terms ofqj, Ki (i = 1,...,4). Because of(34),(¢) can

simply be read off frondy(¢) by replacinga; by —a; (i =1,...,4). Thus we arrive at the
determinant representation

1 K2 K2 K2 K2

1 aaKi(¢—Ki) aaKa(¢—Kz) a3Ks(¢—Kz) asaKa(¢—Ka)

0 K1 Ko Kz K4

0 a1Ki(¢—Ki1) a2Ko(¢—K2) aszKz(¢—K3z) asKa(¢—Ka)

0= 1 3 3 2 (@)

1 a1Ki(¢ — K1) az2Ka(¢—Kz) asKs(¢—Ks) aaKa(¢—Ky)

0 K1 K2 K3 Ka

0 a1Ki(¢—Ki1) aoKa(¢—Kz) a3Kz(¢(—Ksz) asKa(¢—Ka)

0 1 1 1 1

for the Ernst potentiaf (¢) on the axisaZ*.

We will now constructf (g, ¢). It can be shown that the axis values@ft determine the
Ernst potentialf (o, ¢) everywhere in the-¢ plane. Hence, if we find a continuatidrio, ¢)
of f*(¢) for all o > 0 and can prove that it satisfies the Ernst equalioh (12) we hehieved
our goal. Introducing the “distances”from the pointso = 0, ¢ =K by

M= (C_Ki)Z_’_QZZO’ i=1,....4, (37)

with the property
g r=¢—Ki, i=1...,4 (38)



and replacing the expressiots-K; (i = 1,...,4) in (38) byr; we arrive at

K2 K KE KE
a1Kirs  aKory  azKaras  asKara
K1 Kz Ks Ka
a1Kirs  azKory  azKaras  asKara
1 1 1 1
KE K& K§ K]
-1 oaKirr aoKora azKarz asKarg
0 K Ko Ks Ka
0 aiKiry a2Kory a3Kars asKarg
0 1 1 1 1

f(o,¢) = (39)

IO O O F

A straightforward calculation shows thét as defined in[(39), is indeed a solution of the
Ernst equatior[(]]ﬁ) As we have already mentioned, the remaining gravitatipp&ntials

k, a (e = Of!) can be calculated fronfi via line integrals. This solution of the vacuum
Einstein equations represented by the Ernst poteffial¢) is known as the double-Kerr-
NUT solution. It depends on seven real parameters: fouragpiments ofy, ajoj = 1
(i=1,...,4) plus three differencek; — Ky, K3 — K4 (“length” of “horizons”), K, — K3
(“distance” between the “horizons”). (Note that the confajion as sketched in Figl 1 can be
translated along th¢-axis.) Hencethe solution of the two-horizon problem is a (particular)
double-Kerr-NUT solution.

2.5 The equilibrium conditions

The double-Kerr-NUT solution in the fornh (B9) was preseraed discussed in [15] as a
particular N = 2) case of theN-soliton solution[[21, 22] of the Ernst equation generated b
the application olN Backlund transformations to an arbitrary seed solutiopplging the
boundary conditiong{2) t6 (89), Tomimatsu and Kihara d=tig complete set of algebraic
equilibrium conditions on the axis of symmetry between thmmetersy, K; (i=1,...,4).
Particular solutions of the algebraic system involving euical results were discussed by
Hoenselaerd [13], who came to conjecture that equilibriwtwben two aligned rotating
black holes with positive Komar masses is impossible. Thigerture was supported by a
rigorous non-existence theorem for tidenticalblack holes by Hoenselaers and Di¢tz|[12,
8] and Krenzerl[17].

The final explicit solution of the Tomimatsu-Kihara equilibm conditions was found
by Manko, Ruiz and Sanabria-Gomez|[18]. Following theéadwe start with the condition
k=0on«?*, &F,

%, 7% k=0 (40)

and apply it tok calculated fromf, see e.g/[[16]. The only condition is

arop +azag = 0. (41)

1 The procedure may seem rather tricky. In fact it reflectssstefthe inverse scattering method whose
explanation is outside the scope of this paper.



