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Quantum field theoretic extensions of Einstein’s theory of gravity tend to suffer from incurable infinities, but a
theory called N = 8 supergravity may actually avoid them—against expectations held for almost 30 years.
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Gravity is different. It is mediated by particles (gravi-
tons) of spin 2, unlike the other known forces in na-
ture (electromagnetism and the strong and weak inter-
actions), which are carried by particles of spin 1. This
explains why like gravitational charges (that is, masses)
attract, whereas in electrostatics, like charges repel,
thereby accounting for the fact that gravity dominates
physics at large distances, despite its incredible weak-
ness in comparison with the other fundamental forces
(think of a little magnet whose force on a safety pin beats
the gravitational pull of the whole planet Earth). Mod-
ern understanding of gravity rests on Einstein’s theory
of general relativity. This theory is based on the princi-
ple of general covariance (according to which, the laws
of physics should not depend on which coordinate sys-
tem is used to formulate them) and the principle of
equivalence, enabling Einstein to write down “in one
stroke” his gravitational field equations and thereby to
revolutionize our understanding of gravity, replacing
Newtonian gravity by a theory based on spacetime ge-
ometry and curvature.

There is another key aspect in which gravity differs.
Matter is governed by the laws of quantum mechanics,
but so far, Einstein’s theory has resisted all attempts to
reconcile it with quantum mechanics. Our understand-
ing of subatomic phenomena is encoded in the standard
model of elementary particle physics (based on an ex-
tension of quantum electrodynamics called Yang-Mills
theory) which, for all we know, correctly describes the
interactions of known matter within relativistic quan-
tum field theory. This is an elaborate mathematical
framework, which took many decades to develop and
still presents many difficulties. These are due in par-
ticular to the necessity of having to deal with infinite
expressions appearing at intermediate stages of every
calculation, and their removal by a procedure referred
to as renormalization. Infinities generally arise because
of the pointlike nature of elementary particles, imply-

ing short distance singularities in the formulas (or “ul-
traviolet infinities” in momentum space). To this day
we are not sure whether quantum field theory makes
sense as a mathematical theory, but we do know that
it works exceedingly well in perturbation theory, yield-
ing spectacular agreement between theory and experi-
ment. However, applying the established rules of quan-
tum field theory to Einstein gravity and its generaliza-
tions results in complete failure—with one possible ex-
ception: As Zvi Bern, John Carrasco, and Henrik Jo-
hanssen at UCLA, Lance Dixon at the Stanford Linear
Accelerator Center, and Radu Roiban at Pennsylvania
State University, all in the US, report in Physical Review
Letters, N = 8 supergravity, distinguished among all
other field theories by its maximal supersymmetry, may
evade this dilemma [1].

The inconsistencies of perturbatively quantized grav-
ity appear in the form of nonrenormalizable infinities.
This means that in order to remove the divergent expres-
sions resulting from standard Feynman diagram (Fig. 1)
computations, one must modify the Einstein equations
by new types of interactions (counterterms) involving
higher and higher powers of the curvature tensor at
each order in perturbation theory—unlike for renormal-
izable matter interactions, where infinite renormaliza-
tions are only necessary for a finite number of param-
eters (masses and coupling constants), but no new types
of interactions are needed. As a consequence, one must
specify an infinite number of parameters and couplings
if one wants finite results to any given order. But such
a theory has no predictivity whatsoever, because ev-
ery physical prediction would depend on an infinity of
parameters. Any hopes that miraculous cancellations
might prevent this disaster for pure gravity were shat-
tered by an impressive calculation [2, 3].

In the late 1970s physicists set out to find an exten-
sion of Einstein’s theory that would be free of ultravi-
olet (UV) infinities. The idea was to modify gravity by
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FIG. 1: (Left) In the 1940s, Richard Feynman invented a graph-
ical method for carrying out calculations in quantum electro-
dynamics. A typical Feynman diagram shows the electromag-
netic force mediated by photons. (Center) Bern et al.[1] use
different kinds diagrams in their calculations of N = 8 su-
pergravity that permit integration of a large number of sub-
diagrams. Image shows an example of one of many planar
diagrams used in these kinds of calculations. (Adapted from
Bern et al.[13].) Owing to their resemblance to the work of
artist Piet Mondrian (Right), these graphical computational
devices are sometimes referred to as Mondrian diagrams. (Il-
lustration: (Right) Piet Mondrian, “Composition with Large
Red Plane, Yellow, Black, Grey and Blue” (1921), c© 2009 Mon-
drian/Holtzman Trust c/o HCR)

