
ar
X

iv
:0

90
7.

30
48

v1
  [

gr
-q

c]
  1

7 
Ju

l 2
00

9
AEI-2009-062

ULB-TH/09-23

Supersymmetric quantum cosmological billiards

Axel Kleinschmidt
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Abstract

D = 11 Supergravity near a space-like singularity admits a cosmological billiard description based

on the hyperbolic Kac–Moody group E10. The quantization of this system via the supersymmetry

constraint is shown to lead to wavefunctions involving automorphic (Maass wave) forms under the

modular group W+(E10) ∼= PSL2(O) with Dirichlet boundary conditions on the billiard domain.

A general inequality for the Laplace eigenvalues of these automorphic forms implies that the wave

function of the universe is generically complex and always tends to zero when approaching the

initial singularity. We discuss possible implications of this result for the question of singularity

resolution in quantum cosmology and comment on the differences with other approaches.
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One of the surprising results in the study of classical gravity very close to a generic space-

like singularity due to Belinskii, Khalatnikov and Lifshitz (BKL) [1] was the realization

that, under rather general assumptions, the system becomes ultralocal in space and can

be described by a sequence of Kasner regimes. In the strict limit towards the singularity,

the Kasner behavior is interspersed with hard reflections of the logarithms of the spatial

scale factors off infinite potential walls [2, 3]. This behavior has been termed ‘cosmological

billiards’; the geometry of the billiard table as well as the possible occurrence of chaotic

oscillations near the singularity depend on the dimension and the matter content of the

theory [4, 5]. In particular, for D = 11 supergravity it was shown by Damour and Henneaux

[6] that the billiard domain is the fundamental Weyl chamber C of the hyperbolic Kac–Moody

group E10, implying chaotic behavior.

Resolving the cosmological singularity requires the transition to the quantum theory. In

this letter we address this issue in the framework of cosmological billiards. More precisely,

we will set up and solve the quantum constraints for D = 11 supergravity for the ten spatial

scale factors and the fermionic degrees of freedom in compliance with the supersymmetry

constraint. The approach followed here is thus a variant of ‘minisuperspace’ quantization of

gravity pioneered in [7, 8, 9] and further developed in [10, 11, 12, 13, 14]. An essential new

ingredient of the present work is the arithmetic structure provided by E10 and its Weyl group,

whose relevance in the context of Einstein gravity was pointed out and explored in [15]. In

accordance with the M-theory proposal of [16], where a correspondence was established at the

classical level between a (truncated) gradient expansion of theD = 11 supergravity equations

of motion and an expansion in heights of roots of a constrained ‘geodesic’ E10/K(E10) coset

space model, the cosmological billiards approximation corresponds to the restriction of the

coset model to the Cartan subalgebra of E10. Our results therefore represent the first step

towards the quantization of the full coset model.

Starting with the bosonic variables, the diagonal metric considered for the cosmological

billiard for a (d+ 1)-dimensional space-time is of the form [17] (for d ≥ 3)

ds2 = −N2dt2 +
d
∑

a=1

e−2βa

dx2
a , (1)

leading to the kinetic term Lkin = 1
2
n−1

∑d
a,b=1 β̇

aGabβ̇
b in terms of the lapse n = Ng−1 (the
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spatial volume is g = exp[−
∑

a β
a]) and the Lorentzian DeWitt metric [18]

β̇aGabβ̇
b ≡

d
∑

a=1

(β̇a)2 −

(

d
∑

a=1

β̇a

)2

. (2)

It will be essential that for d = 10 this metric coincides with the restriction of the Cartan–

Killing metric of E10 to its Cartan subalgebra. The spatial ultralocality of the BKL limit

reduces the gravitational model to a classical mechanics system of a relativistic billiard ball

described by the βa variables moving on straight null lines in the Lorentzian space with

metric Gab until hitting a billiard table wall. The straight line segments are Kasner regimes.

The singularity is at t = +∞ in the ‘Zeno-like’ time co-ordinate t that is related to physical

(proper) time T by t ∼ − logT . There is one such system for each spatial point x, and these

systems are all decoupled.