Combining this result with the two conditions derived fram= 0 on o7+, «7° (a again
calculated fromf) we obtain

(1-a4)®  (1-ag)? _ KiaKaq
ay az T KisKas’ (42)
(1+ 012)2 ;L (l+a1)2 s . KogKog
v = ) T Y w0
az a1 K13Ka4
where
Kij == Kj = Kj, ij=1,...,4. (43)
Introducing the relative horizon “length”
K12 K34
l1=—= lp=— 44
1= s 2= (44)
we may express, 7/ by the scaled quantitidg, |, alone,
(L+12)(X+11+12) , 1+15
= , = ) 45
7 I+1y T @)A1+ 1) (49)
Setting
a3l = —aia = a? (aa=1) (46)

to satisfy [41) one obtains the (i = 1,...,4) from (42) in terms of the three real parameters
v, +' (or, alternatively]s, Io) and argy = ¢ (o = €%) [18]

B Wal+ica B a2 +iwea
a= W —ica ’ 2= 1-iwea
) ) (47)
_ Wat -« ot —Wa
4= W—a s = 1—wa'’
where
wWi=|V/~1€(0,1, wi=|/7le[l®), =41 (48)

Herely, |, are arbitrary positive constants ands a periodic function of, o = €.

With the aid of the relation$ (47) Manko and Ruiz[[19] wereedtol calculate the Komar
massedM1, Mz belonging to the horizons#, 77, respectively, and show that positive
Komar masses are incompatible with the equilibrium coodgi

A concise reformulation of the double-Kerr-NUT solutio@j3vas derived by Yamazaki
(28],

' Ri2—1Rys— 1‘
flo.0)= T
' 1o+1Ris+1

aili —ajrj

’ R!] = K” ’ (49)

Roz+1Ras+1

whereby theni, (i = 1,...,4) have to be taken froni_(47). Obviously, one can introduce
dimensionless coordinates¢ via

(—Kig
K23

. 0 ~
o= —-—, =
K23 ¢

(50)

and see directly that the Ernst potential, as a functionarid, depends only on the three
parametersy, |2, ¢. We will make use of the formulatiof_(#9) in the subsequentises.
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3 Thermodynamics of the two-horizon solution
3.1 Thermodynamic quantities

The best way to get a systematic survey of the relevant phlysézameters (state variables)
of a two-black-hole system and relations among them is trrés the framework of black
hole thermodynamics. This theory tells us that the totalshasf the system is a thermo-
dynamic potential expressed in terms of the independenhsixte quantities: horizon areas
A1, A2 and angular momentd, J, of the two black holes. As a consequence of the Gibbs
formula (see Eq.{80) below), the intensive state variablegular velocities?;, £2» and
surface gravities:1, k2 are functions of the independent quantities too. Furthezmibe
individual Komar massebl;, M, could play a role. It turns out that all quantities can be
calculated from the Ernst potential and its derivativedipoints of intersection of horizon
and symmetry axisf=0,¢ =K;,i =1,...,4).

By integrating parts of the Einstein equations over the twdzons.77, .7 we obtain
the following relations,

k1AL = 2r (K1 — K2), k2Po = 2m (K3 — Ka), (51)
i i
MMy = 71( f1—f2), Mz = 71( f3—fa), (52)
M 1 M 1
9131271—1(K1—K2), ) = 72_Z(K3_K4)’ (53)

where fi = f(o = 0,¢ = K;j). Starting with the properties of the Killing vectar= ¢ + 027
on the horizons# one can show (see Séc.12.1) that

. 1 . 1
K1+1821 = Eka:Kl, Ko +i82p = §f1%|<:|(3, (54)

wheref* and f0 are the axis potentials aw™ and.<7?, respectively. A direct consequence
of (&1) and[[(5B) are the Smarr formulae][25]

M =200 + A, i=12 (55)
A7
In order to calculate the ADM mad4, one can make use of the asymptotic behaviour
2M
lefT for r— oo, (56)

wherer? = o+ ¢?. Evaluation one* leads to
M = %2@00(1— £4)c. (57)

Interestingly, the explicit calculation shows that
M = M1+ My (58)
holds, i.e. possibly present space-time singularitiee &ec[5.2) do not contribute to the
ADM massM. As a consequence, we obtain the Smarr formula
2
_ 3 A
M = i; (29.3. n 47TA“> (59)

for the total mas#.
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3.2 Gibbs formula

A regular axisymmetric and stationary vacuum spacetimb hildack holes obeys the Gibbs
formula (“first law of black hole thermodynamics”)

M=y (Qi(SJi n g—;(SAO , (60)

see [4]. Hence, the total ADM mad$8 of the spacetime, as a function of the extensive
quantities); andA;,
M =M(J,A), (61)

is a thermodynamic potential and infinitesimal mass chanfygdetween neighbouring
solutions are given by (60).