the inclusion of matter couplings finely tuned to cancel
the infinities (and thereby perhaps also identify a raison
d’être for the existence of matter in the world). First of
all this requires fermionic matter, because fermions con-
tribute with a relative minus sign from bosons for each
closed loop inside a Feynman diagram. In addition, the
requisite extension of Einstein’s theory must possess a
new type of symmetry—local supersymmetry—relating
bosons and fermions, and thus forces and matter par-
ticles. It was soon realized that such supersymmetric
extensions of Einstein’s theory become rarer and rarer
with increasing number of supersymmetries N. The
maximally supersymmetric extension of Einstein’s the-
ory, N = 8 supergravity, was finally constructed in Ref.
[4] and, in its more general “gauged” version, in Ref. [5].

Naturally, these developments raised hopes that N =
8 supergravity was at last the looked-for theory that
would tame the infinities of perturbatively quantized
Einstein gravity. A brief period of intense activity fol-
lowed to find out whether this theory might actually be
finite to all orders. These investigations were mostly
based on superspace, an extension of spacetime by
fermionic coordinates [6]. Unfortunately, when applied
to N = 8 supergravity, this method has a major draw-
back: it works only at the level of the equations of mo-
tion, but does not allow setting up a scheme for com-
puting Feynman diagrams. The outcome of all these
efforts, then, was disappointingly inconclusive. After
much work, it was shown in Refs. [7, 8] that there do ex-
ist counterterms compatible with N = 8 supersymme-
try. However, because of the lack of a workable off-shell
formalism, no one was able to calculate the coefficients
of the relevant counterterms (the first of which appears
at three loops [9]) and thereby definitely rule them in
or out. Most researchers therefore concluded that the

theory was doomed, in line with the rule of thumb that
an infinity that cannot be excluded by symmetry argu-
ments actually does appear with a nonvanishing coeffi-
cient (just like the two-loop counterterm for pure grav-
ity [2, 3]). Many turned to superstring theory, which ap-
peared to offer much better prospects for constructing
a perturbatively finite theory of quantum gravity and
for explaining the observed features of low-energy par-
ticle physics from a unified theory. As a result, a general
conviction took hold that the issue of UV finiteness of
N = 8 supergravity was not only hopelessly difficult to
settle once and for all, but more importantly, not a truly
relevant question anymore. And so it might well have
languished forever in the no man’s land of undecidable
propositions, had it not been for the recent progress re-
ported by Bern et al.[1].

To understand why an approach based on standard
Feynman diagram techniques is so forbiddingly compli-
cated, let us recall two simple facts. First, the particles
circulating in Feynman diagrams are off-shell, that is,
they do not obey the usual relativistic dispersion rela-
tion pµ pµ = m2c4. Secondly, in order to keep Lorentz
invariance manifest, one must sum not only over phys-
ical polarizations, but also over a host of unphysical ex-
citations (for instance, in QED the photon is described
by a four vector Aµ, and thus comes with four polar-
izations instead of just the two physical helicities). For
gravity, calculational complexity increases enormously:
the calculation [2, 3] involves hundreds of thousands of
Feynman diagrams. A cursory glance at the N = 8 La-
grangian [4, 5] will probably suffice to dissuade anyone
from even trying to think about doing the calculation in
this way!

The progress that started the long march towards the
computation of Bern et al.[1] originally grew out of at-
tempts to simplify the computation of multiparticle scat-
tering amplitudes in particle physics, and QCD in par-
ticular. A main novelty of this approach was to bring
in string theory in an essential way, consistently exploit-
ing the fact that quantum field theory amplitudes can
be derived by taking special limits of string amplitudes
(where the string degenerates to a point). The latter of-
ten turn out to be “easier” to calculate, precisely because
their computation does not involve unphysical interme-
diate states. As a crucial further ingredient [10], this pro-
gram revived methods from an old approach to particle
physics (going by the name of S-matrix theory) that had
flourished in the 1960s.