The conjugate canonical bosonic variables of the billiard system are βa and πa = Gabβ̇
b;

the Hamiltonian then is H = πaG
abπb with the inverse metric Gab. Before quantisation,

we perform the following change of variables by means of which the billiard motion can be

projected onto the unit hyperboloid in β-space [4]

βa = ρωa , ωaGabω
b = −1 , ρ2 = −βaGabβ

b , (3)

where ρ is the ‘radial’ direction in the future light-cone and ωa = ωa(z) are expressible as

functions of d− 1 coordinates z on the unit hyperboloid. The limit towards the singularity

is ρ → ∞ in these variables. The Wheeler-deWitt (WDW) operator on β-space takes the

form [19]

H ≡ Gab∂a∂b = −ρ1−d ∂

∂ρ

(

ρd−1 ∂

∂ρ

)

+ ρ−2∆LB , (4)

where ∆LB is the Laplace–Beltrami operator on the (d − 1)-dimensional unit hyperboloid.

The WDW equation therefore reads HΦ(ρ, z) = 0 for the wavefunction Φ(ρ, z). As usual

(see e.g. [14]) one can adopt ρ as a time coordinate in the initially ‘timeless’ WDW equation,

with the standard (Klein–Gordon-like) invariant inner product

(Φ1,Φ2) = i

∫

dΣaΦ∗
1

↔

∂a Φ2 (5)

where the integral is to be taken over a spacelike hypersurface inside the forward lightcone

in β-space.
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In order to construct solutions we separate variables by means of the ansatz Φ(ρ, z) =

R(ρ)F (z) [9, 10]. For any eigenfunction F (z) obeying

− ∆LBF (z) = EF (z) (6)

the associated radial equation is solved by

R±(ρ) = ρ−
d−2

2 e±i
q

E−(d−2

2 )
2
log ρ . (7)

Positive frequency waves emanating from the singularity correspond to R−(ρ) and have

positive inner product (5). To study the eigenvalues of the Laplace–Beltrami operator

on the unit hyperboloid we use a generalized upper half plane model z = (~u, v) for the

unit hyperboloid with co-ordinates ~u ∈ Rd−2 and v ∈ R>0 and the Poincaré metric ds2 =

v−2(dv2 + d~u 2) such that

∆LB = vd−1∂v

(

v3−d∂v

)

+ v2∂2
~u . (8)

For the spectral problem we must specify boundary conditions. For the cosmological bil-

liard, these are provided by infinite (‘sharp’) potential walls which encapsulate the effect

of spatial inhomogeneities and matter fields near the spacelike singularity, as explained in

[4, 5]. Following the original suggestion of [9], we are thus led to impose the vanishing of the

wavefunction on the boundary of the fundamental domain specified by these walls. Accord-

ingly, let F (z) be any function on the hyperboloid satisfying (6) with Dirichlet conditions

at the boundaries of this domain [20]. A direct generalization of the arguments on page 28

of Ref. [21] gives

− (∆LBF, F ) ≥

∫

dv dd−2u v3−d(∂vF )2 (9)

with (6) and (8). Considering also

(F, F ) =

∫

dv dd−2u v1−dF 2

=
2

d− 2

∫

dv dd−2u v2−dF∂vF (10)

and squaring, the Cauchy–Schwarz inequality entails

E ≥

(

d− 2

2

)2

. (11)
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From the explicit solution (7) we thus conclude that R±(ρ) → 0 when ρ→ ∞, and therefore

the full wavefunction and all its ρ derivatives tend to zero near the singularity. While this

conclusion also holds with Neumann boundary conditions (for which E ≥ 0), the above

inequality furthermore ensures that the full wavefunction is generically complex and oscil-

lating.

Let us now return to maximal supergravity, where the wavefunctions can be further

analyzed by exploiting the underlying symmetry encoded in the Weyl group W (E10) and its

arithmetic properties, and in particular the new links between hyperbolic Weyl groups and

generalized modular groups uncovered in [22]. The Weyl reflections the classical particle

is subjected to when colliding with one of the walls preserve the norm, and therefore the

reflections can be projected to any hyperboloid of constant ρ, inducing a non-linear action

on the co-ordinates z (given in (13) below for the fundamental reflections). For physical

amplitudes to be invariant under the Weyl group, the full wavefunction (in β-space) must

transform as follows

Φ(ρ, z) = ±Φ(ρ, wI · z) (12)

for the ten generating fundamental reflections wI of W (E10), labeled by I = −1, 0, 1, . . . , 8.