There could be spacetime singularities outside the evairdio(see Se¢. 5.2). Hence
it is not cleara priori whether the Gibbs formul&a_(50) also holds for the doublert#yT
solution. Therefore one has to test the validity[ofl (60) fritve outset. For that purpose, we
use the formulae from the previous subsection and the Eotshpal [28] (or, alternatively,
(39)) to obtain expressions fd, Ji, Jo, 21, 22, k1, k2, Ar and A,. Obviously, all these
guantities can be written in terms of the four parameters

(P]_,...,P4) = (KggE Kz— K3,W,V\/,Oz). (62)

As an example, the total mass has the explicit form

- _K27K3 ﬂ |\7|
M= 2 <l+ w’) M + £ Sing cosg (63)
with 1 . .
Jo—14 & = Vsine— = =
M:=1+ 3 <V\/+ w’) sing > <w+ W) COSp. (64)

Eq. (60) is equivalent to the four equations

oM 0\]1 0\]2 K1 0A1 K2 0A2
RS Fiih S ) St He il H i

oR  'om ""?9R "8 om & om’
A straightforward calculation shows that (65) is indeeds$iad. Therefore, we may con-
clude that the singularitiedo notcontribute toSM and the first law of thermodynamids {60)
holds.

i=1...4 (65)

4 The sub-extremality of black holes

Following Booth and Fairhurst[6], we will assume that a pbglly reasonable non-degener-
até black hole should bsub-extremali.e. characterized through the existence of trapped
surfaces (surfaces with a negative expansion of outgoilgeadesics) in every sufficiently
small interior neighbourhood of the event horizon. It cashewn [9] that any such axisym-
metric and stationary sub-extremal black hole satisfiesimmjalité

8r|J| < A, (66)

2 The degenerate (extremal) case requires special attention

3 Note that the inequality {66) can be generalized to the Eindilaxwell case, i.e. to electrically charged
black holes, se¢ [10].
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i.e. for given event horizon ardg there exists an upper bound for the absolute value of the
angular momenturfJ).

In order to test explicitly whether the two black holes in ttmible-Kerr-NUT solution
satisfy this inequality, we calculate the quantities

8rJ .
pi = %, i=12 (67)
We obtain the remarkably simple expressions
_ 1+ow _ ww—9)
pliEVVI(@+VVI), p2=¢ 1_wWo 5 (68)
where
@ :=cosp+esing € [—v2,V2). (69)

Hence, the validity of inequality (66) for the two black helis equivalent to

W2 4 20w + 1

2 — 2
and
w2 — 26w+ 1
2 —
pzflz(vvzfl)w<0. (71)

Taking into account the allowed parameter ranges|1, ), w € (0, 1], these inequalities
can only hold if

W2420W +1<0  and W —20w+1<0. (72)

However, this implie®sw’ < 0 and®w > 0 in contradiction tav' > 0 andw > 0.

Thuswe have proved the non-existence of a stationary and axisymertwo-black-hole
configuration with separate horizorfsee Fig[ll). The non-existence theorem is essentially
based on the inequality (66) that is as showri In [9] a consempuef a defining geometrical
black hole property([6] (the case of extremal black holesiireg special attention). Our
result confirms the conjecture that the spin-spin repulsfdwo aligned black holes cannot
compensate for their gravitational attraction.