To extend these considerations to gravity required the
ingenious exploitation of another key feature of string
theory. String theory describes massless spin-1 and
spin-2 particles as excitations of open and closed strings,
respectively. In the computation of amplitudes this fea-
ture is mirrored in the fact that on-shell gravity ampli-
tudes can be obtained by “squaring” on-shell Yang-Mills
amplitudes; the precise recipe for doing this was de-
vised by Kawai, Lewellen, and Tye—the KLT rules [11].
String theory can thus substantiate the idea that grav-
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ity is, in some sense, the “square” of Yang-Mills theory.
Despite its obvious appeal and simplicity, however, the
idea goes much deeper: no amount of fiddling with the
Einstein-Hilbert action (which is nonpolynomial) will
reduce it to the square of a Yang-Mills action. To bring
the crucial factorization property out into the light of the
day, much more work is required [12]. In fact, to un-
derstand how that happens one better forget just about
everything one has learnt in quantum field theory text-
books!

More specifically, the method employed in [1] pro-
ceeds by “gluing” on-shell amplitudes of yet another
prominent supersymmetric theory: N = 4 Yang-Mills
theory. Being UV finite and exactly conformal, it is a
very rare specimen in the zoo of quantum field theory
models. The gluing technique thus permits one to build
the finiteness properties of N = 4 Yang-Mills theory
into the calculation of the gravity amplitudes right from
the start, thereby saving a lot of sweat (which is still
needed in other places). However, putting together all
the pieces that culminated in the calculation of Bern et
al.[1] took more than ten years of hard work, and we
cannot even begin to describe here the bag of tricks re-
quired to carry it to successful completion. Still, and
quite amazingly, in the end the whole calculation can be
reduced to the computation of about 50 scalar four-loop
integrals involving only cubic vertices. All these dia-
grams must conspire to give the requisite cancellations
and the finite end result.

To be sure, these results do not yet constitute a proof
that N = 8 supergravity is truly a perturbatively fi-
nite theory of quantum gravity (nor can they be easily
generalized to gauged supergravity). Nevertheless, the
computation of Bern et al.[1] actually goes much farther
than would be needed to establish the stated finiteness
result, in that it also supplies subleading contributions
(in fact, the Feynman integrands) rather than just the fi-
nite value of the integral. All these results indicate that
finiteness will persist to yet higher orders. Before con-
templating a five-loop computation, however, it is per-
haps time now to search for a deeper underlying rea-
son that might possibly explain finiteness. Many sus-
pect that this reason has something to do with an as yet
undiscovered symmetry of N = 8 supergravity, and, in
fact, a symmetry beyond maximal supersymmetry. In-
deed, there is one obvious candidate, namely the “hid-
den” symmetry called E7 discovered long ago by Crem-
mer and Julia [4]. Reconciling known on-shell countert-
erms with this symmetry remains a thorny problem, but
it is most doubtful whether E7 alone can do the job of

explaining finiteness. There are yet larger (infinite di-
mensional) hidden symmetries of exceptional type in
maximal supergravities that might eventually become
relevant here, but this remains a speculation for the mo-
ment.

In a wider perspective, what do these results mean for
superstring theory and its claim to be the sole pretender
to the throne of a perturbatively consistent extension of
Einstein’s theory? String theory differs from field theory
in that, on top of its pointlike excitations, it has an infi-
nite tower of massive states corresponding to the quan-
tized vibrational modes of the string. However, a closer
look reveals that its (still conjectural) finiteness hinges
not so much on the presence of these extra states, but
rather on a new type of symmetry (called modular in-
variance), which has no field theory analog. This sug-
gests that the new symmetry that may ultimately ex-
plain finiteness must act in a way very different from
known realizations of spacetime and internal symme-
tries. Accordingly, we should view the coexistence of
several possibly finite candidate theories only as a first
step towards the future construction of an underlying
theory of quantum gravity, where classical space and
time are only emergent concepts, and which would also
be viable nonperturbatively. At present we are still far
from having such a theory, but Ref. [1] will surely re-
main as a milestone in this ongoing search. It is a stun-
ning achievement.
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