Restricting the wavefunction to the fundamental Weyl chamber, one easily checks that the

plus sign in (12) corresponds to Neumann boundary conditions, and the minus sign to

Dirichlet conditions (which we adopt here). Φ(ρ, z) is thus invariant under even Weyl trans-

formations s ∈W+(E10) irrespective of the chosen boundary conditions.

Choosing coordinates as in (8) the relevant variables now live in a 9-dimensional ‘oc-

tonionic upper half plane’ with z = u + iv where u ≡ ~u ∈ O is an octonion. The ten

fundamental reflections of W (E10) act as (j = 1, . . . , 8)

w−1(z) =
1

z̄
, w0(z) = −θz̄θ + θ , wj(z) = −εj z̄εj (13)

where z̄ := ū− iv, with iu = ūi in accordance with Cayley–Dickson doubling [23]. εj and θ,

respectively, are the simple roots and the highest root of E8 expressed as unit octonions [22,

23]. We note that for u ∈ R the formulas (13) reduce to the ones familiar from complex

analysis, with z 7→ 1/z̄, z 7→ −z̄ + 1 and z 7→ −z̄, generating the group PGL2(Z). For

even Weyl transformations, we re-obtain the standard modular group PSL2(Z) generated

by S(z) = (w−1w1)(z) = −1/z and T (z) = (w0w1)(z) = z + 1. Similarly, the even Weyl
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group W+(E10) is isomorphic to PSL2(O) where O are the integer octonions (‘octavians’,

see [23]) and the group PSL2(O) is defined by iterating the action of (13) an even number

of times [22]. Consequently, for maximal supergravity the bosonic wavefunctions Φ(ρ, z)

are odd Maass wave forms for PSL2(O), that is, invariant eigenfunctions of the Laplace–

Beltrami operator transforming with a minus sign in (12) under the extension W (E10) of

PSL2(O). Understanding these modular functions remains an outstanding mathematical

challenge, see [24] for an introduction (and [21] for the PSL2(Z) theory). For the groups

PSL2(Z) and PSL2(Z[i]) the (purely discrete) spectra of Maass wave forms have been

investigated numerically in [25, 26, 27, 28, 29]. By modular invariance, the wavefunctions

can be restricted to the fundamental domain of the action of W (E10), and conversely, their

modular property defines them on the whole hyperboloid. The Klein–Gordon inner product

(5) must likewise be restricted to the fundamental chamber

(Φ1,Φ2) = i

∫

F

dvol(z)ρd−1Φ∗
1

↔

∂ρ Φ2 . (14)

where F is the intersection of C with the unit hyperboloid. This is the canonical quantum

gravity analog of the one-loop amplitude in string theory which is rendered finite upon

‘division’ by the modular group PSL2(Z).

We now turn to the extension of the quantum billiard analysis to maximal supergravity

and restrict to d = 10 henceforth [30, 31, 32]. Classically, the gravitino ψµ of D = 11

supergravity performs a separate fermionic billiard motion [33]. This is most easily expressed

in a supersymmetry gauge ψt = ΓtΓ
aψa [30] and in the variables [33] (with Γ∗ = Γ1 · · ·Γ10)

ϕa = g1/4Γ∗Γ
aψa (no sum on a = 1, . . . , 10) . (15)

Using (15) the Dirac brackets between two gravitino variables (see (6.3) in [32]) become

{ϕa
α, ϕ

b
β} = −2iGabδαβ , where we have written out the 32 real spinor components using the

indices α, β. The fermionic and bosonic variables are linked by the supersymmetry constraint

Sα ≡

10
∑

a,b=1

β̇aGabϕ
b
α =

10
∑

a=1

πaϕ
a
α = 0 . (16)

The supersymmetry constraint implies the Hamiltonian constraint H = 0 by closure of the

algebra

1

4
{Sα,Sβ} = δαβH . (17)
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In order to quantize this system we rewrite the 320 real gravitino components ϕa
α in terms of

160 complex ones, and replace the Dirac brackets by canonical anticommutators to obtain

a fermionic Fock space of dimension 2160 over the vacuum |Ω〉. For the supersymmetry

constraint this amounts to the redefinition S̃A = SA + iSA+16 for A = 1, ..., 16. The quantum

constraint is then solved by

|Ψ〉 =

16
∏

A=1

S̃†
A

(

Φ(ρ, z)|Ω〉
)

, (18)

(with S̃A|Ω〉 = 0) if and only if the function Φ(ρ, z) is a solution of the WDW equation

HΦ = 0. While this solution is close to the ‘bottom of the Dirac sea’, there is an analogous

one ‘close to the top’ with S̃†
A replaced by S̃A and |Ω〉 by the completely filled state.