5 Further properties of the double-Kerr-NUT solution

As we have seen in the previous section, the equilibrium ofaligned black holes is im-
possible. The only candidate for a solution of the balancblpm — the double-Kerr-NUT
solution — has to be dismissed as a physically irrelevanit&wni as discussed above. Nev-
ertheless, it is interesting to study further propertieshig solution. In the following two
subsections we comment shortly on the interior Cauchy bosof the two black holes and
give numerical evidence for the existence of singularibietside the event horizon.
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5.1 The interior of black holes

It was shown in[[2] that every axisymmetric and stationagchklhole, which is regular in an
exterior neighbourhood of the event horizon, also possesses a réggdor region inside
the event horizon. In particular, there always exists alegganer Cauchy horizon and the
inner solution does not develop singularities before tloiszon is reached. Moreover, the
spacetime is even regular at the Cauchy horizon, providetthie angular momentuthof
the black hole does not vanish. Remarkably, the atemsd ACH of event and inner Cauchy
horizon satisfy the equatin

(8r3)2 = ACHA. (73)

It is interesting to test this relation explicitly for both the two black holes in the
double-Kerr-NUT solution. For that purpose, we calculdte areas of the event horizons
using [51) and[(54). Similarly, the areas of the Cauchy lomszare determined by thie
derivatives of the Ernst potentidlat the north poles of the Cauchy horizons. By analytical
continuation off + and f° into regions with¢ < K; and¢ < K, respectively, we obtain

K1 —K> Kz —Ks

A= s — < ASH— 4 =2 (74)
0 f,7§L|C=K2 O f% ‘C:K4
Using these formulae, the explicit calculation shows thatequations
(8r3)% = ACHA, i=1,2, (75)

are indeed satisfied, i.€.(73) holds for both black holes.

5.2 Singularities outside the black holes

As we have proved in Sedl 4, at least one of the two “black hatethe double-Kerr-NUT
solution is not sub-extremal for which reason the solut®nat physically reasonable. It
may then well be that singularities outside the horizonsapp

To investigate the possible presence of singularities,tudysthe situation off the sym-
metry axis. To this end we ask whether the determinant in gr@whinator of the repre-
sentation[(4B) of the Ernst potentifilhas zeros. A numerical study for a large number of
parameter values shows that this is indeed the case, seéFags[8. As a consequence,
the Ernst potential becomes singular at these zeros (iteahdwn that the numerator does
not vanish at the same coordinate positions), i.e. thest @Rrigular ringsoutside the black
holes. Even if it might be too difficult to prove that this isstibase forall choices of the
parameters, our numerical investigations seem to inditégebehaviour, i.e. we are led to
the conjecture thagvery double-Kerr-NUT solution suffers from the preserfcsirmular
rings.

4 Note that these statements can be generalized to black padetimes with electromagnetic fields, see
[Bl17].
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Fig. 2 Singularities of the Ernst potential: The plots show, fop tdifferent configurations, curves along
which the real part (solid curve) and imaginary part (dashede) of the determinant in the denominator of
the Ernst potentiaf vanish. At the intersection poin&, S, (S3), the Ernst potential diverges. The horizons
of the two black holes are marked as black lines on(taeis.

Parametersp = %w, w=10/3,w = 0.3 (left panel) ands = —0.1,w= 1.3, W = 0.5 (right panel).

Fig. 3 Singular Ernst-Potential: Real and imaginary part of thesEpotentialf for the example configuration
in Fig.[2, right panel.

6 Summary

The stationary equilibrium of two aligned rotating blackdscan be described by a bound-
ary value problem for two separate (Killing-) horizons ($eg.[1). Applying the inverse
(scattering) method, one can show that the solution of tlblem is a (particular case
of the) double-Kerr-NUT solution (a solution originally merated by a two-fold Backlund
transformation of Minkowski space). The regularity coiudit to be satisfied by the metric
on the axis of symmetry outside the two horizons restrictrthmber of free parameters
entering the solution. The resulting 3-parameter solufwaritten in dimensionless coordi-
nates) does not satisfy the characteristic conditiejd|[8< A for each of the two black holes
(J: angular momentuméi: area of the horizon). Since this inequality is a conseqeeic
the geometry of trapped surfaces in the interior vicinitythef event horizon of every sub-
extremal black hole, there exists no stationary equiliioriconfiguration for two aligned
sub-extremal black holes.
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