The cosmological billiards description is very useful but takes into account the dependence

on spatial inhomogeneities and matter degrees of freedom only in a very rudimentary way

via the infinite potential walls. It would thus be desirable to develop an approximation

scheme for the quantum state in line with the ‘small tension’ expansion proposed in [16],

and thereby hopefully resolve the difficulties encountered in extending the ‘dictionary’ of

[16] to higher order spatial gradients and heights of roots in a quantum mechanical context.

In the BKL approximation, the full wavefunction is expected to factorize as

|Ψfull〉 ∼
∏

x

|Ψ
x
〉 , (19)

near the singularity into a formal product over wavefunctions of the type (18), one for each

spatial point (with independent bosonic wavefunctions Φ
x
(ρ(x), z(x)) and space-dependent

diagonal metric variables βa(x) ≡ (ρ(x), z(x)). The task is then to replace the formal

expression (19) by a wavefunction depending on the (infinite) tower of E10 degrees of free-

dom, effectively implementing the de-emergence of space and time near the cosmological

singularity, and their replacement by purely algebraic concepts [30, 34]. We note that as a

consequence of the uniqueness of the standard bilinear (Cartan–Killing) form on E10 there

is a unique E10 extension of the billiard Hamiltonian (4) given by

H → H +
∑

α∈∆+(E10)

mult(α)
∑

s=1

e−2α(β)Π2
α,s . (20)

where the first sum runs over the positive roots α of E10. This extended system requires

additional constraints. A first step in this direction was taken in [35] where a correspondence
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was established at low E10 levels between the classical canonical constraints of D = 11

supergravity (in particular, the diffeomorphism and Gauss constraints) on the one hand,

and a set of constraints that can be consistently imposed on the E10/K(E10) coset space

dynamics on the other. The fact that the latter can be cast in a ‘Sugawara-like’ form as

quadratic expressions in terms of the E10 Noether charges [35] would make them particularly

amenable for the implementation on a quantum wavefunction. In addition, one would expect

that PSL2(O) must be replaced by a much larger ‘modular group’ whose action extends

beyond the Cartan subalgebra degrees of freedom all the way into E10, perhaps along the

lines suggested in [36].

As noted above, the inequality (11) implies that Φ(ρ, z) → 0 for ρ → ∞, and hence the

wavefunction Ψ vanishes at the singularity, in such a way that the norm is preserved. Its

oscillatory nature entails that it cannot be analytically extended beyond the singularity, a

result whose implications for the question of singularity resolution in quantum cosmology

remain to be explored. The mechanism usually invoked to resolve singularities in canonical

approaches to quantum geometrodynamics would be to replace the classical ‘trajectory’ in

the moduli space of 3-geometries (that is, WDW superspace) by a quantum mechanical

wave functional which ‘smears’ over the singular 3-geometries. By contrast, the present

work suggests a very different picture, namely the ‘resolution’ of the singularity via the

effective disappearance (de-emergence) of space-time near the singularity (see also [34]).

The singularity would thus become effectively ‘unreachable’. This behavior is very different

from other possible mechanisms, such as the Hartle–Hawking no boundary proposal [37], or

cosmic bounce scenarios of the type considered recently in the context of minisuperspace loop

quantum cosmology [38, 39, 40], both of which require continuing the cosmic wavepacket

into and beyond the singularity at ρ = ∞.

A key question for singularity resolution concerns the role of observables, and their behav-

ior near the singularity. While no observables (in the sense of Dirac) are known for canonical

gravity, we here only remark that for the E10/K(E10) coset model the conserved E10 Noether

charges do constitute an infinite set of observables, as these charges can be shown to com-

mute with the full E10 Hamiltonian (4). The expectation values of these charges are thus the

only quantities that remain well-defined and can be sensibly computed in the deep quantum

regime, where the E10/K(E10) coset model is expected to replace space-time based quantum

field theory.
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